
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud
Semantic Segmentation

Yachao Zhang1, Yanyun Qu1*, Yuan Xie2∗ , Zonghao Li1, Shanshan Zheng1, Cuihua Li1

1 Xiamen University, 2 East China Normal University
yachaozhang@stu.xmu.edu.cn, yyqu@xmu.edu.cn, yxie@cs.ecnu.edu.cn,

{zonghaoli,shanshanzheng}@stu.xmu.edu.cn, chli@xmu.edu.cn

Abstract

Large-scale point cloud semantic segmentation has wide
applications. Current popular researches mainly focus on
fully supervised learning which demands expensive and te-
dious manual point-wise annotation. Weakly supervised
learning is an alternative way to avoid this exhausting an-
notation. However, for large-scale point clouds with few
labeled points, the network is difficult to extract discrimi-
native features for unlabeled points, as well as the regular-
ization of topology between labeled and unlabeled points is
usually ignored, resulting in incorrect segmentation results.

To address this problem, we propose a perturbed self-
distillation (PSD) framework. Specifically, inspired by self-
supervised learning, we construct the perturbed branch
and enforce the predictive consistency among the perturbed
branch and original branch. In this way, the graph topol-
ogy of the whole point cloud can be effectively established
by the introduced auxiliary supervision, such that the in-
formation propagation between the labeled and unlabeled
points will be realized. Besides point-level supervision,
we present a well-integrated context-aware module to ex-
plicitly regularize the affinity correlation of labeled points.
Therefore, the graph topology of the point cloud can be fur-
ther refined. The experimental results evaluated on three
large-scale datasets show the large gain (3.0% on average)
against recent weakly supervised methods and comparable
results to some fully supervised methods.

1. Introduction
Currently, large-scale point cloud semantic segmentation

attracts more and more attention due to its broad appli-
cations in environmental perception, such as autonomous
driving, human-computer interaction, virtual reality, and
robotics. Great progress has been made in small-scale point
cloud semantic segmentation [15, 16, 31, 12, 11, 22, 24].
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Figure 1. Semantic segmentation results with 1% labeled points.
We improve the segmentation accuracy of the categories with high
structural similarity to other categories highlighted by the red box.

Recently, RandLA-Net [5] was proposed as an efficient
method for large-scale point cloud (∼ 106 points) seman-
tic segmentation. However, the mainstream of all these
methods is built upon fully supervised learning, requiring
tremendous point-wise annotation. Unfortunately, such an-
notation involves a large amount of manual work. For ex-
ample, it takes 22.3 minutes to annotate a scene of ScanNet
[2] on average [23].

To avoid the exhausting annotation, weakly supervised
methods are rising. Xu and Lee et al. [26] firstly pro-
posed a weakly supervised method by labeling a tiny frac-
tion points. This method utilizes multi-branch supervision
and a parameter-free graph-based smoothing item based on
Laplacian matrix, achieving comparable performance to its
fully supervised version with 10× fewer labeled points.
However, this method is limited as it can not directly be im-
plemented to the large-scale point cloud with fewer labels,
due to the lack of learnable topological relationship and the
high computational complexity of the Laplacian matrix. In
addition, this method only uses point-level supervision, and
it is not easy to model the context. While in fully supervised
segmentation task, context information is implicitly learned
by U-Net-style structure [16, 5] or local feature aggrega-
tion [31, 22]. Due to the limited annotation of large-scale
scenarios, these techniques cannot meet the requirements
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for learning enough discriminative features. For example,
in the first column of Figure 1, the Baseline (RandLA-Net
[5]), trained by 1% labels, misclassifies many points in the
red box.

Inspired by the successes of self-supervised learning, we
propose a perturbed self-distillation framework that focuses
on solving two critical issues: 1) How to design auxiliary
supervision for unlabeled points, such that a well-formed
point graph topology can be established. 2) Besides merely
supervising on point-level, how to derive a context regular-
ization for modeling the relationship among labeled points?

For the first issue, we introduce the perturbed self-
distillation by constructing a perturbed branch and keeping
the predicted distribution consistency between the perturbed
branch and the original branch. The consistency constraints
provide additional supervision for all points, enabling the
introduced graph convolutional networks (GCNs) to estab-
lish a well-formed graph topology among all points. There-
fore, based on this learned graph structure, a new interactive
way of two branches is introduced, which realize the effec-
tive information flow between labeled and unlabeled points.

