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Figure 1: The X-World Platform. Our goal is to facilitate accessibility-driven autonomous systems, i.e., systems that can
interact with diverse pedestrians with disabilities who may be rarely observed and represented in data collected by real-world
fleets. Towards this goal, we introduce a novel simulation environment for the training and development of vision-based
systems. A subset of the mobility aids used in the experiments is visualized.

Abstract
An important issue facing vision-based intelligent sys-

tems today is the lack of accessibility-aware development.
A main reason for this issue is the absence of any large-
scale, standardized vision benchmarks that incorporate rel-
evant tasks and scenarios related to people with disabili-
ties. This lack of representation hinders even preliminary
analysis with respect to underlying pose, appearance, and
occlusion characteristics of diverse pedestrians. What is
the impact of significant occlusion from a wheelchair on
instance segmentation quality? How can interaction with
mobility aids, e.g., a long and narrow walking cane, be
recognized robustly? To begin addressing such questions,
we introduce X-World, an accessibility-centered develop-
ment environment for vision-based autonomous systems. We
tackle inherent data scarcity by leveraging a simulation en-
vironment to spawn dynamic agents with various mobility
aids. The simulation supports generation of ample amounts
of finely annotated, multi-modal data in a safe, cheap, and
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privacy-preserving manner. Our analysis highlights novel
challenges introduced by our benchmark and tasks, as well
as numerous opportunities for future developments. We
further broaden our analysis using a complementary real-
world evaluation benchmark of in-situ navigation by pedes-
trians with disabilities. Our contributions provide an initial
step towards widespread deployment of vision-based agents
that can perceive and model the interaction needs of diverse
people with disabilities.

1. Introduction
As prototypical vision-based machines move from their

controlled development labs into the real-world, their im-
pact on people with disabilities becomes discernible. Peo-
ple with various abilities (e.g., sighted, visually-impaired,
mobility-impaired) may each react fairly differently when
interacting with an autonomous platform (e.g., ground
robot, autonomous vehicle, wearable system), the dynamic
context of the surrounding scene (e.g., traffic, crowds), and
infrastructure components (e.g., intersection type, potholes,
ramps, stairs) [37, 2, 28, 26]. Hence, such factors are related
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to increased risk of traffic fatalities among pedestrians with
disabilities [36, 1, 38, 42], notably during critical navigation
junctions, e.g., intersections [37].

Take, for instance, the case of Starship Technologies
which paused operations of its food and package delivery
robot within only a matter of days after its deployment at
the University of Pittsburgh in October of 2019 [43]. The
pause came as a result of an adverse encounter between one
of the delivery robots and a mobility-impaired doctoral stu-
dent who uses a wheelchair. In the reported scenario, the
delivery robot, which routinely occupies the curb’s ramp
when waiting to cross at intersections, blocked the student
from being able to safely board the sidewalk. As a result,
the student reportedly had to wait, in dangerously moving
traffic, at the intersection. Clearly, failing to account for
the diversity of interaction needs among people with dis-
abilities can have dire consequences. Unfortunately, there
is a current lack of shared and principled development tools
for accessibility-driven, vision-based autonomous systems.
How can we advance the state-of-the-art of systems that
understand and seamlessly interact with all people in their
environment?

A fundamental barrier to realizing accessibility-aware
autonomous systems is the access to data. In particular, peo-
ple with disabilities can be both highly diverse, for instance
in appearance and mobility characteristics [44], as well as
quite rare, even in extensive large-scale data collection ef-
forts by instrumented real-world fleets. Thus, common is-
sues related to the “long tail” distribution of events can com-
pound in our context, i.e., due to the combinatorial rarity of
joint safety-critical events (e.g., person crossing an intersec-
tion in low visibility at nighttime) with accessibility-related
events (e.g., a wheelchair user). To emphasize, due to their
rarity, people with disabilities are currently entirely absent
from large-scale datasets in computer vision and robotics,
even within heavily studied tasks such as pedestrian detec-
tion [17, 60, 13] and path prediction [49]. Yet, the pres-
ence of a mobility aid can potentially impact the underly-
ing perception algorithm, e.g., due to occlusion, as well as
be used to infer the intent and future state of a pedestrian,
e.g., a visually-impaired pedestrian that may take longer to
explore tactile cues when crossing an intersection. In this
paper, we take a crucial step forward towards developing
perception models that are both robust, i.e., operate at high
accuracy under appearance variations of pedestrians with
disabilities, and functional, i.e., provide a sufficiently fine-
grained representation of pedestrians’ states for any subse-
quent decision-making modules.

