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Abstract

Few-shot learning aims to adapt knowledge learned from
previous tasks to novel tasks with only a limited amount of
labeled data. Research literature on few-shot learning ex-
hibits great diversity, while different algorithms often ex-
cel at different few-shot learning scenarios. It is therefore
tricky to decide which learning strategies to use under dif-
ferent task conditions. Inspired by the recent success in Au-
tomated Machine Learning literature (AutoML), in this pa-
per, we present Meta Navigator, a framework that attempts
to solve the aforementioned limitation in few-shot learning
by seeking a higher-level strategy and proffer to automate
the selection from various few-shot learning designs. The
goal of our work is to search for good parameter adapta-
tion policies that are applied to different stages in the net-
work for few-shot classification. We present a search space
that covers many popular few-shot learning algorithms in
the literature, and develop a differentiable searching and
decoding algorithm based on meta-learning that supports
gradient-based optimization. We demonstrate the effective-
ness of our searching-based method on multiple benchmark
datasets. Extensive experiments show that our approach
significantly outperforms baselines and demonstrates per-
formance advantages over many state-of-the-art methods.

1. Introduction

Convolutional Neural Networks (CNNs) have become
indispensable in a variety of computer vision tasks [27,
39–41, 55, 58, 59]. A crucial reason is that the knowledge
learned by CNNs can be transferred across different vision
tasks in the form of hierarchical feature representations.
Nevertheless, a sufficiently large amount of annotated data
is still necessary to achieve good generalization accuracy
due to CNNs’ data-hungry properties, which inevitably hin-
ders the application of CNNs in real-world scenarios.
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Figure 1 – Comparison of some popular few-shot learning algo-
rithms under various few-shot learning task settings. All models are
based on the same network architecture, with weights pre-trained on
miniImageNet dataset. Cross-domain experiments are evaluated on the
CUB dataset. Existing few-shot learning algorithms are highly task-
specific and are outperformed by a simple fine-tune baseline when the
domain difference is large and more support data are available.

Few-shot learning is proposed as a promising direction
to alleviate the need for exhaustively labeled data by explor-
ing an extreme case where only a few labeled data is avail-
able to undertake a novel task based on prior knowledge
learned on previous tasks. A typical application scenario is
few-shot image classification [11,37,44]. Literature on few-
shot learning exhibits great diversity, while different algo-
rithms often excel at different few-shot learning scenarios.
Fig. 1 compares some popular few-shot learning algorithms
on different few-shot learning tasks. Here we consider three
test cases, including 1) the extreme low-shot case, i.e., 1-
shot; 2) a medium-shot case, where the size of support set
is relatively larger than the common benchmarks, e.g., 10-
shot; 3) a cross-domain case where the training and testing
tasks are sampled from different domains. As is shown, ex-
isting few-shot learning algorithms are highly task-specific
and no single algorithm can show superiority over others
across all tasks. In particular, when the domain difference
is large, the compared few-shot learning algorithms can not
sufficiently utilize the increasing number of support data to
accommodate the domain difference, while the simple fine-
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tuning strategy can beat all other few-shot learning meth-
ods, although it is significantly outperformed by others in
the 1-shot case due to over-fitting. Therefore, it is almost
impossible to find one single optimal few-shot learner that
works well for all tasks. This makes many few-shot learning
algorithms difficult to be applied as a general tool to solve
the data scarcity issue in machine learning, even though
they can perform very well on some specific benchmarks.

In recent years, there is a surging interest in automat-
ing the design of machine learning algorithms (AutoML),
instead of relying too much on heuristic manual designs.
In particular, the idea of AutoML has been successfully
applied to Neural Architecture Search (NAS) [26, 45, 52],
where the model learns to identify high-performance archi-
tectures by exploring a large candidate architecture space.
With the same intuition, in this work, we attempt to solve
the aforementioned limitation in few-shot learning by seek-
ing a higher-level strategy and take initiatives to automate
the selection of few-shot learning designs. The goal of our
work is to search for good parameter adaptation policies
that are applied to different stages in the network for few-
shot learning. The search space in our network include two
parts: the policy to adapt convolutional layers in different
stages of the backbone and the policy to obtain class pro-
totypes in the classifier, which together construct a hierar-
chical policy search space. At each network stage, various
candidates policies are available for adapting the parame-
ters, and the whole search space covers many popular meta-
learning algorithms in the literature, such as Prototypical
Networks [37], Matching Networks [44], baseline++ [2],
MAML [11], etc.