Secondly, to refine the graph topology, we propose the
context-aware module, where we encode the semantic cor-
relation affinity of the labeled points to supervise the learn-
ing of feature correlation. Since the labeled points are dis-
tributed in the graph topology like anchor points, if the re-
lationship of the anchor points could be guaranteed to be
correct to some extent, it would have a positive impact on
the classification results of unlabeled data.

To summarize, our contributions are three-fold:
• We propose a perturbed self-distillation (PSD) frame-

work, where a self-distillation mechanism is introduced by
constructing perturbed samples to ensure the predictive con-
sistency among perturbed samples and original samples.
Accompanying with the supervision from labeled data, the
graph topology of the whole point cloud can be effectively
established through the information propagation between
labeled and unlabeled points during training.

• A context-aware module is presented, and it can be
seamlessly integrated into the self-distillation framework.
With the help of exactly learning the affinity context of la-
beled points, the graph topology of the point cloud can be
further refined.

• PSD achieves significant performance over state-of-
the-art methods and gains a 3.0% improvement on average
of three datasets. Moreover, PSD also improves the perfor-
mance of Baseline in the way of fully supervised learning.

2. Related work

2.1. Large-scale point cloud segmentation

On the strength of the prominent advances of deep neural
networks after PointNet and PointNet++ [15, 16], semantic

segmentation has attracted more attention. Though some
works [31, 12, 11, 22, 24, 9, 6, 28] have shown promising
results, most of them only work on small point clouds and
cannot directly scale up to large-scale point clouds due to
high computational costs or memory requirements [5].

Recently, the graph convolution-based method SPGraph
[8] and voxel-based method FCPN [17] are proposed for
large-scale point clouds analysis. However, SPGraph or
voxelization is computationally expensive. RandLA-Net [5]
utilizes a random point sampling strategy instead of more
complex point selection approaches, which provides an ef-
ficient and lightweight neural architecture. These state-
of-the-art methods mentioned above all depend on well-
labeled point cloud datasets. However, this point-wise an-
notation is labor-intensive and time-consuming.

2.2. Weakly supervised point cloud segmentation

The study of weakly supervised point cloud semantic
segmentation is in its infancy. We divide the existing meth-
ods into three categories according to the manner of anno-
tation: a tiny fraction of points annotated methods [26, 30],
semantic category annotated method [23], and 2D segmen-
tation maps annotated method [21].

Annotating a tiny fraction of points is a popular type
of weakly supervised point cloud segmentation. Xu and
Lee [26] utilizes multi-branch supervision and a subsequent
smooth branch to ensure a better representation for the
small-scale point cloud. A parameter-free graph used for
post-processing is not learnable and will cause GPU mem-
ory explosion at handling large-scale point clouds. Zhang
et al. [30] proposed a transfer learning-based method to
improve the performance of weakly supervised point cloud
segmentation. This method requires additional datasets
to learn prior knowledge and transfers the knowledge to
weakly supervised segmentation tasks. However, the pre-
training is time-consuming and requires abundant data.

Unlike the multi-branch constraints of Xu and Lee [26],
we focus on implicit label propagation by constructing
the learnable graph topology, and our method is suitable
to large-scale point clouds. Different from Zhang et al.
[30], the needs for additional datasets for pre-training, our
method focuses on how to mine the supervision information
of the data itself.

In addition to the above methods, MPRM [23] utilizes
the semantic categories of sub-cloud and introduces a point
class activation map (PCAM) using a classification net-
work. It mines the localization cues for each class from var-
ious aspect features to generate pseudo point-level labels.
GPFN [21] uses a deep graph convolutional network-based
framework and leverages 2D segmentation maps of differ-
ent viewpoints to supervise the point cloud training.

However, the two methods need to split the point cloud
into sub-clouds or truncated point clouds that inevitably
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Figure 2. The framework of perturbed self-distillation.

lose the structural information and difficult to model the
contexts. Our PSD introduces a context-aware module to
refine the context of neighbor correlation.