We support the development of vision-based systems
with comprehensive understanding of the needs of diverse
people with disabilities through four main contributions:
(1) We present the X-World platform, which includes an in-
teractive photo and behavior-realistic simulation module in-

tegrated into CARLA [18] with support for spawning agents
that use diverse mobility aids, various sensor and environ-
mental configurations, and extensive ground truth genera-
tion for numerous visual-semantic reasoning tasks. (2) To
rigorously uncover issues in perception of diverse people,
we explore the task of segmenting people and their mobil-
ity aids. We leverage the simulation environment to gener-
ate the first large-scale accessibility-oriented instance seg-
mentation dataset. By incorporating images across varying
perspectives, towns, environmental conditions, and mobil-
ity aids, we use the dataset to highlight new challenges and
opportunities in developing robust and broad-impact ma-
chine vision models. (3) Although collecting a large-scale
dataset for our task in the physical world is difficult, we
accompany the simulation-based benchmark with a diverse
and challenging real-world dataset obtained from public in-
ternet videos of in-situ navigation. The real-world dataset
provides complementary analysis and produces generaliza-
tion insights related to our fine-grained instance segmenta-
tion task. (4) By publicly releasing tools and data for closely
integrating computer vision and accessibility research, we
contribute towards improving the quality-of-life of individ-
uals with disabilities.

2. Related Work

Our work focuses on obtaining fine-grained visual recog-
nition models of humans. We build on several recent ad-
vances in computer vision, specifically work in person de-
tection and segmentation and interactive simulated worlds.

Benchmarks for Visual Understanding of People: Our
main objective is to provide machines with a rich vi-
sual understanding of the people in their environment,
including people with disabilities. Robust perception
of people has steadily progressed with the introduc-
tion of increasingly large and diverse benchmarks, in-
cluding INRIA [14], Daimler [19], ImageNet [16], Cal-
tech [17], COCO [39], KITTI [25], ApolloScape [32],
BDD100K [58], Cityscapes [13], CityPersons [60], HICO-
DET [9], EuroCity [4], Argoverse [8], 100DOH [52], Audi
A2D2 [27], NuScenes [5], A*3D [46], Waymo [53] and
more. Nonetheless, recent large-scale benchmarks are still
substantially narrow in their scope, i.e., in contrast to the
full range of scenarios and conditions that the real-world
may present, and tasks, i.e., compared to detailed and con-
textual visual reasoning that is performed by humans. De-
spite exponential growth in development of benchmarks and
methods for machine vision, based on our survey, people
with disabilities are currently poorly represented in visual
learning benchmarks. Datasets also tend to be ambiguous in
their annotations of carried or worn objects, e.g., these may
be annotated as part of a generic “stuff” class, as a separate
object (e.g., COCO), or as part of the person mask (e.g.,
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Cityscapes). By developing a novel platform and bench-
mark emphasizing rare pedestrians with mobility aids, our
work is complementary to ongoing efforts towards more di-
verse data and detailed learning tasks.