In order to search from a pool of discrete adaptation poli-
cies, we develop a differentiable searching algorithm based
on meta-learning that allows efficient gradient-based opti-
mization. Inspired by the differentiable designs in NAS lit-
erature [26], our searching system is built upon a continuous
relaxation of the discrete meta-learning policy, where each
candidate policy is associated with a learnable policy se-
lection indicator. However, as each adaptation policy is an
optimization process rather than a differentiable operation,
directly porting the formulation in DARTS [26] would not
suffice. To tackle this issue, we further associate each pol-
icy with a group of policy-specific model parameters. Then,
the decision of choosing the optimal policy becomes jointly
learning the policy selection indicators as well as the policy
parameters. The searching is conducted via a bi-level op-
timization paradigm based on meta-learning. Specifically,
the optimization goal in the inner loop is to adapt the pa-
rameters in each candidate policy using the support data in
sampled tasks, while the optimization objective in the outer
loop alternates between learning the policy-specific param-
eters and learning the policy selection indicators. Dur-
ing searching, we progressively decode the supernet from

front to back stages, with fine-tune in between, based on a
perturbation-based policy selection scheme [45] that mea-
sures each policy’s influence on the supernet. At the end of
the training, each network stage is associated with an adap-
tation policy with parameters learned.

To validate the effectiveness of our design, we conduct
various experiments on multiple benchmark datasets, in-
cluding the challenging cross-domain experiments. Our
experiment results show that our searched-based model
not only outperforms the random search baseline but
also demonstrates significant performance advantages over
many previous methods covered in our search space. Our
main contributions are summarized as follows:

• Our work is the first attempt to search meta-learning
designs for few-shot learning tasks.

• We propose a hierarchical policy search space that cov-
ers many previous meta-learning algorithms.

• We develop a differentiable meta-learning policy
searching algorithm that can conduct policy searching
efficiently by meta-learning.

• Experiments on five popular datasets show that our
method significantly outperforms the baselines and
achieves new state-of-the-art results on many bench-
marks.

Next we review some related work.

2. Related work
Few-shot classification. Various few-shot learning

paradigms were proposed in the literature [7, 15, 23, 25,
29, 36, 46–48, 50, 51, 53]. Metric-based approaches and
optimization-based approaches are two dominating lines of
efforts. Metric-based methods [9, 14, 22, 32, 37, 42, 44, 49,
53, 54] aim to learn a deep metric to inference data rela-
tions for predictions. Usually, once the model is learned,
the parameters are fixed when it is deployed to inference
in new tasks. Therefore, metric based approaches have
advantages in inference speed and often perform well in
the extremely low-shot case. Optimization-based meth-
ods [1, 11–13, 15, 18–20, 33, 38, 60] aim to design effec-
tive learning paradigms for few-shot learning. For exam-
ple, MAML [11] aims to learn a good model initializa-
tion that can enable fast adaptations of network parameters
in novel tasks. Chen et al. [2] find that by simply pre-
training the model weights with all training classes, many
early works, such as ProtoNet [37], MatchNet [44], and
MAML [11] can be rejuvenated and reach state-of-the-art
performance. In our experiments, we demonstrate the ad-
vantages of our model over these baselines that adopt a fixed
policy across all network stages. Besides image recogni-
tion, few-shot learning is also investigated in segmentation
tasks [5, 28, 56, 57].

9436



Network Architecture Search (NAS). Our work draws
connections with the NAS literature [26,45], which aims for
identifying effective building elements in the CNN struc-
tures. The most related work to ours is DARTS [26],
which applies continuous relaxation that transforms the dis-
crete choice of architectures into architecture weights. In
DARTS, different candidate operations together constitute
a supernet that is optimized in a bi-level scheme, where a
training set is used to learn the operation-specific param-
eters and a validation set is used to optimize the archi-
tecture weights. After training, the optimal operation is
chosen by selecting the one with the largest architecture
weights. Despite its simplicity, many recent works ques-
tion the effectiveness of DARTS [3,4,45,52]. For example,
a simple random search baseline can outperform the archi-
tecture searched by DARTS [26], and the searching favors
parameter-free operations, e.g., skip connections [52]. Re-
cently, many improved designs are proposed to solve the
issues in DARTS [3, 4, 6, 21, 45, 52]. For example, Wang
et al. [45] find that the architecture weights may not be
a good indicator for decoding the supernet, and propose a
perturbation-based architecture selection approach. Specif-
ically, after the training of supernet, the best operation is
chosen based on how much each operation perturbs the su-
pernet performance when it is removed. In our work, we
also adopt such model discretization scheme to obtain the
final policies.