3. Method
3.1. Notation and representation

Let P be a point cloud in the train-
ing set defined as {(X l, Y l), (Xu,∅)} ={(

xl
1, y

l
1

)
, . . . ,

(
xl
M , ylM

)
, xu

M+1, . . . , x
u
N

}
, where X l and

Xu are sets of M labeled points and the unlabeled points
respectively, and Y l is label set of labeled points. Formally,
given a large-scale point cloud with a tiny fraction of labels
as input, the weakly-supervised segmentation aims to learn
the function f : X l ∪Xu 7→ Y . Specifically, for 1%
setting, the number of labeled points is M = 1%×N . The
1pt represents only one point labeled with the ground truth
of every category, and the number of labeled points M
equals the number of categories C. All the labeled points
are selected randomly.

In PSD framework, there are two networks: the back-
bone and the graph convolutional network (GCN). For the
backbone and GCN, we choose RandLA-Net [5] and Edge-
Conv [22], where the GCN can be formulated as:

Egcn(xk
i ) = F({xi ⊕

(
xi − xk

i

)
|xk

i ∈ N (xi)}; Θ), (1)

where N (xi) is the local neighborhood of point xi simply
constructed by the K nearest neighbors algorithm based on
the Euclidean distances, ⊕ denotes feature concatenation.
F is a function with a set of learnable parameters Θ. Then
we use the Max-pooling operation to aggregate local fea-
tures. Thus GCN can be formulated as:

G(xi; Θ) = max
xk
i ∈N (xi)

Egcn(xk
i ). (2)

3.2. Overall framework

For weakly supervised tasks, we consider two ways to
make the robust feature representation for point cloud seg-
mentation: 1) introducing auxiliary supervision to construct
graph topology for information flow, 2) and refining the
graph topology. We propose a perturbed self-distillation
framework shown in Figure 2, containing perturbed self-
distillation (top part) and a pluggable context-aware mod-
ule (bottom part). The former constructs a perturbed branch
and constraints the predictive consistency among perturbed
samples and original samples. As a result, the GCN can ef-
fectively establish graph topology of the whole point by the
supervision from labeled data and consistency constraint.
Besides, the latter is designed to learn the exact affinity con-
text of labeled points, such that the graph topology of the
point cloud can be further refined.

In Figure 2, a training batch is firstly fed into the per-
turbed branch and the original branch, respectively. In
the perturbed branch, point clouds need to be disturbed
by two random transformations and a learnable transfor-
mation. Original point clouds and perturbed point clouds
pass through the backbone and GCN layers. Then, we con-
catenate the output features of backbone and GCN to re-
fine the prediction. The output category probability dis-
tributions of two branches are supervised by cross-entropy
loss for labeled points and self-distillation loss for all points.
Moreover, the context-aware module constructs a point cor-
relation descriptor to constrain point-wise feature affinity
through an affinity loss.

3.3. Perturbed self-distillation

Perturbed self-distillation is very suitable for weakly su-
pervised semantic segmentation for two reasons: (1) Weak
supervision tasks benefit from the additional supervision
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created by self-distillation. (2) Self-distillation can transfer
knowledge between different perturbed branches [25] and
drive the network to automatically learn more representa-
tive feature for generalization. However, to implement the
perturbed self-distillation, two difficulties appear: (1) How
to construct the perturbed branch. (2) How to conduct inter-
action between two branches. We will detail the solution as
follows.

3.3.1 Perturbed branch

The two branches respectively take a point cloud and the
corresponding perturbed point cloud as inputs, and output
the class probability distributions. Since point perturbation
is crucial for self-distillation learning, a strong perturbation
may cause the network difficult to converge, while a to weak
perturbation will make the performance trivial. Thus, we
design a combinational transformation which contains the
scene-wise transformation, the point-wise displacement for
coordinates, and the attribute attention. Note that the per-
turbed branch will not be used during the test stage.

Scene-wise transformation. A point cloud P can be
split to the coordinate Px ∈ RN×3 and the attribute Pa