Simulation for Machine Vision: Our approach is inspired
by recent advancements in realistic three-dimensional vir-
tual worlds. Simulated worlds have been previously used
to cheaply collect vast amounts of diverse, finely-annotated
data and benchmark various tasks, e.g., pedestrian detec-
tion and segmentation [48, 23, 47] and sensorimotor con-
trol [15, 35, 18, 45, 51]. In particular, the CARLA sim-
ulation [18] has gained popularity as a realistic and easy-
to-use environment. CARLA includes support for state-of-
the-art sensing and is often used for benchmarking vision-
to-action pipelines by researchers. Nonetheless, as in the
former case of large-scale real-world benchmarks, current
simulation environments lack support for dynamic simula-
tion of people with disabilities. The applicability of various
generalization techniques [11, 56] has also not been evalu-
ated in the context of accessibility. To broaden the impact
of our contributions on future research and development in
the computer vision and robotics communities, we chose to
integrate our novel accessibility modules into CARLA. By
building upon CARLA’s simulation capabilities, we are also
able to go beyond many current real-world benchmarks to
test instance segmentation models across drastically vary-
ing weathers, perspectives, and geographical locations.

Vision for Accessibility: Systems for assisting people
with disabilities are generally user-centered in their oper-
ation [21, 20]. For example, systems may use computer
vision to identify curb ramps [29] or intersection cross-
ings [40] from the perspective of a user. Yet, very few
assistive or autonomous systems have been trained to per-
ceive other surrounding pedestrian with disabilities. Since
data collection requires involving people with specific dis-
abilities, the cost of coordinating user studies is prohibitive.
Moreover, benchmarks are rarely shared due to privacy con-
cerns. Therefore, in contrast to large-scale vision bench-
marks such as COCO and Cityscapes, accessibility-oriented
studies tend to focus on small-scale settings in simplified
environments (e.g., a fixed indoor room [34, 57, 41, 3]).
Kollmitz et al. [34] and Vasquez et al. [54] use Fast R-CNN
to detect mobility aids in a single indoor hospital environ-
ment. FSOD [22] formulates training a wheelchair detector
in a few-shot learning framework [55]. However, model-
ing diverse accessibility events goes beyond few-shot learn-
ing and involves addressing multiple fundamental issues in
model generalization, as we demonstrate in our analysis.
For instance, we find a general failure to detect canes and
reasoning over person-aid context even with ample train-
ing data. Related to our topic are methods for sign language
recognition (e.g., Koller et al. [33] and Camgoz et al. [6, 7]),

but these generally assume a controlled setup with a cen-
tralized person. To scale such efforts beyond controlled
labs and simplified settings, our study emphasizes learn-
ing broad and general-purpose accessibility-related vision
models. Here, we seek to analyze for the full range of real-
istic environments, i.e., dense urban settings with people at
various image scales, a range of weather and lighting condi-
tions, and with diverse mobility aids. Our implementation
can also easily extend to incorporate additional visual and
learning tasks by researchers and developers in the future.

3. The X-World Platform and Benchmark

In this section, we describe X-World, our comprehen-
sive data generation and model evaluation platform. X-
World comprises (1) an expansive set of mobility aid de-
signs integrated with realistic person-aid interaction into
the open-source, three-dimensional virtual CARLA envi-
ronment (Section 3.1), (2) a large, multi-perspective, fine-
grained instance segmentation dataset collected by spawn-
ing navigating agents in the simulation (Section 3.2), and
(3) accompanying real-world benchmark for comparative
analysis to the simulation benchmark (Section 3.3).

3.1. Diverse Person Simulation Module

In building our realistic accessibility world, we sought
to leverage recent advances in simulation rendering and
physics, in particular the widely used CARLA environ-
ment [18] implemented with Unreal Engine 4 (UE4) [24].
While CARLA includes a rich array of environmental con-
ditions and digital assets, it does not provide any support
for accessibility-related events. Given the highly active re-
search and development communities built around CARLA,
integration provides a crucial step towards dissemination
and future extensibility of our contributions. To enable the
field to tackle important problems in accessibility, we in-
troduce novel pedestrian types based on realistic visual and
kinematic aspects of people with disabilities.

