
GraphFPN: Graph Feature Pyramid Network for Object Detection

Gangming Zhao †1,2,3, Weifeng Ge ∗1,2, and Yizhou Yu ∗3

1Nebula AI Group, School of Computer Science, Fudan University
2Shanghai Key Lab of Intelligent Information Processing

3Department of Computer Science, The University of Hong Kong

Abstract

Feature pyramids have been proven powerful in image
understanding tasks that require multi-scale features.
State-of-the-art methods for multi-scale feature learning
focus on performing feature interactions across space and
scales using neural networks with a fixed topology. In this
paper, we propose graph feature pyramid networks that are
capable of adapting their topological structures to varying
intrinsic image structures, and supporting simultaneous
feature interactions across all scales. We first define an
image specific superpixel hierarchy for each input image to
represent its intrinsic image structures. The graph feature
pyramid network inherits its structure from this superpixel
hierarchy. Contextual and hierarchical layers are designed
to achieve feature interactions within the same scale
and across different scales. To make these layers more
powerful, we introduce two types of local channel attention
for graph neural networks by generalizing global channel
attention for convolutional neural networks. The proposed
graph feature pyramid network can enhance the multiscale
features from a convolutional feature pyramid network.

We evaluate our graph feature pyramid network in the
object detection task by integrating it into the Faster R-CNN
algorithm. The modified algorithm outperforms not on-
ly previous state-of-the-art feature pyramid based methods
with a clear margin but also other popular detection meth-
ods on both MS-COCO 2017 validation and test datasets.

1. Introduction

Deep convolutional neural networks exploit local con-

nectivity and weights sharing, and have led to a series of

† This work is done when Gangming Zhao is a visiting student at

Fudan University. *Corresponding authors: wfge@fudan.edu.cn and y-

izhouy@acm.org

breakthroughs in computer vision tasks, including image

recognition [23, 46, 12, 47], object detection [9, 41, 33, 39,

5, 30, 45], and semantic segmentation [32, 54, 28, 17, 52,

48]. Since objects in an image may have varying scales,

it is much desired to obtain multiscale feature maps that

have fused high-level and low-level features with sufficien-

t spatial resolution at every distinct scale. This motivated

feature pyramid networks (FPN [29]) and its improved ver-

sions, such as path aggregation network (PANet [32]) and

feature pyramid transformer (FPT [52]), and other mtehod-

s [21, 18, 8, 50, 11].

Every image has multiscale intrinsic structures, includ-

ing the grouping of pixels into object parts, the further

grouping of parts into objects as well as the spatial layout of

objects in the image space. Such multiscale intrinsic struc-

tures are different from image to image, and can provide

important clues for image understanding and object recog-

nition. But FPN and its related methods always use a fixed

multiscale network topology (i.e. 2D grids of neurons) in-

dependent of the intrinsic image structures. Such a fixed

network topology may not be optimal for multiscale feature

learning. According to psychological evidence [13], human

parse visual scenes into part-whole hierarchies, and mod-

el part-whole relationships in different images dynamically.

Motivated by this, researchers have developed a series of

”capsule” models [43, 15, 22], that describe the occurrence

of a particular type in a particular region of an image. Hi-

erarchical segmentation can recursively group superpixels

according to their locations and similarities to generate a

superpixel hierarchy [38, 34]. Such a part-whole hierarchy

can assist object detection and semantic segmentation by

bridging the semantic gap between pixels and objects [34] .

It is known that multiscale features in a feature pyramid

can be enhanced through cross-scale interactions [29, 32,

25, 52] in addition to interactions within the same scale.

Another limitation of existing methods related to feature

pyramid networks is that only features from adjacent scales

interact directly while features from non-adjacent scales in-

2763

teract indirectly through other intermediate scales. This is

partly because it is most convenient to match the resolu-

tions of two adjacent scales, and partly because it is most

convenient for existing interaction mechanisms to handle t-

wo scales at a time. Interactions between adjacent scales

usually follow a top-down or bottom-up sequential order.

In the existing schemes, the highest-level features at the top

of the pyramid need to propagate through multiple inter-

mediate scales and interact with the features at these scales

before reaching the features at the bottom of the pyramid.

During such propagation and interaction, essential feature

information may be lost or weakened.

