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Abstract

SmartShadow is a deep learning application for digital
painting artists to draw shadows on line drawings, with
three proposed tools. (1) Shadow brush: artists can draw
scribbles to coarsely indicate the areas inside or outside
their wanted shadows, and the application will generate the
shadows in real-time. (2) Shadow boundary brush: this
brush can precisely control the boundary of any specific
shadow. (3) Global shadow generator: this tool can esti-
mate the global shadow direction from input brush scribbles,
and then consistently propagate local shadows to the en-
tire image. These three tools can not only speed up the
shadow drawing process (by 3.1× as experiments validate),
but also allow for the flexibility to achieve various shadow
effects and facilitate richer artistic creations. To this end,
we train Convolutional Neural Networks (CNNs) with a col-
lected large-scale dataset of both real and synthesized data,
and especially, we collect 1670 shadow samples drawn by
real artists. Both qualitative analysis and user study show
that our approach can generate high-quality shadows that
are practically usable in the daily works of digital paint-
ing artists. We present 30 additional results and 15 visual
comparisons in the supplementary materiel.

1. Introduction
Shadows in artworks are essentially different from that

in photography or photorealistic fields of computer vision:
the artwork shadows are drawn by artists. These shadows
depicts the mood of characters and express the emotion of
artists, without being constrained by physically correct light
transmission laws or geometrically precise object structures.
Artists adjust the location, scale, shape, density, and many
other features of shadows to achieve diverse artistic purposes,
e.g., amplification, exaggeration, antithesis, silhouette, etc.

An application that can assist artists in drawing shadows

Figure 1. Screenshot of the SmartShadow. The user gives scrib-
bles as shadow indications (on the left) to obtain the high-quality
shadow (on the right). Smiling boy, used with artist permission.

for line drawings is highly desired. This is not only because
creating shadows on line drawings is one of the most frequent
and time-consuming tasks in the daily work of many digital
painting artists, but also because shadow drawing is the
foundation of a wide variety of further artistic creations,
e.g., hard shadows can be smoothed into soft shadings (with
techniques like joint anisotropic diffusion [46]), shadows
can be stylized with hatching or drafting effects [55], sharp
shadows can be used in cel-shading (see also the YouTube
tutorial [27]), etc.

Might we be able to achieve a deep learning approach
that can quickly produce visually satisfying shadows given
only a few user indications, saving the time and effort of
digital painting artists, and simultaneously, facilitating more
plentiful artistic creations? We present an interactive shadow
drawing application (Fig. 1) to achieve these goals. This
application consists of the following three proposed tools:

The first tool is the shadow brush. Users can draw blue
or red scribbles (e.g., Fig. 2-(a)) to coarsely indicate the
areas inside or outside the shadows they want. This tool
does not require users to have professional drawing skills,
as it can “smartly” generate shadow shapes learned from
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Figure 2. Examples of our three proposed tools. (a) The shadow brush allows users to coarsely control the areas inside or outside shadows.
(b) The shadow boundary brush enables users to accurately control the shadow shapes. (c) The global shadow generator can estimate the
global shadow direction and automatically produce globally consistent shadows. Artworks used with artist permissions.

large-scale artistic shadow data. This tool is well-suited for
shadows without strict shape requirements or with low shape
uncertainty, e.g., inconspicuous background shadow, dense
shadow of gathered small objects, etc.

The second tool is the shadow boundary brush. Users can
use this brush to precisely control the shadow boundaries.
They only need to scribble a small part of their wanted
boundary (e.g., the green scribbles in Fig. 2-(b)), and the
tool will automatically estimate the boundary shape and
generate the entire shadow. This tool is indispensable for
professional use cases where the accurate shadow control
is important, e.g., character face shadows, salient object
shadows, close-up shadows, etc.

The third tool is the global shadow generator. This tool
can estimate the global shadow direction from input brush
scribbles, and then propagate local shadows to the entire
image consistently (e.g., Fig. 2-(c)). This tool is user-friendly
in that it is fully automatic and does not require artists to
learn any extra technical knowledges, e.g., managing screen-
space shadow direction, world-space light orientation, etc.
This tool is especially effective for complicated artworks,
e.g., drawings with multiple targets, artworks with complex
structure, etc.

These three tools are designed in a data-driven way. To en-
sure the robustness and generalization, we learn hierarchical
neural networks with a large-scale dataset of both real-artist
data and synthesized data. In particular, we collect 1670 line
art and shadow pairs drawn by artists manually, 25,413 pairs
synthesized by rendering engine, and 291,951 shadow pairs
extracted from in-the-wild internet digital paintings.