Recently, NAS for few-shot learning is explored in [8,10,
24,30], which aims to identify high-performing task-specific
network structures in the few-shot learning tasks. The dif-
ference of our work with them is that the searching goal in
our framework is to find good parameter adaptation poli-
cies rather than architectures, and different candidate policy
share the same architecture.

3. Policy Search Space
This section describes our meta-learning policy search

space. A standard CNN structure mainly include two com-
ponents: the feature backbone that encodes the input image
into representations and a classifier that classifies the data
embedding. Therefore, we divide the search space in our
framework into two parts: policies at the representation en-
coding (RE) stages (Sec. 3.1) and the policies at the proto-
type learning (PL) stage (Sec. 3.2).

3.1. Search Space for Representation Encoding

In a standard convolutional neural network, denoted by
G(; ), the backbone is used to encode input images into
high-dimensional representations for classification by a se-
quence of convolutional layers. Due to the hierarchical de-
sign in CNNs, we can divide the sequential convolutional
layers into several groups {g1, g2, ...}, e.g. 4 layer blocks in
ResNet. Our goal is to search an adaptation policy for each

layer group in the context of few-shot classification tasks.
Specifically, given a layer group gl(; θ), where l is the in-
dex of the group and θ is the parameters in it, an adaptation
policy is defined as the approach to adapt the parameters θ
based on the support set S in a task T, such that θ becomes
θ̂. For each layer group in the backbone of a CNN, three
kinds of candidate policies are involved:

I. Fixed Parameters (RE-FIX). In RE-FIX, the param-
eters learned by training tasks are kept fixed without any
adaptation in a novel task, i.e., θ̂ ← θ. Such design
is widely seen in the metric-based approaches, where the
learned data encoder on training tasks is directly reused to
encode data in novel tasks. Similarly, baseline++ [2] also
freezes the pre-trained backbone in novel tasks and only
fine-tunes the classifier.

II. Fine-Tuning the Weights (RE-FT). In this case, the
learned parameters of RE-FIX in the group can be fine-
tuned with the support set S in novel tasks by stochastic
gradient descent, i.e.,

θ̂ = θ − β∇θLT(θ), (1)

where β is the learning rate and L is the loss function. By
varying the hyper-parameters during fine-tuning, e.g., the
learning rate or the number of iterations, we can obtain a
collection of sub-candidates, such as a strong RE-FT pol-
icy with a large learning rate or a weak RE-FT policy that
slightly fine-tunes the parameters with a small learning rate.

III. Fast Adaptation (RE-FA). Different from RE-FT
that fine-tunes from the weights of RE-FIX, RE-FA fine-
tunes the model from the model initialization that is meta-
learned, as done in MAML [11]. In other words, the fine-
tuning behavior in RE-FA influences the learning of model
initialization, while RE-FT does not. Similar to RE-FT, we
can further obtain sub-candidates of RE-FA based on the
adaptation hyper-parameters.

We search for an adaptation policy for each layer group
Gl in the backbone. Therefore, dividing the backbone into
M stages results in a search space with [1 + SRE−FT +
SRE−FA]

M candidates for representation encoding, where
S denotes the number of sub-candidates in the policies.

3.2. Search Space for Prototype Learning

After encoding the input image into a vector represen-
tation v ∈ RC with the backbone, the classifier linearly
projects the representation into the scores of each class si
with a weight matrix W ∈ RN×C , where N is the number
of classes and C is the feature dimension. From a prototype
view of such operations, the weight matrix W essentially
stores a collection of prototype vectors [w1,w2, ...,wN ]T

for all classes, where wi ∈ RC , and the class score si of
a specific class i is computed by the inner product between
the data representation v and the class prototype wi, i.e.,

9437



RE-FA 2

RE-FA 1

RE-FA 3

RE-FT 2

RE-FT 1

RE-FT 3

RE-FIX

…
…

RE-FA 2

RE-FA 1

RE-FA 3

RE-FT 2

RE-FT 1

RE-FT 3

RE-FIX 

…
…

RE-FA 2

RE-FA 1

RE-FA 3

RE-FT 2

RE-FT 1

RE-FT 3

RE-FIX 

…
…

…

PL-FA 2

PL-FA 1

PL-FA 3

PL-FT 2

PL-FT 1

PL-FT 3

PL-DI 
…

…

Input Output

Stage 𝟏 Stage 𝟐 Stage 𝒍 Stage 𝒍 + 𝟏

Representation Encoding Stages Prototype Learning Stage

…
…

…
…

…

…
…

…
…

…
…

…

…
…

…
…

…
…

…

…
…

Prototypical Networks MAML Baseline ++

   