(e.g., color or normal). We use the coordinate for scene-
wise transformation which contains random rotating T r ∈
R3×3 and mirroring Tm ∈ R3×3. The rotated point
cloud P r

x can be denoted as P r
x = Px · T r, where T r = cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 , the rotation degree θ around the

z-axis obeys a uniformly distribution U(0, 2π), “·” denotes
the matrix product. For mirroring, we only consider the mir-
ror transformation relative to the Y -axis as Pm

x = Px · Tm

and Tm = diag (1,−1, 1).
Point-wise displacement. For the point-wise displace-

ment, we jitter the point location and yield a noise dis-
placement T j ∈ RN×3, where T j is the Gaussian noise
with mean 0.01 and variance 1.0. Then, the offset is set
in [−0.05, 0.05]. The jittered point cloud denotes P j

x =
Px+T j . The point cloud with perturbed coordinate P̂x can
be randomly selected from {P r

x , P
m
x , P j

x}.
Attribute attention. For different point clouds, their

attributes usually make different influence on the discrim-
inability of extracted features. The real-world point cloud
has diversity with different attributes. For example, the
color attribute plays a critical role in some categories for
obtaining discriminative features, such as the “door” and
“window”. However, in some categories with high color
similarity (e.g., the “column” and “wall”), the color infor-
mation may confuse feature extraction.

The above two random transformation methods can not
handle the difference in attributes. Therefore, we introduce
an attribute attention layer to adaptively learn the weights

for input attributes, which can be regarded as a learnable
transformation to fit the diversity of point clouds. Specifi-
cally, we concatenate the perturbed coordinate P̂x and orig-
inal attribute Pa as Pc. Then, a mapping function Fa(·,Θa)
is implemented by a multi-layer perceptron with learnable
parameters Θa to map the channel of Pc to the response
s = Fa (Pc; Θa) ,∈ RN×d. The attribute attention score αi

of the channel i can be formulated as:

αi =
exp (si)∑d
i=1 exp (si)

. (3)

We use attribute attention scores to construct a diagonal ma-
trix α = diag (α1, α2, · · · , αd). The final perturbed point
cloud can be obtained by P̂ = Pc ·α.

3.3.2 Self-distillation loss

To enforce the constraints of the predictive consistency, we
use the Jensen-Shannon divergence as the self-distillation
loss Lsd to constrain the distribution of class probabilities
between the original branch and the perturbed branch:

Lsd =
1

2N

N∑
i=1

JS(ỹi∥ŷi)

= ỹi log

(
2ỹi

ỹi + ŷi

)
+ ŷi log

(
2ŷi

ỹi + ŷi

)
,

(4)

where ỹi and ŷi are the predicted probabilities of point i
output by the original branch and the perturbed branch, re-
spectively.

The self-distillation loss does not emphasize whether
the two branches can predict the category accurately, but
focus on ensuring the predictive consistency between two
branches, leading to an auxiliary loss function in the sce-
nario of self-supervision. With the help of the self-
distillation loss and cross-entropy loss for labeled points,
the accurate graph topology of the whole point cloud can be
achieved through information propagation among labeled
and unlabeled data.

3.4. Context-aware module

The architecture of U-Net consisted of a contracting path
trying to capture contexts [18], which is widely used in
point cloud understanding tasks [31, 5]. As there are few
labeled points, such an implicit context is insufficient to un-
derstand large-scale, irregular, and disordered point clouds.
Therefore, we present a context-aware module to model the
exact affinity context of labeled points. The labeled points
are distributed in the graph topology like anchor points.
The more accurate the correlation between anchor points
in graph topology is, the more precise the prediction of un-
labeled points becomes. The context-aware module com-
prises three essential components: the point affinity, the
point semantic correlation descriptor, and an affinity loss.
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Point affinity. We introduce the point affinity matrix
to denote the similarity of point features. Let Ẽ ∈ RN×d

and Ê ∈ RN×d be the output features of the GCN layer in
two branches, respectively. We concatenate Ẽ and Ê along
point dimension and query the merged features of labeled
points as E = {e1, e2, . . . , e2M}, where ei is the feature
vector of point i. The point affinity is constructed by the
cosine similarity:

pij = max(0,
⟨ei, ej⟩
∥ei∥∥ej∥

), i, j = 1, 2, . . . 2M, (5)

where ∥ · ∥ denotes ℓ2 normalization, “⟨·, ·⟩” denotes inner
product. Obviously, if two points belong to different cate-
gories, the pij is small. On the contrary, it will be larger.