In this paper, we propose graph feature pyramid net-

works to overcome the aforementioned limitations because

graph networks are capable of adapting their topologi-

cal structures to varying intrinsic structures of input im-

ages, and they also support simultaneous feature interac-

tions across all scales. We first define a superpixel hierarchy

for an input image. This superpixel hierarchy has a number

of levels, each of which consists of a set of nonoverlapping

superpixels defining a segmentation of the input image. The

segmentations at all levels of the hierarchy are extracted

from the same hierarchical segmentation of the input im-

age. Thus the superpixels at two adjacent levels of the hi-

erarchy are closely related. Every superpixel on the coars-

er level is a union of superpixels on the finer level. Such

one-to-many correspondences between superpixels on two

levels define the aforementioned part-whole relationships,

which can also be called ancestor-descendant relationships.

The hierarchical segmentation and the superpixel hierarchy

derived from it reveal intrinsic image structures. Although

superpixels oversegment an image, pixels in the same su-

perpixel typically belong to the same semantic object/part,

and do not straddle the boundaries of semantic objects/parts.

Thus, superpixls have more homogeneous pixels than cells

from a uniform image partition, and more effectively pre-

vent feature mixing between background clutters and fore-

ground objects.

To effectively exploit intrinsic image structures, the ac-

tual structure of our graph feature pyramid network is de-

termined on the fly by the above superpixel hierarchy of the

input image. In fact, the graph feature pyramid network

inherits its structure from the superpixel hierarchy by map-

ping superpixels to graph nodes. Graph edges are set up be-

tween neighboring superpixels in the same level as well as

corresponding superpixels in ancestor-descendant relation-

ships. Correspondences are also set up between the levels in

our graph feature pyramid network and a subset of layers in

the feature extraction backbone. Initial features at all graph

nodes are first mapped from the features at their correspond-

ing positions in the backbone.Contextual and hierarchical

graph neural network layers are designed to promote fea-

ture interactions within the same scale and across different

scales, respectively. Hierarchical layers make correspond-

ing features from all different scales interact directly. Final

features at all levels of the graph feature pyramid are fused

with the features in a conventional feature pyramid network

to produce enhanced multi-scale features.

Our contributions in this paper are summarized below.

• We propose a novel graph feature pyramid network

to exploit intrinsic image structures and support simultane-

ous feature interactions across all scales. This graph feature

pyramid network inherits its structure from a superpixel hi-

erarchy of the input image. Contextual and hierarchical lay-

ers are designed to promote feature interactions within the

same scale and across different scales, respectively.

• We further introduce two types of local channel atten-

tion mechanisms for graph neural networks by generalizing

existing global channel attention mechanisms for convolu-

tional neural networks.

• Extensive experiments on MS-COCO 2017 validation

and test datasets [31] demonstrate that our graph feature

pyramid network can help achieve clearly better perfor-

mance than existing state-of-the-art object detection meth-

ods no matter they are feature pyramid based or not. The

reported ablation studies further verify the effectiveness of

the proposed network components.

2. Related Work
Feature Pyramids. Feature pyramids present high-level

feature maps across a range of scales, and work together

with backbone networks to achieve improved and more bal-

anced performance across multiple scales in object detec-

tion [29, 32, 26, 55, 52] and semantic segmentation [32,

54, 28, 17, 52, 48]. Recent work on feature pyramids

can be categorized into three groups: top-down network-

s [42, 44, 29, 54, 4, 37], top-down/bottom-up network-

s [27, 32], and attention based methods [52]. Feature pyra-

mid network (FPN [29]) exploits the inherent multi-scale,

pyramidal hierarchy of deep convolutional neural networks,

and build a top-down architecture with lateral connection-

s to obtain high level semantic feature maps at all scales.

Path Aggregation Network (PANet [32]) shortens the in-

formation path between lower layers and topmost features

with bottom-up path augmentation to enhance the feature

hierarchy. ZigZagNet [28] enriches multi-level contextu-

al information not only by dense top-down and bottom-up

aggregation, but also by zig-zag crossing between different

levels of the top-down and bottom-up hierarchies. Feature

pyramid transformer [52] performs active feature interac-

tion across both space and scales with three transformers.

The self-transformer enables non-local interactions within

individual feature maps, and the grounding/rendering trans-

formers enable successive top-down/bottom-up interactions

between adjacent levels of the feature pyramid.