Figure 2 – Our search-based framework for few-shot classification. We aim to search for a good adaptation policy at each network stage. Our search
space mainly include two parts: the policies for representation encoding and the policies for prototype learning. Please refer to Sec. 3 for the explanation
of different policies. Based on the continuous relaxation of different candidate policies at each stage, we construct a differentiable supernet that can be
optimized end-to-end (top). Our search space covers many well-known few-shot learning algorithms, such as Prototypical Networks [37], MAML [11]
and Baseline++ [2] (bottom).

si = wiv
T . The inner product operation can also be re-

placed by other similarity metrics, such as negative L2 dis-
tance [37], cosine similarity [44] and deep Earth Mover’s
Distance [53]. Based on such interpretation, we summarize
the following policies as searching candidates to obtain the
class prototypes for computing class scores:

I. Data Initialization (PL-DI). Metric-based meta-
learning algorithms, such as Prototypical Networks [37],
can be seen as directly parameterizing the class prototypes
with the data embeddings of support images. Typically, in
the 1-shot case where each class has one support image, the
encoded support data are directly used as the prototypes,
while in the k-shot case, the averaged data embedding in
each class is set as the class prototype [37]. Therefore, our
first candidate is directly parameterizing the classifier with
data embeddings without any adaptation.

II. Fine-Tuning from Data Embeddings (PL-FT). In
this case, the data initialized prototypes in PL-DI are only
served as the starting point for fine-tuning.

III. Fine-Tuning by Fast Adaptation (PL-FA). Similar
to the RE-FA policy for representation learning, the PL-FA
fine-tunes the classifier from a meta-learned initialization of
prototypes.

Likewise, we can obtain the strong or weak sub-
candidates for PL-FT and PL-FA. We use cosine similarity
to compute the class cores for all policies. After involv-
ing the search space for prototypes, the whole search space
O include [1 + SRE−FT + SRE−FA]

M × [1 + SPL−FT +
SPL−FA] candidates, and the searching goal is to find a
high-performing combination of policy candidates in the
whole search space.

Our search space covers many well-known meta-
learning algorithms, as shown in Fig. 2. For example, if
all parameters are kept frozen for representation encoding
and the classifier is directly parameterized by data embed-
dings (RE-FIX + PL-DI), the model becomes metric-based
methods, such as Prototypical Networks [37] and Matching
Networks [44]; if all stages choose fast adaptation (RE-FA
+ PL-FA), the model becomes MAML; if the parameters in
the backbone are kept frozen and the classifier is fine-tuned
by fast adaptation (RE-FIX + PL-FA), it is close to base-
line++ [2].

4. Method

In this part, we present our method for searching the poli-
cies in the aforementioned search space. We begin by intro-
ducing a continuous relaxation of different candidate poli-
cies that involve all policies into a differentiable supernet
(Sec. 4.1). Then, we discuss how to optimize the model for
searching (Sec. 4.2), and how to progressively decode the
supernet (Sec. 4.3).

4.1. Continuous Relaxation of Policies

In order to search over a pool of discrete choice of meta-
learning policies Ol on a specific stage l, we reuse the idea
of continuous relaxation of individual choices, proposed in
DARTS [26]. At the beginning, each candidate policy oli in
the search space Ol is associated with a normalized policy
selection weight αl

i as well as a copy of parameters θli at
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stage l, where, ∑
i∈|Ol|

αl
i = 1, αl

i > 0, (2)

implemented by softmax. To obtain a continuous relaxation
of discrete policies, we take the weighted sum of the out-
puts generated by different policies. Specifically, given the
output of the previous stage Ol−1, the output of the current
stage is computed by:

Ol =
∑

i∈|Ol|

αl
ig

l(Ol−1, θ̂li). (3)

Therefore, all candidate policies in different stages of the
network together construct a differentiable supernet [26]. In
particular, θ̂li is the parameters after adaptation in individual
policies, while the policy selection weight α specifies the
contribution of different candidate policies, which amounts
to the architectures weights in DARTS [26].