Point correlation descriptor. We design the point cor-
relation descriptor to provide supervision for point affinity.
It indicates the pairwise relationship of labeled samples in a
point cloud. Specifically, we first convert the labels Y l into
the one-hot vector. As the perturbed branch and the origi-
nal branch have the same label, we merge the two one-hot
codes Y l

c = [Y l
h;Y

l
h] ∈ R2M×C , where M and C are the

numbers of labeled points and categories. This descriptor
of semantic correlation can be defined as:

Ag = Y l
c · T (Y l

c ), ∈ R2M×2M (6)

where T (·) is the matrix transpose. Let aij ∈ {0, 1} denote
an element of Ag , it represents the semantic correlation of
point i and j. For example, aij = 1 indicates that i and j
belong to the same category.

Affinity loss. Inspired by [29], we use a compound loss,
which consists of the cross-entropy loss Lce, precision Lp,
and recall Lr, to guide the learning of the point affinity:

Laf = Lce + Lp + Lr. (7)

The cross-entropy loss Lce can be formulated as:

Lce = − 1

2(2M)2

(2M)∑
i=1

(2M)∑
j=1

(aij log pij+(1−aij) log(1−pij)),

(8)
where pij is the element of feature affinity at the point i and
j. The precision and recall can be separately formulated as:

Lp = − 1

2M

2M∑
j=1

(
log

∑2M
i=1 aijpij∑2M
i=1 pij

)
, (9)

Lr = − 1

2M

2M∑
j=1

(
log

∑2M
i=1 aijpij∑2M
i=1 aij

)
. (10)

Discussion. The differences between the context prior
layer (CPL) [29] and our context-aware module appear in
the following aspects. 1) The task is different. Ours is

used for weakly supervised point cloud segmentation, while
CPL is employed for fully supervised 2D scene segmenta-
tion. 2) The objective is different. We build point affin-
ity to optimize the learning of the graph topology to facili-
tate the information flowing between labeled and unlabeled
points instead of learning the intra-class and inter-class con-
textual dependencies in CPL. Moreover, we combine the
two branches together to calculate the point affinity matrix,
which provides the consistency constraint of feature-level
for the self-distillation.

3.5. Total loss

The total loss L contains three terms: the segmentation
loss Lseg , the self-distillation loss Lsd, and the affinity loss
Laf .

L = Lseg + Lsd + Laf , (11)

where Lsd is given in Eq. (4) and Laf is given in Eq. (7).
We utilize the softmax cross-entropy loss of labeled points
as the segmentation loss for two branches. In the original
branch, it can be formulated as:

Lseg = − 1

CM

M∑
i=1

C∑
c=1

ylic log
exp

(
ỹlic

)∑C
c=1 exp

(
ỹlic

) , (12)

where ylic denotes the ground truth label, ỹlic is the predic-
tions of the labeled point i. M and C denote the number of
labeled points and categories, respectively. The loss of the
perturbed branch is the same as original branch.

4. Experiments
4.1. Experiment setting

Dataset. To show the versatility of PSD, we evalu-
ate the performance of PSD on three large-scale datasets:
S3DIS[1], ScanNet-v2 [2], and Semantic3D [3]. S3DIS
contains 6 large-scale indoor areas including 271 rooms and
each room contains about 106 points. We use 6 attributes
(i.e., XYZ coordinates and RGB colors) as the input of
each point. ScanNet-v2 is a large-scale point cloud dataset
which comes from an RGB-D video containing 2.5 million
views in more than 1500 scans. It provides point clouds
containing RGB attributes and well-annotated points. Se-
mantic3D is an outdoor dataset which provides a large la-
beled 3D point cloud of natural scenes with over 4 billion
points in total. It covers a range of diverse urban scenes.
The raw 3D points belong to 8 classes and contain 3D coor-
dinates, RGB information, and intensity. We use the coordi-
nate and corresponding color channels in our experiments.

Implementation details. Similar to the weakly super-
vised semantic segmentation method [30], we choose an ef-
ficient RandLA-Net [5] as our backbone. We use Adam
Optimizer with an initial learning rate of 0.001 and mo-
mentum of 0.9 to train 100 epochs for all datasets on an
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Setting Method mIoU ceil. floor wall beam col. win. door chair table book. sofa board clutter

1pt (0.2%)
Π Model [7] 44.3 89.1 97.0 71.5 0.0 3.6 43.2 27.4 62.1 63.1 14.7 43.7 24.0 36.7

MT [19] 44.4 88.9 96.8 70.1 0.1 3.0 44.3 28.8 63.6 63.7 15.5 43.7 23.0 35.8
Xu and Lee [26] 44.5 90.1 97.1 71.9 0.0 1.9 47.2 29.3 62.9 64.0 15.9 42.2 18.9 37.5