In this paper, we aim to fill the semantic gaps between

2764

… … …
Contextual Graph Layers Hierarchical Graph Layers Contextual Graph Layers

Feature Mapping Feature Mapping

Fe
at

ur
e

Py
ra

m
id

 N
et

w
or

k
w

ith
 B

ac
kb

on
e

Gr
ap

h
Ne

ur
al

 N
et

w
or

k

Figure 1. The proposed graph feature pyramid network (GraphFPN) is a graph neural network built on a superpixel hierarchy. GraphFPN

receives mapped multi-scale features from the convolutional backbone. These features pass through a number of contextual and hierarchical

layers in the GraphFPN before being mapped back to rectangular feature maps, which are then fused with the feature maps from the

convolutional FPN for subsequent object detection.

feature maps at different pyramid levels. The most unique

characteristic of our graph feature pyramid network in com-

parison to the above mentioned work is that the topological

structure of the graph feature pyramid dynamically adapts

to the intrinsic structures of the input image. Furthermore,

we build a graph neural network across all scales, making

simultaneous feature interactions across all scales possible.

Graph Neural Networks. Graph neural networks [24, 49,

51, 10, 1] can model dependencies among nodes flexibly,

and can be applied to scenarios with irregular data struc-

tures. Graph convolutional networks (GCN [20]) perform

spectral convolutions on graphs to propagate information a-

mong nodes. Graph attention networks (GAT [49]) leverage

local self-attention layers to designate weights to neighbor-

ing nodes, which has gained popularity in many tasks. Gao

et al. [7] proposed graph U-Net with graph pooling and un-

pooling operations. A graph pooling layer relies on train-

able similarity measures to adaptively select a subset of n-

odes to form a coarser graph while the graph unpooling lay-

er uses saved information to reverse a graph to the structure

before its paired pooling operation.

We adopt the self-attention mechanism in GAT [49]

in our GraphFPN. To further increase the discriminative

power of node features, we introduce local channel atten-

tion mechanisms for GNNs by generalizing existing global

channel attention mechanisms for CNNs. In comparison to

Graph U-Net [7], our graph pyramid is built on a superpixel

hierarchy. Its node merge and split operations are not just

based on local similarity ranking, but also depend on in-

trinsic image structures, which makes our GraphFPN more

effective in image understanding tasks.

Hierarchical Segmentation and GLOM. Understanding

images by building part-whole hierarchies have been a long

standing open problem in computer vision [35, 3, 2, 36].

The hierarchical segmentation algorithms in MCG [38] and

COB [34] can group pixels of an image into superpixels us-

ing detected boundaries. These superpixels are formed hier-

archically to describe objects in a bottom-up manner. Hin-

ton [14] proposed the GLOM imaginary system that aims to

use a neural network with a fixed structure to parse images

into image specific part-whole hierarchies.

Given an input image, we use the hierarchical segmenta-

tion in COB [34] to build an image specific superpixel hi-

erarchy, on top of which we further build our graph feature

pyramid network. One of the contributions of this paper lies

in using image specific part-whole hierarchies to enhance

multiscale feature learning, which could benefit image un-

derstanding tasks including object detection,

2765

(a) Superpixel Partition (b) Feature Mapping

Figure 2. Mapping between CNN grid cells and superpxiels. Each

grid cell is assigned to one superpixel it overlaps most. Each su-

perpixel has a small collection of grid cells assigned it.

3. Graph Feature Pyramid Networks
3.1. Superpixel Hierarchy

In a hierarchical segmentation, pixels (or smaller super-

pixels) are recursively grouped into larger ones with a sim-

ilarity measure [38, 34]. Given an image I , we rely on

convolutional oriented boundaries (COB [34]) to obtain a

hierarchical segmentation, which is a family of image par-

titions
{S0,S1, ...,SL

}
. Note that each superpixel in S0 is

a single pixel in the original input image, SL only has one

superpixel representing the entire image, and the number of

superpixels in Sl and Sl−1 only differ by one (that is, one of

the superpixels in Sl is a union of two superpixels in Sl−1).