Mobility Aid Design: As a first step towards teaching ma-
chines to perceive pedestrians with disabilities, e.g., recog-
nize a walking cane as an oncoming obstacle and a salient
cue for a pedestrian’s future trajectory, we introduce a di-
verse set of 28 new models (some are visualized in Fig. 1).
The digital assets include canes with different visual pat-
terns and various wheelchair designs, inspired by real-world
instances (Section 3.3). While we focus on two representa-
tive categories of mobility aids, i.e., wheelchairs and walk-
ing canes, additional asset models can be integrated in the
future. The extensive set enables novel model generaliza-
tion analysis in Section 4. In our implementation, the var-
ious wheelchair and cane assets can be attached to any of
the existing pedestrians in CARLA thereby changing their
pedestrian type and behavior, as described next.
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Top-View Scene System Observations

Figure 2: Accessibility-Centered Urban Simulation World. Our novel open-source simulation module enables to dynam-
ically and realistically simulate people with disabilities. The simulation can be used for various use-cases, including an
on-road autonomous vehicle or a sidewalk delivery robot, for training broad and general-purpose perception and interac-
tion models. The interactive environment supports continuously collecting multi-modal data, e.g., RGB camera, semantic
segmentation, depth, LIDAR.

Pedestrian Dynamics: We leverage CARLA 0.9.10 which
includes a total of 28 pedestrian models (22 adult and six
child assets). While CARLA pedestrians exhibit very ba-
sic walking skills, we utilize the in-built skeleton control
to tune the poses, motion, and path selection of pedes-
trians based on their mobility aid. Examples of pedes-
trian navigation behavior are visualized in Fig. 2 together
with the various perspectives used in the experiments and
recorded sensor data. To ensure realistic pedestrian appear-
ance and dynamics, we manually set kinematic parameters,
(e.g., gaits, damping factor), and incorporated multiple cane
and wheelchair techniques (e.g., side-to-side tactile scan-
ning, tapping) to match common real-world mobility and
orientation behavior. Our integration includes realistic ob-
stacle avoidance, crowd navigation, and collision handling
for both the pedestrians and their mobility aids. Moreover,
we can incorporate rare safety-critical scenarios, e.g., near-
crashes and accidents, into our visual reasoning benchmark.
While realistic simulation of agent dynamics is an open re-
search question, our carefully tuned behaviors can be used
to generate highly realistic scenarios, as shown in Fig. 2.
We emphasize an instance segmentation task as it provides
a crucial step towards disability-aware intelligent systems.

3.2. Person-Aid Instance Segmentation Benchmark

By employing the simulation module from Section 3.1,
we address inherent concerns in our visual reasoning task,
i.e., issues relating to the significant rarity of events in the
real-world, the cost of obtaining fine-grained annotation,
and privacy. We now use the simulation to advance over
previous work in instance segmentation. Specifically, we
analyze an instance segmentation task which incorporates a
detailed and functional understanding of person-object in-

teractions in the context of our application. The task and
benchmark will then be used to analyze current limitations
of instance segmentation models in Section 4.

Generating Instance Segmentation Annotations: In-
stance segmentation involves an essential visual task by a
robot when perceiving a scene with person-aid interactions.
CARLA provides support for a rich set of sensors, includ-
ing RGB and depth cameras, LIDAR, radar, dynamic vi-
sion, and inertial measurements. However, it does not pro-
vide built-in support for generating 2D instance segmen-
tation ground truth. We extract such annotations by post-
processing the ground truth depth map and the 3D bounding
box annotations. Specifically, we back-project pixels in the
semantic segmentation map into the 3D point cloud, and use
the 3D bounding box annotations to determine an instance
ID per-pixel. As visualized in Fig. 3, we found this solution
to provide accurate annotations.

Simulation Data Collection Methodology: We collect
an extensive dataset by spawning navigating agents and
recording their interactions with the simulation throughout
pre-specified routes. We utilize data collected across six
perspectives, five towns, six ambient settings with various
weather conditions and times of day (similarly to [12]),
novel pedestrian types, and the extensive set of mobility
aids. Thus, beyond addressing the current lack of pedes-
trians with disabilities and aids in large-scale datasets, our
dataset contains challenging environmental and situational
variability. To provide perspective variability, we also ad-
dress two realistic use cases of an autonomous vehicle and
a ground sidewalk delivery robot. This is done by spawn-
ing four cameras around an on-road vehicle and two cam-
eras on pedestrians with different heights for a sidewalk per-
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Figure 3: Instance Segmentation Ground Truth in Simulation. We visualize two examples with RGB camera view and
corresponding instance segmentation ground truth.