Experiments show that the SmartShadow can speed up
the shadow drawing process by 3.1×. User studies demon-
strate that users can use this application to effectively achieve
satisfactory shadows that are practically usable in their daily
jobs. Besides, even if the users do not give any input ed-
its, our approach can still generate plausible results that are
more preferable than other fully-automatic shadow generat-
ing methods. Finally, we present 30 qualitative results and
15 additional comparisons in the supplementary materiel.

In summary, our contributions are: (1) We present the

SmartShadow, a digital painting application to draw shad-
ows on line drawings, including the tools of shadow brush,
shadow boundary brush, and global shadow generator. (2)
We present a large-scale dataset of line drawing and shadow
pairs drawn by real artists, as well as shadow data synthe-
sized by rendering engines or extracted from in-the-wild dig-
ital paintings. (3) Perceptual user study and qualitative evalu-
ations demonstrate that the SmartShadow is more preferable
by actual end users when compared to other possible alterna-
tives. (4) Results show that the SmartShadow can speed up
the shadow drawing process by 3.1×.

2. Related Work

Artistic shadow creation. Different from photography re-
lighting or photorealistic rendering [15, 28, 30, 31, 32, 11],
the artistic creation of shadows is a perception-oriented pro-
cess. ShadeSketch [55] is the current state of the art in auto-
matic artistic shadow generating. Sketch2Normal [40] and
DeepNormal [19] can generate normal maps from line draw-
ings. Hudon et al. [20] also proposed a vectorgraph-based
method for artistic shadow manipulation. Ink-and-Ray [43]
is a typical proxy-based method for illumination effects, and
Dvorožňák et al. [16] extended this approach to a part-based
high-relief proxy structure. PaintingLight [53] is a RGB ge-
ometry framework that converts artists’ brush stroke history
to lighting effects. Our approach allows users to intuitively
manipulate the shadow with scribbles, i.e., in a “what you
see is what you get” manner.
Shadow synthesis and extraction. To ensure the robust-
ness and generalization of our approach, we use shadow
synthesis and extraction algorithms to increase the scale
and diversity of our training data. A typical method is in-
trinsic imaging [4] in the field computational illumination.
Optimizing-based approaches [36] solve the decomposition
by optimizing an energy with specific constraints. Learning-
based approaches [35, 17, 2] propose to learn the mapping
between the input images and their albedo images from large
amounts of data. Several in-the-wild datasets [7, 6, 8, 23]
and other synthetic or annotated datasets [18, 5] make intrin-
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Figure 3. Network architecture. We train two branches of the shadow drawing network. Both branches use the blue layers for predicting
the shadow. The direction model branch uses red layers for predicting the global shadow direction. The shadow model branch uses blue
layers for predicting the final output shadow. All convolutional layers use 3× 3px kernels. We do not use any normalization layers. Shortcut
connections are added to upsampling convolution layers. Boy looking upside, used with artist permission.

sic images scalable with deep learning methods.
Interactive creation and cartoon techniques. Scribble-
based interactive tools are shown to be effective in creative
fields like image colorization [54] and sketch inking [38].
Another closely related field is cartoon image processing.
Manga structure extraction [24], cartoon inking [39, 37, 38],
and line closure [25, 26] methods analysis the lines in car-
toon and digital paintings. A region-based composition
method can be used in cartoon image animating [41]. Deep
learning approaches [12, 45, 48, 50, 49] process artistic im-
ages or cartoon drawings in the domains of photographs
and human portraits. Color filling applications [52, 44, 42]
colorize sketch or line drawings with optimization-based or
learning-based approaches. Our approach generates shadow
from line drawings, and can be used in digital painting and
related artistic creation scenarios.

3. Method
We train a deep network to draw shadows given the line

drawings and user input scribbles. In Section 3.1, we de-
scribe the objective of the neural architecture and the three
proposed interactive tools: shadow brush, shadow bound-
ary brush, and global shadow generator. We then describe
our presented dataset and the customized training method in
Section 3.2.