4.2. Optimization

After constructing the supernet of the model, the next
goal is to learn the parameters θ in the individual poli-
cies, as well as the policy selection weight α. Recall
that DARTS [26] alternatively optimizes the architecture
weights and the operation parameters with two disjoint sets,
which approximates a bi-level optimization process. With
similar formulation, the optimization in our framework also
alternates between two meta-learning objectiveness:

1. Update the parameter θ in different candidate policies
with∇θ.LTt(θ̂, α)

2. Update the policy weights α with∇αLTv(θ̂, α).

Alg. 1 presents the pipeline of the optimization process
in the form of pseudo-codes. In comparison with the bi-
level optimization scheme for NAS, there are two main dif-
ference: 1) Different from DARTS where the weights are
learned on a specific task, the optimization in our frame-
work is based on meta-learning, which samples tasks from
two disjoint task domains p(TA) and p(TB), based on the
training set and the validation set, respectively. 2) Each of
the optimization objective above has a nested optimization
problem. Specifically, in the inner loop of both optimiza-
tion objectives, the goal is to adapt the policy weights θ to
obtain task specific policy weights θ̂, while the outer loop
alternatively optimizes the parameters in different policies
θ and the policy selection weight α, with ∇θ.LTA(θ̂, α)

and ∇αLTB(θ̂, α), respectively. Moreover, the way to
obtain the gradient with respect to the policies weights,
i.e., ∇θ.LTA(θ̂, α), varies in different policies. For exam-
ple, since no adaptation operation is applied in RE-FIX,
a closed-form expression of the gradients with respect to

the parameters in RE-FIX can be obtained, while RE-FA
and PL-FA must differentiate through the nested optimiza-
tion trajectory that requires the computation of gradients of
gradients [11]. Noted that as all sub-candidates of RE-FT
and PL-FT fine-tune the parameters from the pre-trained
weights (RE-FIX) or data embeddings, the parameters θ for
fine-tuning in these policies are generated online in each
task, and hence there is no learnable parameter of these poli-
cies in the outer loop of Step 1.

4.3. Decoding Discrete Policies

During the supernet training, we progressively decode
the supernet such that only one candidate policy is left in
each stage. Following [45], we adopt a perturbation-based
decoding strategy that the strength of each poly is defined
as how much it contributes to the performance of the super-
net, which is implemented by masking out the path of each
policy and observing the performance drop. The policy that
leads to the largest accuracy drop on the validation set af-
ter being masked out is considered as the optimal policy in
this stage. We decode each stage one-by-one from front to
back layers. After the decoding of each stage, we fine-tune
the supernet with Alg. 1 for a few episodes to recover the
accuracy drop caused by discretization.

It is important to notice that the direct discretization will
change the behaviors of fine-tuning based policies. Con-
cretely, before decoding of the supernet, an SGD step in a
policy i at layer l is

θ̂li = θli − β
∂LS

∂θli

= θli − β
∂LS

∂Ol

∂Ol

∂gl
∂gl

∂θli

= θli − β
∂LS

∂Ol
αl
i

∂gl

∂θli

(4)

where gl is the output of the policy and Ol is the output
at the stage. The issue here is that, since the continuous
relaxation in Eq. (3) is discretized after decoding, the par-
tial derivatives ∂Ol

∂gl changes from αl
i to 1. Hence, given the

same gradients ∂LS

∂Ol back-propagated to this stage, the dis-
cretization scales the adaptation strength of the policy by
1/αl

i. To resolve such discrepancy, we fuse the policy se-
lection weight α into the learning rate after decoding, i.e.,
β ← βαl

i and the adaptation step after decoding becomes

θ̂li = θli − (βαl
i)
∂LS

∂Ol

∂Ol

∂gl
∂gl

∂θli

= θli − (βαl
i)
∂LS

∂Ol

∂gl

∂θli

(5)

As a result, the actual adaptation steps in the policy be-
fore and after decoding are identical, and the initial assigned
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Algorithm 1: Optimization of the supernet to
search for good adaptation policies.