Figure 4: Real-World Examples. A diverse real-world
benchmark is used to ensure generalization.

spective (see Fig. 2). The dataset, collected from continu-
ous video sequences of forty hours of navigation in various
towns and ambient settings, is then sub-sampled to a to-
tal of 72,000 images containing 224,951 pedestrians (out
of which 18,803 and 25,575 are wheelchair and cane users,
respectively), 28,808 riders, and 254,560 vehicles.

3.3. Diverse Real-World Benchmark

We sought to provide a comprehensive validation of our
findings by analyzing models both in simulation (with di-
verse weathers, towns, aids, perspectives) and in the real-
world (prohibitive to collect in our application, but with
complementary naturalistic long-tail cases). We therefore
accompany the simulation benchmark from Section 3.2
with a smaller, but diverse annotated real-world benchmark.
As collecting a representative dataset in the physical world
is difficult due to the rarity of instances, we leverage in-
situ navigation videos and images from publicly available
internet sources. Altogether, we identified 80 videos (pri-
marily from YouTube). Next, to ensure meaningful eval-
uation and model generalization, we deliberately selected
a subset of the images involving dense urban settings and a
high variability of scenarios, geographical locations, weath-
ers, pedestrian poses, and camera perspectives. Finally,
the resulting 383 images have been annotated with instance
segmentation labels. In total, the challenging real-world
benchmark contains 1,494 pedestrians, including 264 in
wheelchairs and 209 cane users, and 787 vehicles. Exam-

ples from the dataset can be seen in Fig. 4.

4. Analysis
4.1. Dataset Statistics

To provide context for the experimental analysis, we first
discuss the statistics of the two introduced benchmarks.
Statistics from Cityscapes and COCO are also shown for
reference. We only consider vehicle and person categories
to perform a meaningful comparison to the human-centered
categories in our study.

Class Statistics: Fig. 5 compares the overall pixel statis-
tics with respect to different categories. Note that exist-
ing benchmarks, such as COCO and Cityscapes, do not
include mobility aid or person type samples and annota-
tions. Moreover, different datasets may contain inconsis-
tently labeled person instances, for example Cityscapes in-
cludes any handheld or worn bags as part of a pedestrian
mask, in contrast to COCO which does not. Furthermore,
suitcases and strollers are labeled as the ‘stuff’ category in
Cityscapes. As Cityscapes is captured in on-road settings,
we observe similar person and vehicle statistics in Fig. 5 to
our simulated dataset. In our real-world dataset, internet-
sourced images and videos tend to incorporate centralized
pedestrians resulting in larger instances.

Density and Size Statistics: Fig. 6 quantifies the density of
categories and instances in the datasets, per image. While
both introduced datasets contain dense and challenging ur-
ban scenes, our generated simulation dataset contains more
complex images with crowded pedestrian and vehicle traf-
fic. We observe similar trends in terms of density statistics
to Cityscapes. Fig. 7 analyzes the pedestrian size distribu-
tion among datasets. Despite our inclusion of many safety-
critical, near-crash events in the large simulated dataset, a
significant portion of the instances in this dataset is found at
greater distances from the camera. This is to be expected, as
traffic scenes with busy intersections can contain many in-
stances along the background. In contrast, internet-sourced
images and videos may contain a bias towards larger in-
stances with fewer categories (e.g., as also shown in Fig. 6).
Nonetheless, the two complementary benchmarks cover a
significant range of scales and object sizes.
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Figure 5: Semantic Annotation Statistics. Comparison of the proportion of per-category annotated pixels in our simula-
tion and real-world benchmarks. ‘person-wc’ and ’person-vi’ refer to person in wheelchair and visually-impaired person,
respectively. COCO and Cityscapes do not include mobility aid annotations.
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Figure 6: Density Statistics. Our simulated and real-world
benchmarks include dense urban settings, as shown by the
number of object categories per image (left) and number of
overall object instances per image (right).