3.1. Interactive tools for shadow drawing

The inputs (Fig. 3-left) of our approach are the line draw-
ing X ∈ RH×W×1 along with the RGBA user scribble
canvas denoted by UH×W×4. The output Ŷ ∈ RH×W×1
is the estimation of pixel-wise shadow probability, which is
binarized (threshold is 50% gray) and blended (multiplied)
to the original line drawing for shadow effects (Fig. 3-right).
The mapping is learned with the neural networks F(· ; θ),
parameterized by θ, with the architecture specified in Fig. 3.
We train with the data distribution D with line arts, user in-
puts, and desired shadows. We minimize the objective with

likelihood L describing the distances between the estimation
and ground truth as

θ∗ = argmin
θ

EX,U ,Y ∼D[L(F(X,U ; θ),Y )] . (1)

We learn two network branches: the shadow model Fs(· ; θs)
and the shadow direction model Fd(· ; θd). In inference,
the direction model estimates the global shadow direction
D̂ ∈ R3 for the shadow model to predict the shadow with

Ŷ = Fs(X,U , D̂; θs) and D̂ = Fd(X,U ; θd) . (2)

During training, the scribbles are synthesized for our tools
by giving projections of the ground truth shadow Y with
the projection function Pu as U = Pu(Y ). Because the
training synthetically generates user inputs, our dataset only
needs to contain line drawings, shadow directions, and our
wanted shadows. In particular, we solve two sub-problems
for the shadow model and shadow direction model with
θ∗d = argmin

θd
EX,Y ,D∼D[Ld(Fd(X,U ; θd),D)] ,

θ∗s = argmin
θs

EX,Y ,D∼D[L(Fs(X,U ,D; θs),Y )] ,
(3)

where Ld is a likelihood function for the shadow direction
estimation problem. The three proposed shadow drawing
tools are detailed as follows.
Shadow brush. The shadow control is achieved by project-
ing Pu to sample pixels inside (resp., outside) the ground
truth shadows in Y as blue (resp., red) scribbles. We ob-
serve that, unlike common pixel sampling problems (e.g.,
[54, 34, 52]) where pixels are routinely distributed and sam-
pled uniformly, shadow images are unique in their unbal-
anced pixel quantity inside and outside shadows. Based on
this observation, we propose to balance the pixel sampling by
introducing a Bivariate Normal Distribution (BND), with a
Probability Density Function (PDF) denoted by fb(·, ·). We
sample ni pixels inside the shadows and no pixels outsides,
subjecting to the Bivariate Normal PDF [47] as

fb(ni, no) =
exp(− 1

2(1−ρ2)pb(ni, no))

2πσiσo
√

1− ρ2
, (4)
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where pb(·, ·) is a bivariate Gaussian normal term

pb(ni, no)=(
ni−µi

σi
)2−2ρ(ni−µi

σi
)(
no−µo

σo
)+(

no−µo

σo
)2, (5)

where {µi, µo, σi, σo, ρ} are bivariate normal distribution
values with 8, 8, 2, 2, 0.5. Using these sampled pixels as
starting positions, we synthesize small scribbles with line
segments at random rotation θ ∼ U(−π, π), length l ∼
U(5, 15) pixels, and width w ∼ U(1, 3) pixels.
Shadow boundary brush. The accurate shadow boundary
control is achieved by projecting Pu to sample shadow edges
in the ground truth Y as green scribbles. We randomly
sample nb ∼ U(0, 16) pixels of these edges as scribble
starting points, and then synthesize small solid circles at
random radius of r ∼ U(5, 15) pixels. Besides, we observe
that an important characteristic of shadows drawn by artists
is the smooth boundaries and sharp corners. We encourage
such smoothness and sharpness by introducing an anisotropic
penalty φ(·) within the customized likelihood

L(Ŷ ,Y ) = λaφ(Ŷ ) +
∑
p

||Ŷp − Yp||22 , (6)

where p is pixel position, || · ||2 is Euclidean distance, λa is
weighting parameter, and the penalty φ(·) can be written as

φ(Ŷ ) =
∑
p

∑
i∈w(p)

∑
j∈w(p)

(
δ(X)ij ||Ŷi − Ŷj ||22

)
, (7)

where w(p) is a 3× 3 window centered at pixel position p,
with δ(·) being a Gaussian anisotropic term

δ(X)ij = exp(−||Xi −Xj ||22/κ2) , (8)
where κ is an anisotropic weight. This term increases and
encourages smoothness when w(p) is located inside shadow
areas with no steep line transitions in the line drawing X ,
while decreases and allows for sharpness when w(p) comes
across salient line drawing patterns like corners or contours.
Global shadow generator. The global shadow generating
is guided by the shadow direction D = [αx αy αz]