In this paper, we select a subset of partitions from{S0,S1, ...,SL
}

to define a superpixel hierarchy S ={Sl1 ,Sl2 ,Sl3 ,Sl4 ,Sl5
}

, where the superscript of S stand-

s for the partition level in the segmentation hierarchy, Sl1

is the finest set of superpixels in the hierarchy, and super-

pixels in Sli+1 are unions of superpixels in Sli . To match

the downsampling rate in convolutional neural networks,

{l1, l2, l3, l4, l5} are chosen such that the number of super-

pixels in Sli+1 is 1/4 of that in Sli . Then the superpixel

hierarchy S can be used to represent the part-whole hier-

archy of the input image and track the ancestor-descendant

relationships between superpixels.

3.2. Multi-scale Graph Pyramid

We construct a graph pyramid,
{G1,G2,G3,G4,G5

}
,

whose levels correspond to levels of the superpixel hier-

archy. Every superpixel in the superpixel hierarchy has a

corresponding graph node at the corresponding level of the

graph pyramid. Thus the number of nodes also decreases

by a factor of 4 when we move from one level of the graph

pyramid to the next higher level. We define two types of

edges for the graph pyramid. They are called contextual
edges and hierarchical edges. A contextual edge connect-

s two adjacent nodes at the same level while a hierarchical

edge connects two nodes at different levels if there is an

ancestor-descendant relationship between their correspond-

ing superpixels. Contextual edges are used to propagate

contextual information within the same level while hierar-

chical edges are used for bridging semantic gaps between

different levels. Note that hierarchical edges are dense be-

cause there is such an edge between every node and each

of its ancestors and descendants. These dense connections

incur a large computational and memory cost. Hence, ev-

ery hierarchical edge is associated with the cosine similarity

between its node features, and we prune hierarchical edges

according to their cosine feature similarities. Among all hi-

erarchical edges incident to a node, those ranked in the last

50% are removed.

3.3. Graph Neural Network Layers

A graph neural network called GraphFPN is constructed

on the basis of the graph pyramid. There are two types of

layers in GraphFPN, contextual layers and hierarchical lay-

ers. These two types of layers use the same set of nodes in

the graph pyramid, but different sets of graph edges. Con-

textual layers use contextual edges only while hierarchical

layers use pruned hierarchical edges only. Our GraphFPN

has L1 contextual layers at the beginning, L2 hierarchical

layers in the middle and L3 contextual layers at the end.

More importantly, each of these layers has its own learnable

parameters, which are not shared with any of the other lay-

ers. For simplicity, L1, L2 and L3 are always equal in our

experiments, and the choice of their specific value is dis-

cussed in the ablation studies. The detailed configuration of

GraphFPN will be given in the supplementary materials.

Although contextual and hierarchical layers use different

edges, GNN operations in these two types of layers are ex-

actly the same. Both types of layers share the same spatial

and channel attention mechanisms. We simply adopt the

self-attention mechanism in graph attention networks [49]

as our spatial attention. Given node i and its set of neigh-

bors Ni, the spatial attention updates features as follows,

�h′
i = M

(
�hi,

{
�hj

}
j∈Ni

)
, (1)

where M is the single-head self-attention from [49], �hj∈Ni

is the set of feature vectors collected from the neighbors of

node i, �hi and �h′
i are respectively the feature vector of node

i before and after the update.

The channel attention mechanism is composed of a lo-

cal channel-wise attention module based on average pooling

and a local channel self-attention module. In the average

pooling based local channel-wise attention, the feature vec-

tors of node i and its neighbors are first averaged to obtain

the feature vector �a′i ∈ R
C . We pass the averaged feature

vector through a fully connected layer with a sigmoid ac-

tivation, and perform element-wise multiplication between

the result and �h′
i,

�h′′
i = σ(W 1�a

′
i)� �h′

i, (2)

2766

where σ refers to the sigmoid function, W 1 ∈ R
C×C is the

learnable weight matrix of the fully connected layer, and �
stands for element-wise multiplication. In the local chan-

nel self-attention module, we first obtain the feature vec-

tor collection A of node i and its neighbors, and reshape

A to R
(|Ni|+1)×C . Here |Ni| is the size of the neighbor-

hood of node i. Next we obtain the channel similarity ma-

trix X = ATA ∈ R
C×C , and apply the softmax function

to every row of X . The output of the local channel self-

attention module is

�h′′′
i = βX�h′′

i + �h′′
i , (3)

where β is a learnable weight initialized to 0 as in [6].