4.2. Experiments

To gain insights into our novel perception task, we con-
duct three main experiments. First, we motivate our study
by analyzing the limitations of current models on our in-
troduced pedestrians and settings in simulation. Second,
we explore the ability of models to robustly recognize fine-
grained accessibility-related categories in diverse settings.
Third, we expand the analysis by investigating model per-
formance in the real-world. Throughout the experiments,
we follow He et al. [30] and train a standard Mask R-CNN
instance segmentation model with a ResNet-50 [31] back-
bone. We compare model pre-training using either COCO
or Cityscapes.

Baseline Performance and Challenges: We begin by eval-
uating the performance of traditional person detection mod-
els in Table 1. Common approaches [13, 39, 60] train a
singular ‘person’ category model, i.e., agnostic to the dif-
ferent underlying ‘person-wc’ and ‘person-vi’ categories.
While such models are not explicitly supervised to recog-
nize finer-grained ‘person’ categories, we can leverage our
annotations to uncover their performance in testing. Here,
we produce a breakdown over each of the introduced ‘per-
son’ categories, by ignoring all remaining categories. Over-
all, we find that our diverse simulated benchmark provides a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

small medium large
P
ro
po
rti
on

X-World  (Sim)
X-World  (Real)
MS COCO
Cityscapes

Figure 7: Person Size Statistics. Complementary size dis-
tribution between simulated and real-world data.

highly challenging test setting. Notably, off-the-shelf mod-
els are unable to handle persons in wheelchairs. After fine-
tuning the two-category (‘person’ and ‘vehicle’) model with
the simulated dataset, we still find significantly degraded
performance on ‘person-wc’ and ‘person-vi’ instances. In-
terestingly, despite the similarity in domain and statistics
to Cityscapes, the pre-trained COCO model outperforms
a Cityscapes model. This improved generalization to our
simulated data could be due to the broader scope of COCO
images, e.g., in terms of perspective and ambient settings.
After fine-tuning, we find both models to perform compar-
atively. Overall, the ‘person-wc’ class is shown to be the
most challenging class, with unsatisfactory performance.
Motivated by the impact of different ‘person’ categories on
model performance, we continue to analyze additional as-
pects of our rich benchmarks in subsequent experiments.

Fine-Grained Perception Experiment: In this experi-
ment, we introduce additional accessibility-related classes,
such as mobility aids and person types, during training of
the model. Consequently, we analyze the model’s abil-
ity to segment the eight key object categories that can be
found in our simulation benchmark (Table 2). In particular,
we analyze challenges in segmenting the fine-grained cat-
egories under harsh generalization settings of new towns,
new weathers and ambient settings, and previously un-
seen mobility aids. Our benchmark also includes a two-
wheeled vehicle category aimed to analyze whether its ad-
dition can help the model better discern wheelchair in-
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Training AP AP50 AP75 APS APM APL person person-wc person-vi vehicle
COCO 35.1 62.0 33.5 14.4 54.7 76.6 30.2 8.9 36.0 40.2
COCO & X-World (Sim) 59.6 86.5 66.8 28.1 60.7 82.7 62.8 31.3 47.4 59.2
Cityscapes 25.1 48.9 21.7 9.6 43.9 63.1 19.4 1.2 24.4 29.8
Cityscapes & X-World (Sim) 60.0 86.6 67.5 28.2 61.0 83.1 63.0 31.5 48.0 59.8

Table 1: Uncovering Challenges Inherent to Our Task. We follow traditional instance segmentation model training with
two disability-agnostic object classes, person and vehicle. Results are shown in simulation for pre-trained and fine-tuned
versions of the Mask R-CNN model. We leverage pedestrian type annotations to analyze the models under our novel task,
i.e., breakdown of the model performance over the three person categories obtained by setting other person types as ignore
regions. Results are shown for segmentation on the simulation-based test set (‘wc’ - wheelchair, ‘vi’ - visually-impaired).