1pt (0.03%) Baseline 40.7 83.7 90.7 61.2 0.0 11.9 40.8 15.2 52.0 51.7 14.9 50.5 25.3 31.8
PSD 48.2 87.9 96.0 62.1 0.0 20.6 49.3 40.9 55.1 61.9 43.9 50.7 27.3 31.1

10% Xu and Lee [26] 48.0 90.9 97.3 74.8 0.0 8.4 49.3 27.3 69.0 71.7 16.5 53.2 23.3 42.8

1% Zhang et al. [30] 61.8 91.5 96.9 80.6 0.0 18.2 58.1 47.2 75.8 85.7 65.2 68.9 65.0 50.2
PSD 63.5 92.3 97.7 80.7 0.0 27.8 56.2 62.5 78.7 84.1 63.1 70.4 58.9 53.2

Fully

PointNet [15] 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 58.9 52.6 5.9 40.3 26.4 33.2
SPH3D [10] 59.5 93.3 97.1 81.1 0.0 33.2 45.8 43.8 79.7 86.9 33.2 71.5 54.1 53.7

KPConv rigid [20] 65.4 92.6 97.3 81.4 0.0 16.5 54.5 69.5 80.2 90.1 66.4 74.6 63.7 58.1
RandLA-Net* [5] 63.0 92.4 96.7 80.6 0.0 18.3 61.3 43.3 77.2 85.2 71.5 71.0 69.2 52.3

PSD 65.1 92.3 97.1 80.7 0.0 32.4 55.5 68.1 78.9 86.8 71.1 70.6 59.0 53.0

Table 1. Quantitative results on Area-5 of S3DIS [1]. “*” denotes the results of the method trained by us using the official code. Baseline
is RandLA-Net [5]. Note that our 1pt denotes only one labeled point for each category in the entire rooms instead of small blocks (e.g.,
1 × 1 meter) of Xu and Lee [26]. The number of labeled points in our 1pt setting accounts for 0.03% of the total points, which is about
0.2% in Xu and Lee [26].

NVIDIA RTX Titan GPU. Furthermore, we adopt the mean
IoU (mIoU, %) as the standard metrics. We experimentally
study two types of the weak label: 1pt and 1% settings.
Moreover, we further extend PSD to the fully supervised
manner and conduct tests on Area-5 of S3DIS.

4.2. Experiment results

Results on Area-5 of S3DIS. In Table 1, we show the
quantitative results on Area-5 of S3DIS. From the compar-
ison of weakly supervised tasks, it is observed that PSD
achieves a great improvement in the weakly settings of 1pt
and 1%, respectively. At the 1pt setting, although PSD has
a lower labeling rate than Xu and Lee [26], PSD still gains
about a 3.7% improvement in mIoU and achieves about a
7.5% improvement comparing to the RandLA-Net with the
weakly-supervised setting (Baseline). Notably, PSD with
1% labeled points gains 18.7%, 11.6% and 28.0% improve-
ments in categories “column” (col.), “door”, and “book-
case” (book.) against Xu and Lee [26], respectively. These
categories are usually similar in color or structure to the
“wall”. These results support the argument that PSD can
make the features more discriminative.

At the 1% setting, PSD outperforms a 1.7% improve-
ment over Zhang et al. [30]. Besides, PSD achieves 63.5%
mIoU with the gain of 15.5% against Xu and Lee with 10%
labeled points. It is interesting that the performance of PSD
is better than fully supervised RandLA-Net [5] by only 1%
annotated points. One reason why PSD performs strongly
is that PSD can get the more discriminative features by self-
distillation. We give some qualitative results in Figure 1.
Compared with the baseline, we can see that PSD gets the
correct segmentation results, but the Baseline misclassifies

the points in the red box. Because the categories in the red
box are similar in structure to other categories.

To verify the scalability of PSD, we further extend PSD
to fully supervised tasks. Since the large-scale point cloud
contains ∼ 106 points, the affinity matrix is very large and
leads to GPU memory limitation at the training phase. We
insert our context-aware module after the encoder with ∼
102 points based on the following considerations: 1) The
point features of the current layer can competently represent
a local feature. 2) The learned contextual information can
be propagated to higher resolution layers by the decoder of
backbone. In Table 1, it can be seen from the comparison
of fully supervised settings (Fully) that we achieve a 2.1%
improvement over RandLA-Net [5] and the performance is
close to that of KPConv rigid [20], which demonstrates the
good scalability of PSD.