Our local channel-wise attention and local channel self

attention are inspired by SENet [16] and Dual Attention

Network [6]. The main difference is that our channel at-

tention is defined within local neighborhoods and thus s-

patially varying from node to node while SENet and Dual

Attention Network apply the same channel attention to the

features at all spatial locations. Advantages of local chan-

nel attention in a graph neural network include much lower

computational cost and higher spatial adaptivity, and thus is

well suited for large networks such as our GraphFPN. The

ablation study in Table 5 demonstrates that our dual local

channel attention is rather effective in our GraphFPN.

3.4. Feature Mapping between GNN and CNN

Convolutional neural networks can preserve position in-

formation of parts and objects, which clearly benefits object

detection, while graph neural networks can flexibly model

dependencies among parts and objects across multiple se-

mantic scales. Note that the backbone and FPN in a con-

volutional neural network are respectively responsible for

multiscale encoding and decoding while our GraphFPN is

primarily responsible for multiscale decoding. Thus fea-

tures from the backbone serve as the input to the GraphF-

PN. To take advantage of both types of feature pyramid

networks, we also fuse final features from both GraphFP-

N and convolutional FPN. Therefore, we need to map fea-

tures from the backbone to initialize the GraphFPN, and al-

so map final features from the GraphFPN to the convolu-

tional FPN before feature fusion. Multi-scale feature map-

s in the backbone and convolutional FPN are denoted as

C =
{C1, C2, C3, C4, C5

}
and P =

{P1,P2,P3,P4,P5
}

,

respectively. Note that feature maps in C are the final feature

maps of the five convolutional stages in the backbone.

Mapping from CNN to GNN (C �→ S): We map the i-th
feature map of the backbone Ci to the i-th level Si in S .

Features in Ci lie on a rectangular grid, where each grid cell

corresponds to a rectangular region in the original input im-

age, while superpixels in Si usually have irregular shapes.

If multiple superpixels partially overlap with the same grid

cell in Ci, as shown in Figure 1(c), we assign the grid cell to

the superpixel with the laregest overlap. Such assignments

result in a small collection Ci
k of grid cells assigned to the

same superpixel Ri
k in Si. We perform both max pooling

and min pooling over the collection, and feed concatenated

pooling results to a fully connected layer with ReLU acti-

vation. The mapped feature of Ri
k can be written as

�hi
k = δ(W 2

[
(Δmax(C

i
k) ‖ Δmin(C

i
k))

]
), (4)

where δ stands for the ReLU activation, W 2 is the learn-

able weight matrix of the fully connected layer, ‖ refers to

the concatenation operator, and Δmax(C
i
k) and Δmin(C

i
k)

stand for the max-pooling and min-pooling operators.

Mapping from GNN to CNN (S �→ P): Once we run

a forward pass through the GraphFPN, we map the fea-

tures of its last layer to the convolutional feature pyramid

P . Let P i
k be the collection of grid cells in Pi assigned to

the superpixel Ri
k in Si. We simply copy the final feature

at Ri
k to every grid cell in P i

k. In this way, we obtain a

new feature map Pi
for the i-th level of the convolutional

FPN. We concatenate Pi with Pi
, and feed the concatenat-

ed feature map to a convolutional layer with 1 × 1 kernels

to ensure the fused feature map P̃i has the same number

of channels as Pi. Finally, the fused feature pyramid is

P̃ =
{
P̃1, P̃2, P̃3, P̃4, P̃5

}
.

3.5. Object Detection

The proposed graph feature pyramid network can be in-

tegrated into the object detection pipeline in [29] by replac-

ing the conventional FPN with the above fused feature pyra-

mid. We adopt faster-RCNN as our detection algorithm, and

perform the same end-to-end training. In the following sec-

tion, we conduct extensive experiments in object detection

to validate the effectiveness of the proposed method.

4. Experiments
Datasets. We evaluate the proposed method on MS CO-

CO 2017 detection dataset [31], containing 118k training

images, 5k validation images and 20k testing images. Met-

rics for performance evaluation include the standard aver-

age precision (AP), AP50, AP75, APS , APM , and APL.

We report ablation study results on the validation set, and

report results on the standard test set to compare with state-

of-the-art algorithms.

Implementation details. We have fully implemented our

GraphFPN using PyTorch, and all models used in this paper

are trained on 8 NVidia TITAN 2080Ti GPUs. As a com-

mon practice [29, 28], all backbone networks are pretrained

on the ImageNet1k image classification dataset [23], and

then fine-tuned on the training set of the detection dataset.