Input: p(TA), p(TB): two disjoint task distributions
Input: G(;Θ, α): a supernet with pre-trained

initialized weights in each policy
while not done do

# Step 1: Optimize parameters Θ in the policies
Sample a task TA = {S,Q} from p(TA);
Θ̂← G(S;Θ, α) , Adapt weights in each policy

with the support set S (# inner loop);
Make predictions for the query set Q with
G(S; Θ̂, α);

Calculate loss∇Θ.LTA
(Θ̂, α) and optimize Θ;

# Step 2: Optimize policy selection weights α
Sample a task TB = {S,Q} from p(TB);
Θ̂← G(S;Θ, α) , Adapt weights in each policy

with the support set S (# inner loop) ;
Make predictions for the query set Q with
G(S; Θ̂, α);

Calculate loss∇α.LTB
(Θ̂, α) and optimize α;

end
Decoding the supernet

learning rate only serves as the upper bound during search-
ing.

5. Experiments
5.1. Dataset Statistics

To validate the effectiveness of our framework, we
conduct experiments on five benchmark datasets, includ-
ing miniImageNet, tieredImageNet, Fewshot-CIFAR100
(FC100), CIFAR-FewShot (CIFAR-FS) and Caltech-UCSD
Birds-200-2011 (CUB).

miniImageNet. miniImageNet is the most popular few-
shot classification dataset, proposed in [44]. The dataset
is built upon the ImageNet dataset [34], and contains 100
classes with 600 images in each class. The numbers of
classes for training, validation and testing, are 64 ,16 and
20, respectively.

tieredImageNet. tieredImageNet is also a few-shot clas-
sification dataset build upon ImageNet, which includes 608
classes. The splits of training(20), validation(6) and test-
ing(8) classes are set according to the super-classes to en-
large domain gaps between training and testing time.

Fewshot-CIFAR100. FC100 is a few-shot classification
dataset build on CIFAR100 [17]. Following the split divi-
sion in [31], the training ,validation and testing sets include
60, 20, and 20 classes respectively.

CIFAR-FewShot. CIFAR-FS is also a few-shot classi-
fication dataset built upon CIFAR100, proposed in [7]. It

Model 1-shot 5-shot 10-shot
ProtoNets [37] 57.89 78.75 82.66

MatchNets [44] 61.47 75.41 78.87
MAML [11] 59.58 75.80 78.20

Baseline++ [2] 61.50 79.47 83.63
finetune 44.81 68.77 76.94

Random search 64.10 77.97 80.94
Ours 65.91 82.66 85.46

Table 1 – Comparison with baseline models for 5-way few-shot classi-
fication on miniImageNet dataset. The searched model for 5-shot tasks
is re-used to undertake 10-shot tasks in this experiment. Our searched
policy outperforms baselines consistently on various tasks.

contains 64, 16, 20 classes for training, validation and test-
ing, respectively.

Caltech-UCSD Birds-200-2011. CUB is a fine-grained
bird classification dataset. Following [2], we divide 200
classes into 100, 50 and 50 for training, validation and test-
ing, respectively.

5.2. Implementation Details

We employ ResNet-12 as our network backbone to con-
duct all experiments. As there are four layer blocks in
the ResNet backbone, we can naturally divide the network
parameters into five stages, including four stages in the
backbone and 1 stage in the classifier. We set two sub-
candidates for RE-FT, RE-FA, PL-FT, PL-FA policies, in-
cluding a strong version that fine-tunes parameters with the
learning rate of 0.1 and a weak version with the learn-
ing rate of 0.01, and all the sub-candidates adapt the pa-
rameters for 10 epochs. Therefore, our search space cov-
ers (1 + 2 + 2) × (1 + 2 + 2)4 = 3125 candidates to-
tally. Before the optimization of the supernet, we pre-train
a backbone with all data in the training set, and use the pre-
trained weights to initialize all policies at the representation
learning stage. We train the supernet with Alg. 1 for 1000
episodes and then start decoding from front to back layers.
After decoding each stage, we fine-tune the supernet for 100
episodes to recover the accuracy drop caused by discretiza-
tion. After all stages are decoded, we further fine-tune the
networks for 2000 episodes. Random scale, random crop
and random horizontal flip are employed for data augmen-
tation at training time. All models in our experiment are
evaluated with 600 testing episodes, and we report the aver-
age accuracy.

5.3. Results and Analysis

Visualization of searched models. We first present the
visualization of the searched models under different few-
shot learning tasks. We plot the final selection of policies at
each stage as well as the policy selection weights of differ-
ent stages before the initial decoding in Fig. 3. Noted that
the policy selection weights do not necessarily indicate the
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Figure 3 – Visualization of the searched policies under different 5-way few-shot learning tasks. We plot the distributions of the policy selection weights
before the initial decoding as well as the final policy at each network stage. Learning rates are noted below all fine-tune based policies. Please refer to
Sec. 5.3 for our analysis.