ᵀ with
αx and αy being in line with the axes of image-space width
(right is positive) and height (upward is positive), and αz fac-
ing out of the image panel. We use a customized likelihood
for this global shadow direction as

Ld(D̂,D)=
∑
p

(−D̂p∗Dp︸ ︷︷ ︸
cos

+λn||D̂p−
D̂p

||D̂p||2
||22︸ ︷︷ ︸

norm

) , (9)

where ∗ is dot product and λn is a penalizing weight. The
“cos” term is a cosine likelihood between the estimated direc-
tion and the ground truth, and the “norm” term is a regulation
to encourage the confidence — low-intensity estimation will
be amplified to a norm unit scale. Note that (1) this tool
is only a coarse recommendation of the shadow propaga-
tion, and more specified effects (e.g., spot light, rim shadow,
etc.) can be achieved with the other brush tools; and (2) this
tool is fully automatic and does not require artists to learn
any technical knowledges, e.g., data structure for 3D space
orientation, screen-to-world space conversion, etc.

Figure 4. Dataset preparation. We present a large-scale dataset
with both real data drawn by artists manually and synthesized data
obtained from rendering engines and shadow extraction algorithms.

3.2. Data preparation and training schedule

Ideally, we may invite professional artists to manually
draw a sufficient number of line drawing and shadow pairs as
the training dataset so as to capture their perceptual designs
and artistic understandings. Nonetheless, the highly expen-
sive and time-consuming artistic drawing process makes
large-scale annotation impractical. Another choice is to syn-
thesize a training dataset using algorithms. Although a syn-
thetic dataset might be larger or more diverse than real data,
their shadow appearance may not match the artists’ wishes
and demands. We propose a customized schedule method:
we pre-train our models with large-scale and diverse syn-
thesized/extracted data, and then fine-tune the models on
high-quality real data drawn by artists, to simultaneously
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Line drawing Ours w/o edits User edits Ours Line drawing Ours w/o edits User edits Ours
Figure 5. Examples of interactive shadow drawing. Zoom in to see details of the shadows and user edits. 30 more results are presented in
the supplement. Notably, we have dilated the user scribbles for 3 pixels for a clearer visualization. Artworks used with artist permissions.

ensure the robustness and artistic faithfulness.
Data from real artists. We provide 1670 shadow sam-
ples drawn by 12 actual artists (Fig. 4-(a)). We search the
key word “line drawing” in internet illustration platforms
Pixiv [33] and Danbooru [14] to sample 10,000 line draw-
ings. We then invite the 12 artists to select their interested
line drawings and choose their preferred shadow directions.
Afterwards, they draw the target shadows according to their
artistic decisions and perceptual understandings. In this way,
we collect 1670 high-quality shadow samples that captures
the perceptions and designs of artists.
Data from rendering engine. We use non-photorealistic
rendering (NPR) techniques to obtain line art and shadow
pairs. To be specific, we search the key word “free” in Unity
3D Assets Store and download 471 random 3D prefabs. We
import them to the rendering engine Blender [13] and write
a NPR script to generate 25,413 line art and shadow pairs at
random shadow directions (Fig. 4-(b)).
Data from shadow extraction. We sample 300,000 random
digital paintings from Danbooru dataset [14] and Pixiv [33]
(Fig. 4-(c)). We use auto inking method [39] to extract line
arts, and use intrinsic imaging method [9] (enhanced with
[51] and [10]) to decompose reflectance and illumination
maps. We then perform a shadow voting using OTSU algo-
rithm [29] to obtain the shadow, and use the Barron&Malik
model [3] to estimate the shadow direction. After that, we
manually remove 8,049 pairs with obviously low quality,

and acquire the remaining 291,951 qualified pairs.
Training schedule. Our proposed training schedule consists
of two phases: (1) Firstly, we pre-train the models with the
extracted large-scale shadows for 20 epochs and with the
rendered shadows for 15 epochs. (2) Afterwards, as a fine-
tuning, we train the models with the high-quality shadows
from real artists for 10 epochs. In this way, we achieve a
robust model that not only generalizes to diverse inputs but
also learns from real-artist data to produce shadows that are
faithful to the understanding and willingness of real artists.