Faster-RCNN [40] is adopted as our object detection frame-

work, and we follow the settings in FPT [52] to set up the

2767

Method Training Strategy AP AP50 AP75 APS APM APL

Faster R-CNN [40] Baseline 33.1 53.8 34.6 12.6 35.3 49.5

Faster R-CNN+FPN [29] Baseline 36.2 59.1 39.0 18.2 39.0 52.4

Faster R-CNN+FPN [29] MT+AH 37.9 59.6 40.1 19.6 41.0 53.5

PAN [32] Baseline 37.3 60.4 39.9 18.9 39.7 53.0

PAN [32] MT+AH 39.0 60.8 41.7 20.2 41.5 54.1

ZigZagNet [28] Baseline 39.5 – – – – –

ZigZagNet [28] MT+AH 40.1 61.2 42.6 21.9 42.4 54.3

Faster R-CNN+FPN+FPT [52] Baseline 41.6 60.9 44.0 23.4 41.5 53.1

Faster R-CNN+FPN+FPT [52] AH 41.1 62.0 46.6 24.2 42.1 53.3

Faster R-CNN+FPN+FPT [52] MT 41.2 62.1 46.0 24.1 41.9 53.2

Faster R-CNN+FPN+FPT [52] MT+AH 42.6 62.4 46.9 24.9 43.0 54.5

Ours Baseline 42.1 61.3 46.1 23.6 41.1 53.3

Ours AH 42.7 63.0 47.2 25.6 43.1 53.3

Ours MT 42.4 62.7 46.9 24.3 43.1 53.6

Ours MT+AH 43.7(↑1.1) 64.0(↑1.6) 48.2(↑1.3) 27.2(↑2.3) 43.4(↑0.4) 54.2(↓0.3)

Table 1. Comparison with state-of-the-art feature pyramid based methods on MS-COCO 2017 test-dev [31]. “AH” and “MT” stand for

augmented head and multi-scale training strategies [32] respectively. The backbone of all listed methods is ResNet101 [12].

Method Detection Framework AP AP50 AP75 APS APM APL

RetinaNet + FPN [30] RetineNet 40.4 60.2 43.2 24.0 44.3 52.2

Faster R-CNN+FPN [29] Faster R-CNN 42.0 62.5 45.9 25.2 45.6 54.6

DETR [5] Set Prediction 44.9 64.7 47.7 23.7 49.5 62.3

Deformable DETR [56] Set Prediction 43.8 62.6 47.7 26.4 47.1 58.0

Sparse R-CNN+FPN [52] Sparse R-CNN 45.6 64.6 49.5 28.3 48.3 61.6

Ours Faster R-CNN 46.7(↑1.1) 65.1(↑0.5) 50.1(↑0.6) 29.2(↑0.9) 49.1(↓0.8) 61.8(↓0.2)

Table 2. Comparison with other popular object detectors on MS-COCO 2017 val set [31]. The backbone of all listed methods is

ResNet101 [12].

detection heads. During training, we adopt Adam [19] as

our optimizer, and set the weight decay and momentum

to 0.0001 and 0.9 respectively. Every mini-batch contain-

s 16 images, and are distributed on 8 GPUs with the syn-

chronized batch norm (SBN [53]). For fair comparison, in-

put images are resized to 800/1,000 pixels along the short-

er/longer edge. The models used in all experiments are

trained with 36 epochs on the detection training set. The

initial learning rate is set to 0.001, which is decreased by

a factor of 10 at the 27-th and 33-th epochs respectively. It

takes 38 hours to train a faster-RCNN model integrated with

our GraphFPN on the COCO dataset.

We use codes provided by the COB project1 [34] to com-

pute hierarchical segmentations, and build a superpixel hi-

erarchy for each image during data preparation. It takes

0.120 seconds on average to build the superpixel hierarchy

of an image, which is reasonable for an object detection

task. Note that machine learning models used in COB are

always trained on the same training set as the detection task.

1https://cvlsegmentation.github.io/cob/

4.1. Comparison with State-of-the-Art Methods

We compare the object detection performance of our

method (GraphFPN+FPN) with existing state-of-the-art

feature pyramid based methods, including feature pyra-

mid networks (FPN [29]), path aggregation networks

(PANet [32]), ZigZagNet [28] and feature pyramid trans-

formers (FPT [52]), using Faster-RCNN as the detection

framework to verify the effectiveness of feature interactions

in both the contextual layers and the hierarchical layers.