Model 1-shot 5-shot 10-shot
ProtoNets [37] 45.52 66.80 72.29

MatchNets [44] 47.41 63.63 68.83
MAML [11] 41.29 58.10 62.18

Baseline++ [2] 47.79 70.01 76.13
finetune 39.49 67.88 78.60

Random Search 49.22 67.47 71.64
Ours 53.80 72.43 81.05

Table 2 – Cross-domain experiments on CUB dataset. Models trained
with miniImageNet dataset are evaluated on multiple 5-way task set-
tings. Our model performs well across all task settings and demonstrates
performance advantages over all baselines.

decoding selections, but we can observe the behavior of the
searching model by comparing the selection distributions
on different tasks or layers. We have the following findings
based on the visualizations:

1. What is shared across all tasks is that the prototypes
that are fine-tuned with a relatively large learning rate
based on data initialization (PL-FT) are always fa-
vored, while the prototypes that are fine-tuned from
meta-learned initialization (PL-FA) are completely ig-
nored. This emphasizes the preference of the data
initialization for prototypes learning in our searching
model. Meanwhile, the last representation encoding
layer, i.e., layer 4, in all tasks also chooses adaptation
with a relatively large learning rate (RE-FA or RE-FT).

2. We find that as the data-initialization-based policies
dominate the prototype learning stage in the supernet,
the gradients propagated to the front layers are weak
in the one-shot case. As a result, the outputs of differ-
ent policies at the front layers, e.g., layer 1, are very
similar, and the distribution is therefore close to uni-
form. Nevertheless, after the perturbation-based de-
coding, all models except the one for the k-shot cross-

domain task, choose to fix the parameters in the first
layer block.

3. By comparing the distributions and the final policies
of different tasks, we can find that when the domain
difference is large or the number of support data grows,
more layers choose to be fine-tuned and the learning
rate also increases.

Comparison with baselines. In order to demonstrate the
advantages of our design, we compare our searched poli-
cies with the following baseline models that relate to our
proposed search space:

I. Prototypical Networks and Matching Networks, the
two representative metric-based methods in literature. Their
difference is that Prototypical Networks [37] use negative
L2 distance to compute class scores and the averaged em-
beddings as prototypes in the classifier, while Matching
Networks [44] use cosine similarity to compute class scores,
and use individual data embeddings as prototypes and then
fuse the scores generated by different prototypes from the
same class.

II. MAML [11]. Based on our search space, all rep-
resentation encoding stages adopt RE-FA policies and the
prototype learning stage adopts the PL-FA policy. We
choose the learning rates for the backbone and the classi-
fier from {0.01, 0.1} and report the optimal result.

III. Baseline++ [2]. Baseline++ freezes the pre-trained
backbone and fine-tunes a cosine classifier. We fine-tune the
classifier for 100 iterations for all experiments. The learning
rates are chosen from {0.01, 0.1}, and we report the optimal
result.

IV. Fine-tune. We simply fine-tune the pre-trained
model for 100 iterations with different learning rates for the
backbone and the classifier. The learning rates are chosen
from {0.01, 0.1}, and we report the optimal result.

V. Random Search. We randomly sample the policies
at each stage in the proposed search space to construct a
model, and report the averaged performance of 10 sampled
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Method Backbone
miniImageNet tieredImageNet FC100 CIFAR-FS

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

TADAM [31] ResNet-12 58.50± 0.30 76.70± 0.30 – – 40.1± 0.4 56.1± 0.4 – –
MTL [38] ResNet-12 61.2± 1.8 75.5± 0.8 65.6± 1.8 80.8± 0.8 45.1± 1.9 57.6± 1.0 – –

FEAT [49] ResNet-25‡ 62.96± 0.20 78.49± 0.15 – – – – – –
LEO [35] WRN-28-10‡ 61.76± 0.08 77.59± 0.12 66.33± 0.05 81.44± 0.09 – – – –

Dhillon et al. [7] WRN-28-10‡ 57.73± 0.62 78.17± 0.49 66.58± 0.70 85.55± 0.48 38.25± 0.52 57.19± 0.57 68.72± 0.67 86.11± 0.47

MetaOptNet [18] ResNet-12 62.64± 0.82 78.63± 0.46 65.99± 0.72 81.56± 0.53 41.1± 0.6 55.5± 0.6 72.0± 0.7 84.2± 0.5