4. Evaluation

4.1. Experimental setting

Implementation details. Our framework is trained using the
Adam optimizer [22] with a learning rate of lr = 10−5, β =
0.5, at batch size 8. Training samples are randomly cropped
to be 256× 256 pixels and augmented with random left-and-
right flipping. As the shadow model is fully convolutional, it
receives adjustable resolutions in inference.
Hyper-parameters. The proposed and recommended con-
figuration is λa = 1.0, κ = 0.1, and λn = 0.5.
Compared methods. We test several shadow generation
methods of (1) the generic model Pix2Pix [21] trained
on our dataset with the same training schedule as ours;
(2) the typical data-driven normal-based method DeepNor-
mal [19] (official implementation); (3) the interactive method
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Automatic Methods Interactive Methods

Input Pix2Pix DeepNormal ShadeSketch Ours User edits Sketch2Normal User edits Ours

line drawing [21] (DN) [19] (SS) [55] w/o edits of S2N [40] (S2N) [40] of ours (proposed)
Figure 6. Comparisons to possible alternative methods. 15 more full-resolution comparisons are available in the supplementary material.

Sketch2Normal [40] (official method trained with the same
scribble shapes as ours); (4) the state-of-the-art shadow
generating method ShadeSketch [55] (official open-sourced
codes); (5) our application without user edits (in this case
we input same shadow directions as other methods when
compared to them); and (6) our interactive application.
Testing samples. The tested images are Pixiv [33] line
drawings and in-the-wild internet line arts. We make sure
that all tested images are unseen from the training dataset.

4.2. Qualitative results

Interactive editing. We present examples of interactive
shadow drawing in Fig. 5, and 30 additional results in the
supplement. We can see that the users can work with our
tools to achieve various shadow effects in diverse drawing
topics, e.g., human, animal, plant, robot, etc.
Comparison to previous methods. We present comparisons
with both the automatic methods [21, 19, 55] and the inter-
active method [40] in Fig. 6, and 15 additional comparisons
in the supplementary material. We can see that Pix2Pix [21]
fails in achieving usable results, DeepNormal [19] tends
to output shadows with severe distortions. The results of
ShadeSketch [55] is better than [21] and [19], but it has dif-
ficulty in addressing detailed areas, e.g., the mouse legs and
the handrails for baskets (as marked in orange rectangles
in Fig. 6). Sketch2Normal [40] yields low-quality shadows,

despite the adequately given user scribbles. Our approach,
regardless of whether to receive user edits or not, produces
clean and practically usable shadows.

4.3. User study

Participant. The user study involves 15 persons: 10 non-
artist amateurs and 5 professional artists. Each artist has at
least two years of digital painting experience.
Setup. We sample 52 unseen line drawings from Pixiv [33],
and then assign each line drawing to 3 random users targeted
to 3 methods: a commercial tool (Adobe PhotoShop), our
approach, and the baseline interactive method [40]. We
also use 4 fully-automatic methods [19, 40, 21, 55] and the
automatic mode of our method to generate shadows for each
image. We ensure that any image is assigned to each user at
most once to avoid users being trained for specific instances.
User guideline. When drawing shadows interactively, we in-
form the users that “your time consumption will be recorded
and please draw at your normal speed”. After they are fin-
ished, the users are also shuffled to rank the shadows of
automatic methods [19, 21, 55] and the automatic outputs
of ours. We ask users the question — “Which of the follow-
ing shadow do you prefer most to use in your daily digital
painting? Please rank according to your preference.”
Evaluation metric. We use the Time Consumption (TC) as
speed metric. We record the precise drawing minutes, and
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(a) Input (b) W/o shadow (c) W/o shadow (d) W/o global (e) W/o balanced (f) W/o aniso- (g) W/o norm (h) Proposed

line drawing brush boundary brush shadow generator sampling fb(·) tropic penalty λa regulation λn full method
Figure 7. Ablative study. We study the impact of each individual component within our framework by removing components one-by-one.

Time t (minutes) t < 5 5 ≤ t < 10 10 ≤ t < 15 15 ≤ t < 20 t ≥ 20

Commercial tool 0.00% 3.84% 28.84% 53.84% 13.46%
Ours 51.92% 46.15% 1.92% 0.00% 0.00%

Table 1. Time Consumption (TC). We compare the time consum-
ing of a typical commercial tool (Adobe PhotoShop) and ours. We
visualize the time consumption of 52 shadow drawing cases, e.g.,
in “ours” row and “t < 5” col, the “51.92%” means that the time
consumption of our method is less than 5 minutes in 51.92% cases.