Training T W A AP AP50 AP75 APS APM APL person person-wc person-vi rider v-4w v-2w wc cane

COCO &
X-World (Sim)

X 43.9 73.4 45.0 22.0 50.8 65.3 63.8 38.0 54.8 49.5 64.0 47.2 33.2 0.61
X X 43.7 72.7 45.7 22.6 50.5 62.5 65.5 37.3 55.1 51.0 62.5 44.3 33.9 0.12
X X 39.9 68.1 40.9 19.8 45.2 61.4 64.7 26.0 54.1 45.5 61.6 45.7 20.9 0.86
X X X 40.6 68.9 41.3 20.7 46.5 62.7 66.1 30.0 51.8 46.9 60.9 45.4 23.5 0.53

Cityscapes &
X-World (Sim)

X 44.2 73.2 45.8 22.0 51.2 64.9 64.4 38.1 55.3 50.4 63.8 47.2 33.9 0.53
X X 43.9 72.8 46.0 22.5 50.9 62.6 66.1 37.1 55.4 51.6 62.0 45.0 34.1 0.20
X X 40.5 68.7 41.6 20.1 46.2 61.7 65.4 26.5 54.7 45.9 61.8 46.7 22.1 0.98
X X X 41.3 69.7 42.4 21.1 47.4 63.9 66.5 30.6 52.4 46.7 60.9 46.9 25.6 0.85

Table 2: Fine-Grained Instance Segmentation. Fine-tuned models trained with eight object classes, including different
person types, mobility aids (‘wc’ - wheelchair, ‘vi’ - visually-impaired), and vehicles (‘v-4w’ - vehicle with four wheels,
‘v-2w’ - vehicle with two wheels). Results are shown in simulation. Evaluation is performed using different test settings,
with ‘T’ - new towns test setting, ‘W’ - new weathers test settings, and ‘A’ - new mobility aids test settings.

Training AP AP50 AP75 APS APM APL person person-wc person-vi rider v-4w v-2w wc cane
COCO 36.8 59.7 40.6 13.9 31.4 45.9 48.8 22.5 69.0 13.3 46.6 12.4 - -
COCO & X-World (Sim) 6.6 13.8 6.1 1.6 4.2 8.7 9.2 5.1 19.9 0.0 12.9 0.0 5.7 0.10
COCO & X-World (Real) 29.8 57.3 28.9 11.1 24.2 34.7 39.0 28.2 57.6 17.6 47.6 14.4 33.7 0.66
COCO & X-World (Sim+Real) 28.6 49.8 28.4 15.4 26.2 32.6 38.5 30.3 55.7 9.5 42.9 14.2 36.1 1.83
Cityscapes 21.7 40.2 21.3 6.0 19.9 27.6 35.7 4.5 53.0 3.6 38.2 7.4 - -
Cityscapes & X-World (Sim) 5.8 11.9 4.8 1.7 3.3 7.9 8.5 5.1 15.0 0.0 10.9 0.0 6.8 0.09
Cityscapes & X-World (Real) 26.6 47.9 26.7 6.3 23.2 31.8 37.6 29.4 55.9 0.0 45.7 13.1 30.3 0.70
Cityscapes & X-World (Sim+Real) 27.5 50.4 26.2 6.4 22.5 32.8 37.0 30.0 55.3 4.0 43.4 15.3 33.9 1.41

Table 3: Real-World Benchmark Analysis. Baseline and fine-tuned instance segmentation model performance for the real-
world benchmark. The Mask R-CNN model is trained using either simulated only, real-world only, or a combined simulated
and real-world dataset. The APs for the baseline model (highlighted in red) are shown for reference as they are computed
without the ‘wc’ and ‘cane’ classes.