CAN [14] ResNet-12 63.85± 0.48 79.44± 0.34 69.89± 0.51 84.23± 0.37 – – – –
CTM [22] ResNet-18‡ 64.12± 0.82 80.51± 0.13 68.41± 0.39 84.28± 1.73 – – – –

DSN-MR [36] ResNet-12 64.60± 0.72 79.51± 0.50 67.39± 0.82 82.85± 0.56 – – 75.6± 0.9 86.2± 0.6

Tian et al. [43] ResNet-12 64.82± 0.60 82.14± 0.43 71.52± 0.69 86.03± 0.49 44.6± 0.7 60.9± 0.6 73.9± 0.8 86.9± 0.5

Kim et al. [16] ResNet-12 65.08± 0.86 82.70± 0.54 – – 42.31± 0.75 57.56± 0.78 73.51± 0.92 85.49± 0.68

DeepEMD [53] ResNet-12 65.91± 0.82 82.41± 0.56 71.16± 0.87 86.03± 0.58 46.47± 0.78 63.22± 0.71 – –

Ours ResNet-12 65.91± 0.83 82.66± 0.55 73.52± 0.88 85.34± 0.62 45.60± 0.81 59.93± 0.76 74.01± 0.96 86.03± 0.62

Ours + MC ResNet-12 67.14± 0.80 83.82± 0.51 74.58± 0.88 86.73± 0.61 46.40± 0.81 61.33± 0.71 74.63± 0.91 86.45± 0.59

‡ Different backbone with ours.
Table 3 – Comparison with the state-of-the-art 5-way few-shot classification results on miniImageNet, tieredImageNet, FC100, and CIFAR-FS datasets.
MC denotes multi-crop testing. Our approach outperforms state-of-the-art performance on multiple datasets.

models. We omit the policy PL-FA (lr = 0.01), as we find
it always generates poor results, no matter what policies are
adopted at the prototype encoding stages.

All the baseline models are pre-trained, and the results
are presented in Table 1. As we can see, given the similar
architectures shared by all compared models, our searched
adaptation policy achieve optimal results on all task set-
tings. In particular, our model outperforms the random
search baseline consistently, which validates the effective-
ness of our searching algorithm.

Cross domain experiments. We next perform cross-
domain experiments to further evaluate the effectiveness of
our design, where the training data and testing data are sam-
pled from different datasets. We evaluate the model trained
with miniImagenet data on CUB dataset. Since CUB is
a fine-grained classification dataset, there exists a domain
gap between the training and testing tasks, which can bet-
ter evaluate how well a few-shot learning algorithm adapt
a model for novel tasks. In the cross-domain experiments,
we use the validation set from the target domain as the set B
in Alg. 1 to conduct searching. As we can see from the re-
sults in Table 2, our model outperform baseline models con-
sistently on different datasets with remarkable performance
advantages. In particular, on the 10-shot tasks, we outper-
form the random search baseline by 9.41% and baseline++
by 4.92%.

5.4. Comparison with State-of-the-Art Methods

To better position our method among the few-shot learn-
ing literature, we compare the results of our network with
the state-of-the-art performance. We report the Top 1 ac-
curacy with the 95% confidence intervals on four bench-
mark datasets: miniImagenet, tieredImagenet, CIFAR-FS,
and FC100. As we find the predictions of the few-shot

learners are often sensitive to the scales and shifts in in-
put data, we also report the result that employs multi-crop
testing, denoted by MC. Specifically, we simply re-use the
data augmentation operations at training time to scale and
crop the query images for 10 times and average the pre-
dicted logits of them as the final predictions. The result is
shown in Table 3. Though our method aims to solve a more
general few-shot learning problems, we still obtain remark-
able performance on the popular benchmarks. In particu-
lar, on popular tieredImagenet dataset, we obtain 74.58%
1-shot accuracy, which outperforms previous state-of-the-
art by 3.42%.

6. Conclusion

In this paper, we have presented a search-based frame-
work for few-shot learning classification that aims to find
a good parameter adaptation policy at each network stage.
With a continuous relaxation of the discrete meta-learning
policy, our searching model is differentiable and end-to-end
trainable. We further develop a decoding algorithm that pro-
gressively select the optimal choice at each stage. Our de-
signed search space covers many popular few-shot learning
designs in literature. Extensive experiments validate the ef-
fectiveness of our design, and we obtain new state-of-the-art
performance on multiple benchmarks.
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