Results on 6-fold of S3DIS. In Table 2, we list the quan-
titative results of 6-Area cross-validation (6-fold) on S3DIS.
We first notice that PSD achieves the 68.0% mIoU, which
indeed is superior to over Zhang et al. [30]. PSD ex-
ceeds the performance of fully supervised methods (e.g.
PointCNN [13], DGCNN [22], and ShellNet [31]), and
achieves comparable results to the state-of-the-art fully su-
pervised methods.

Results on ScanNet-v2. MPRM [23] annotates the se-
mantic categories of the subcloud-level (sub.). It reduces
the labor compared to our 1% setting. But it needs to di-
vide the entire scene into subclouds and repeatedly anno-
tate every subcloud. From Table 2, PSD gains 13.6% and
4.4% improvements against MPRM and Baseline in mIoU,
respectively. Compared to Zhang et al. [30], PSD exceeds
the performance of 3.6% in terms of mIoU. The qualita-
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Set. Methods S3DIS ScanNet Sem3D

Fu
lly

PointCNN (’18) [13] 65.4 45.8 -
DGCNN (’19) [22] 56.1 - -

PointConv (’19) [24] - 55.6 -
ShellNet (’19) [31] 66.8 - 69.3
KPConv (’19) [20] 70.6 68.4 73.1

PointGCR (’20) [14] - 60.8 69.5
RandLA-Net (’20) [5] 70.0 57.8* 77.4

SPH3D (’20) [10] 68.9 61.0 -
PointASNL (’20) [27] 68.7 63.0 -
Point2Node (’20) [4] 70.0 - -

sub. MPRM (’20) [23] - 41.1 -
1% Zhang et al. (’21) [30] 65.9 51.1 72.6
1% Baseline - 50.3 68.9
1% PSD 68.0 54.7 75.8

Table 2. Quantitative results on 6-fold of S3DIS [1], ScanNet-v2
[2], and Semantic3D (reduced-8) [3] denoted as Sem3D. “*” de-
notes the results of the method trained by us using the official code.

Original point cloud Semantic segmentation ( 1%)

Figure 3. Qualitative results on ScanNet-v2.

tive results are shown in Figure 3. It is observed that PSD
achieves good segmentation results.

Results on Semantic3D. From the comparison of the
quantitative results on Semantic3D (reduced-8) in Table 2,
it is observed that PSD gains 6.9% and 3.2% over Base-
line and Zhang et al. [30], respectively. Moreover, PSD
achieves the 75.8% mIoU, which outperforms the fully su-
pervised ShellNet [31] and PointGCR [14] by the gain of
over 6.5% and 6.3%. These results show that PSD is also
effective on the outdoor dataset.

Base. Aug. Self-dis. CAM 1pt 1% 100%
#1 ✓ 40.7 58.6 63.0
#2 ✓ ✓ 41.1 59.9 63.3
#3 ✓ ✓ 46.9 62.0 63.9
#4 ✓ ✓ ✓ 48.2 63.5 65.1

Table 3. The effectiveness of defferent components on Area-5 of
S3DIS [1].

4.3. Ablation study

In this section, we disassemble the PSD framework and
analyze some important components. All experiments are
performed on Area-5 of S3DIS [1] and the results are shown
in Tabel 3.

Vainness of data augmentation. To verify that the im-
provement is caused by PSD rather than the data augmenta-
tion, we compare the baseline (Base.) with the augmenta-
tion achieved by point perturbation (Aug.). Comparing #1
and #2 in Table 3, we find that the baseline (Base.) achieves
the similar performance to augmentation. The results indi-
cate that the simple point perturbation as data augmentation
has a negligible effect to the results.

Effectiveness of self-distillation. We only introduce the
perturbed self-distillation (Self-dis.) for semantic segmen-
tation. From the comparison between #1 and #3, it can
be seen that Self-dis. achieves significant improvements.
It achieves 6.2% and 3.4% gains over Baseline at the 1pt
and 1% settings, respectively. For the fully supervised set-
ting, PSD gains 0.9% mIoU but is inferior to the weakly
supervised task because PSD provides the supervision for
unlabeled points by the self-distillation loss, while Baseline
cannot. For the fully supervised task, sufficient label infor-
mation makes the performance improvements brought by
self-distillation less obvious.