Method Pix2Pix [21] DN [19] S2N [40] (auto) SS [55] Ours (auto)

AHR ↓ 4.53 ± 0.60 2.81 ± 0.76 4.19 ± 0.96 2.44 ± 0.63 1.01 ± 0.13

Table 2. Average Human Ranking (AHR). We present the ranking
results of the user study. The arrow (↓) indicates that lower is better.
Top 1 (or 2) score is marked in blue (or red).

split the time consumption into intervals of five minutes. We
also use the Average Human Ranking (AHR) as preference
metric. For each line drawing, the users rank the results of
the 5 methods from 1 to 5 (lower is better). Afterwards, we
calculate the average ranking obtained by each method.
Time consumption analysis. The time data are reported in
Table 1. We can see that in a dominant majority of cases, our
method consumes less than 10 minutes, while in most cases
the commercial tool (Adobe PhotoShop) consumes more
than 15 minutes. Besides, we report that the average time
consuming of ours is 5.35 minutes while the commercial

tool is 16.58 minutes, indicating a 3.1× speed up. See also
the supplementary material for more detailed data.
Result. The user preferences are reported in Table 2. We
have several interesting discoveries: (1) Our framework,
even in automatic mode without any user edits, outperforms
the secondly best method by a large margin of 1.43/5. (2)
Zheng’s approach [55] reports the secondly best score. (3)
The two normal-based methods [19, 40] reports similar per-
ceptual quality, with [19] slightly better than [40], despite
that [40] receives interactive edits while [19] is automatic.

4.4. Ablative study

As shown in Fig. 7, our ablative study consists of the
following experiments: (1) We remove the shadow brush
and train our framework without red and blue scribbles. We
can see that, in absence of the shadow brush, the shadow
boundary brush cannot control the shadow locations by itself,
resulting in many undesired shadows in the outputs (Fig. 7-
(b)). (2) We remove the shadow boundary brush and train our
framework without green scribbles. We can see that, without
the help of shadow boundary brush, the shadow shape is out
of control and users cannot implement their wanted shadow
appearances (Fig. 7-(c)). (3) We remove the global shadow
generator and train the shadow branch of our neural architec-
ture without global shadow direction embedding. We can see
that the global and local shadows becomes inconsistent and
distorted (Fig. 7-(d)). (4) We train without the bivariate nor-
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(a) Input (b) Uniform f ′b(·) (c) Proposed fb(·)
Figure 8. Influence of different sampling distribution for fb. We
compare the proposed bivariate normal distribution sampling and a
common alternative uniform random sampling. Artwork used with
artist permission.

(a) Input (b) λa = 0.05 (c) λa = 1.0

Figure 9. Influence of the anisotropic penalty weight λa. We vi-
sualize the outputs of our method with different anisotropic penalty
weight λa. Artwork used with artist permission.

mal distribution sampling fb, and instead, we simply sample
random pixels as the starting position of training scribbles.
We can see that the resulting shadows become severely un-
balanced and defective (Fig. 7-(e)). (5) If trained without the
anisotropic penalty λa, the neural networks fail in achieving
sharp and smooth shadow boundaries, resulting in noisy out-
puts (Fig. 7-(f)). (6) If trained without the shadow direction
norm regulation λn, the neural networks fail in recognizing
appropriate shadow directions, and tends to output collapsed
shadows surrounding input lines (Fig. 7-(g)). (7) The full
framework suppresses these types of artifacts and achieves
a satisfactory balance over the shadow location, shape, and
appearance (Fig. 7-(h)).
Influence of hyper-parameters. We study different weights
for the anisotropic λa and the norm λw in Fig. 8 and 9. We
can see that a too small λa causes boundary distortions and
a too small λn causes shadow direction defects.
Robustness and generalization. We showcase the robust-
ness in Fig. 10 with a challenging complicated line drawing.
We also present a case where our framework is generalized
to another art form in Fig. 11. See also the supplementary
material for results with more diverse contents and topics.

5. Conclusion
We propose a digital painting application to generate

shadows on line drawings, with three tools of the shadow
brush, shadow boundary brush, and global shadow generator.
We train hierarchical neural networks with a collected large-

Figure 10. Robustness to complicated line drawing. We present
a challenging case where the input line drawing is complicated and
detailed. Artwork used with artist permission.

(a) Input (b) User edit (c) Ours
Figure 11. Generalization to other art form. We filter the left
artwork to get the middle sketch and the user use our tools to
achieve the right blended result. Jardin de Paris, public domain.

scale dataset of both synthesized data and real data drawn
by artists. User study shows that our tools can speed up the
shadow drawing process and can achieve practically usable
shadows for the daily work of artists. Our dataset will be
made publicly available to facilitate related techniques.
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