Table 1 shows experimental results achieved with the

above mentioned state-of-the-art methods on MS COCO

2017 test-dev [31] in various settings. Our method achieves

the highest AP (43.7%) outperforming other state-of-the-art

algorithms by at least 1.1%, and maintains a leading role

on AP50, AP75, APS , and APM . When compared with

the Faster-RCNN baseline [40], the AP of our method is

10.6% higher. It indicates that multi-scale high-level feature

learning is crucial for object detection. When our method

is compared with FPN alone [29], the improvement in AP

reaches 7.5%, which further indicates that GraphFPN sig-

nificantly enhances the original multi-scale feature learning

2768

(a) Image (b) FPN (c) FPT (d) GraphFPN

Couch

Couch

Motor
Motor

Couch

Couch

Potted Plant
Potted Plant

Potted Plant

Chair Chair

KeyboardKeyboard

Handbag Handbag

Chair

Book Book

Person Person

Motor

Motor

Motor Motor
Motor

Motor

Motor

Motor
Motor Motor

Person

Person

Person Person Person Person Person
PersonPersonPerson

Person
PersonPerson

Figure 3. Sample detection results from FPN [29], FPT [52], and our GraphFPN based method.

Methods Params GFLOPs Test Speed (s)

faster RCNN [40] 34.6 M 172.3 0.139

faster RCNN + FPN [29] 64.1 M 240.6 0.051

faster RCNN + FPN + FPT [52] 88.2 M 346.2 0.146

faster RCNN + FPN + GraphFPN 100.0 M 380.0 0.157

COB + faster RCNN + FPN + GraphFPN 121.0 M 393.1 0.277

Table 3. The number of learnable parameters, the total computational cost, and the average test speed of a few detection models. All

experiments are run on an NVidia TITAN 2080Ti GPU.

conducted with FPN, and multi-scale feature interaction and

fusion are very effective for object detection. Such improve-

ments also illustrate that graphs built on top of superpixel

hierarchies are capable of capturing intrinsic structures of

images, and are helpful in high-level image understanding

tasks. When compared with FPT [52], our method achieves

better performance on five evaluation metrics, including AP,

AP50, AP75, APS and APM , except APL. We attribute this

performance to three factors. First, graph neural network-

s have higher efficiency in propagating information across

different semantic scales by connecting nodes dynamically

while FPT has to broadcast information in a cascaded man-

ner with the top-down and bottom-up combination. Second,

the superpxiel hierarchy captures the intrinsic structures of

images, which benefit the detection of small-scale object-

s. Then our method achieves 2.3% improvement on APS

in comparison to FPT. Third, superpixel hierarchies are not

well suited for the detection of large-scale objects, which

can be verified through the inferior result on APL.

4.2. Comparison with Other Object Detectors

In addition to comparison with feature pyramid based de-

tection methods, we further compare our method with other

popular detectors. As shown in Table 2, our method based

on Faster R-CNN + FPN + GraphFPN outperforms all such

detectors, including RetinaNet [30], DETR [5], Deformable

DETR [56] and Sparse R-CNN+FPN [52], by a clear mar-

gin when they use the same backbone as our method. Our

method achieves compelling performance under all six per-

formance metrics. This demonstrates our GraphFPN is ca-

pable of significantly enhancing the feature representation

of a detection network, which in turn leads to superior de-

tection performance.

4.3. Learnable Parameters and Computational Cost

Table 3 provides the number of learnable parameters, the

total computational cost, and the average test speed of a few

detection models. Faster RCNN [40] serves as our base-

line, which has 34.6 million learnable parameters and 172.3

GFLOPs. It takes 0.139 seconds on average to process one

image. Our GraphFPN works on top of Faster RCNN and

FPN, and the whole pipeline has 1.89 times more learnable

parameters, 1.21 times more GFLOPs and 12.9% longer test

time. If we take the construction of the superpixel hierarchy

into consideration, COB [34] models have 21 (+21%) mil-

lion parameters, 13.1 (+3.4%) GFLOPs, and 0.12 (+76.4%)