Effectiveness of context-aware module. From the com-
parison of #3 and #4, the context-aware module (CAM)
gains 1.3%, 1.5%, and 1.2%, respectively. These results
show that the context-aware module can further improve the
performances of the weakly and fully supervised tasks.

Effectiveness of PSD. From the comparison of #1 and
#4, PSD gains about 7.5%, 4.9%, and 2.1% over Base-
line. This results demonstrates that PSD (Self-dis. + CAM)
gains significant benefits from the self-distillation mecha-
nism and context-aware module.

4.4. Analysis

Labeled points and the performance. We further dis-
cuss the relation between the number of labeled points and
the segmentation performance in Figure 4 (a). With the in-
crease of labeled points, the performance of PSD is also
gradually improved, and the growth trend is gradually slow-
ing down. These results demonstrate that sufficient labels
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allow the network to learn a better representation. While for
the weakly supervised task, the network requires additional
supervision and accurate contextual information to improve
its learning ability.
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Figure 4. The ablation study on different setting and backbone.
(a)The relation between the number of labeled points and per-
formance.(b) PSD is independent to backbone.. “+PN2” denotes
the method use the PointNet++ [16] as backbone. KPConv and
RandLA are the methods of KPConv [20] and RandLA-Net [5] at
1% settings, respectively.

Visualization of semantic correlation. We train the net-
work by 1% labeled points and choose three scenes from
Area-5 of S3DIS for visualization. The learned point affin-
ity and the point correlation descriptor are shown in Figure
5. It demonstrates that PSD can learn an accurate affinity
context. The accurate context forces the network to refine
the graph topology. The practical information flow between
labeled and unlabeled points will be realized, resulting in
enhancing the discriminability of features.

Backbone independent. We further conduct experi-
ments to analyze that the improvement of PSD is not at-
tributed to the backbone. The results are shown in Figure
4 (b). When we choose PointNet++ [16] as the backbone
(PSD+PN2), PSD still achieves the 51.0% mIoU at the 1%
setting which is even higher than the results of Xu and Lee
(48.0%) with 10% labeled points. Besides, we conduct ex-
periments at the 1% setting for two methods: KPConv [20]
and RandLA-Net [5], which achieve good performances
at fully-supervised manner. It is observed that PSD still
achieves the best performance. Therefore, PSD is a gen-
eral framework which can be instantiated with other deep
segmentation models for point clouds.

Model complexity. RandLA-Net [5] is an efficient
large-scale point cloud semantic segmentation method, and
PSD is built using RandLA-Net as the backbone. We list the
training time of per-epoch, the network parameters, and the
total test time in Table 4. Since the parameters of the two
branches are shared, only the parameters of GCNs are added
compared to the RandLA-Net, so that the parameters of
PSD are more by 0.05M than RandLA-Net. Since the per-
turbed branch is only introduced in the training phase, the
training time of PSD is 86s per-epoch longer than RandLA-

Figure 5. Visualization of the point correlation descriptor (the top
row) and the predicted point affinity (the bottom row). We ran-
domly selected 10,240 points for visualization.

Net. While the total test time is basically similar. Therefore,
PSD is also an efficient method.

Method Training
time

Network
parameters

Total test
time

RandLA-Net [5] 216 1.05 258
PSD (1%) 302 1.10 263

Table 4. The training time of per-epoch (in seconds), the network
parameters (in millions) and total test time (in seconds) on S3DIS.

5. Conclusion
In this paper, we propose a perturbed self-distillation

framework for weakly supervised large-scale point cloud
semantic segmentation. Our method focuses on provid-
ing additional supervision by perturbed self-distillation to
establish graph topology for implicit information propaga-
tion. Extensive experimental results demonstrate that PSD
achieves significant gains compared with the state-of-the-
art methods. Moreover, the effectiveness of the introduced
two key components (i.e., the perturbed self-distillation
and context-aware module) is verified by ablation stud-
ies. The results further demonstrate that additional super-
vision and graph topology learning are important to im-
prove weakly supervised semantic segmentation for large-
scale point clouds.
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