stances. Surprisingly, even with ample training data for
wheelchair and cane instances, we demonstrate reduced
performances. Specifically, we find Mask R-CNN to ex-
hibit general failure on the ‘cane’ category (relevant to ob-
stacle avoidance) with poor reasoning over the geometry,
appearance, and person-aid context. This failure leads to
an abysmal performance of less than 1% accuracy. More-
over, classes such as ‘wheelchair’ may be confused with
the two-wheeled vehicle ‘v-2w’ class, which also occurs in
our real-world benchmark experiment (see Fig. 8). When
considering the four generalization test cases, we find seg-
mentation under new weather conditions to be an overall
easier task compared to testing on the new mobility aids
(e.g., wheelchair types unseen in training). For consistency
with existing work on CARLA, in particular the recent no-

crash benchmark [12, 10], we used a similar weather train-
ing and testing split. It seems that for our novel task, the
new testing weathers only present a mild challenge. This
is also consistent with previous studies for other tasks on
CARLA [12, 10]. Nonetheless, as state-of-the-art models
improve their generalization performance in the future, so
can our platform be used to explicitly generate increasingly
difficult benchmarks, i.e., under more drastic weathers, oc-
clusion, appearance, and pose variations. We therefore re-
iterate our findings of novel challenges introduced by our
platform and benchmarks.

Real-World Analysis: We perform a final experiment in
Table 3 using the real-world benchmark. We find the results
on the real-world benchmark to be generally consistent with
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Figure 8: Qualitative Results on the Real-World Benchmark. Top-left: successful detection and segmentation of people
and mobility aids. Top-right: a failure case with wheelchair false positive instances (often confused with two-wheeled
vehicles and bicycles). Bottom-left: a failure case with wheelchair pedestrians and wheelchair false negative instances.
Bottom-right: a failure case with two-wheeled vehicle false negative instances.

the results in simulation (Tables 1 and 2). For instance,
the performance on the novel pedestrian types of ‘person-
wc’ and ‘person-vi’ show similar trends in terms of abso-
lute performance. One difference of note is the ‘person-vi’
class outperforms the ‘person’ class in the real-world data
(Table 3). As real-world imagery contains mostly central-
ized and isolated instances of visually-impaired pedestrians,
such cases provide easier settings for detection and segmen-
tation, thereby leading to higher overall performances. Sim-
ilar trends between the tables are shown for the mobility aid
classes as well. This finding serves as affirmation of the
simulation’s utility. To further validate the simulation envi-
ronment, we also leverage the real-world data and analyze
simulation-to-real generalization. In general, Table 3 shows
poor generalization performance when training in simula-
tion and testing in the real-world. While this is difficult due
to a domain shift, we also explore boosting the performance
of models trained on real data using simulated data [48]. By
combining the datasets, we find improved performances for
the challenging mobility aid classes in Table 3, achieving
state-of-the-art for the ‘cane’ and ‘wc’ categories. The sim-
ulation dataset also benefits performance over the most dif-
ficult person class of ‘person-wc’. Fig. 8 demonstrates sev-
eral failure cases, where a ‘rider’ may be misclassified as a
‘person-wc’ as well as cases of false negative instances.

5. Conclusion

This paper takes an initial step toward learning robust
and detailed models for perceiving diverse people with dis-
abilities. By centering our analysis on often neglected
accessibility-related tasks and events, we contribute towards
safe and effective operation of autonomous systems. We
find that the novel X-World benchmark is complimentary
to existing benchmarks. We hope that the uncovered re-
search challenges and opportunities can spark the interest of
computer vision and robotics researchers, thereby broadly
influencing future development and evaluation of visual-
reasoning models. In our paper, we focused on a fundamen-
tal perception task of fine-grained instance segmentation.
Nonetheless, our benchmark and tools support analysis of
additional learning tasks and use-cases, e.g., policy learn-
ing [59], simulation-to-real adaptation [50, 11], and trans-
fer learning [55, 56]. By releasing X-World, we hope such
tasks can be studied by researchers tackling the multifaceted
problem of accessibility-aware vision-based machines.
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