seconds time cost. This is because COB [34] needs to de-

tect contours in an image and build a hierarchical segmen-

2769

CGL-1 HGL CGL-2 AP APS APM APL

� � � 39.1 22.4 38.9 56.7
× � � 38.2 22.1 38.7 56.1

� � × 38.7 22.1 38.9 56.6

× � × 36.2 19.2 36.3 54.4

� × × 37.2 22.1 35.1 55.6

Table 4. Ablation study on the contextual and hierarchical layers in

GraphFPN. “CGL-1” stands for the first group of contextual layers

before the hierarchical layers, “HGL” stands for the hierarchical

layers, and “CGL-2” stands for the second group of contextual

layers after the hierarchical layers. � and × stand for the existence

of a module or not. Detection results are reported on the MS-

COCO 2017 val set [31].

SA LCA LSA AP APS APM APL

� � � 39.1 22.4 38.9 56.7
× � � 37.8 21.9 37.4 56.2

� × � 37.9 21.6 37.3 56.4

� � × 37.6 21.8 37.7 55.1

� × × 37.1 21.1 36.7 54.1

Table 5. Ablation study on the attention mechanisms. “SA” s-

tands for the spatial attention module, “LCA” stands for the lo-

cal channel-wise attention module and “LSA” stands for the local

channel self-attention module. � and × stand for the existence of

a module or not. Detection results are reported on the MS-COCO

2017 val set [31].

N AP AP50 AP75 APS APM APL

1 36.1 56.3 35.4 19.3 37.9 55.4

2 37.2 57.6 38.5 21.2 38.3 55.8

3 39.1 58.3 39.4 22.4 38.9 56.7
4 38.1 57.8 38.9 22.2 38.6 56.3

5 37.1 57.1 38.0 21.9 37.9 55.4

Table 6. Ablation study on the number of layers in GraphFPN. N is

the number of layers in each of the three groups of layers. Hence,

the total number of layers is 3N. Detection results are reported on

the MS-COCO 2017 val set [31].

tation on CPU. In fact, hierarchical segmentation could be

implemented using CUDA and run on GPU, which would

significantly reduce the test time.

4.4. Ablation Studies

To investigate the effectiveness of individual compo-

nents in our GraphFPN, we conduct ablation studies by re-

placing or removing a single component from our pipeline.

We have specifically designed ablation studies for the con-

figuration of GNN layers (the combination and ordering of

different types of GNN layers), the total number of GNN

layers, and the spatial and channel attention mechanisms.

GNN Layer Configuration. In our final pipeline, the spe-

cific configuration of layers is as follows: first group of

contextual layers, a group of hierarchical layers, and sec-

ond group of contextual layers. The number of layers in all

groups are the same. Table 4 shows the results of the ab-

lation study on the configuration of these layers. When we

remove the first group of contextual layers, the AP drops by

0.9%. It means that it is necessary to propagate contextual

information within the same scale before cross-scale opera-

tions. Then we remove the second group contextual layers,

the AP drops by 0.4%, which indicates contextual informa-

tion propagation is still helpful even after the first group of

contextual layers followed by a group of hierarchical layer-

s. If we keep one group of contextual layers or hierarchical

layers only, the AP drops by 2.9% and 1.9% respectively,

which indicates the two types of layers are truly comple-

mentary to each other.

Number of GNN Layers. The number of layers in a GNN

affects its overall discriminative ability. Table 6 shows ex-

perimental results with different numbers of layers in each

type. When L = 3, which means each of the three groups

has 3 layers and the total number of layers is 9, our method

achieves the best results on all five performance metrics.

When there are too many graph layers, the performance be-

comes worse. We attribute this to gradient vanishing.

Attention Mechanism. In the ablation study shown in Ta-

ble 5, we verify the effectiveness of the spatial self-attention

and the two local channel attention mechanisms. When we

remove the spatial self-attention, the AP drops by 1.3%.

It means that the spatial attention is powerful in model-

ing neighborhood dependencies. If we remove the local

average-pooling based channel-wise attention or the local

channel self-attention, the AP drops by 1.2% and 1.5%

respectively. It demonstrates that these two local chan-

nel attention mechanisms are complementary to each other,

and significantly improve the discriminative ability of deep

features. If we completely remove both channel attention

mechanisms, the AP is 2% worse.

5. Conclusions
In this paper, we have presented graph feature pyramid

networks that are capable of adapting their topological
structures to varying intrinsic structures of input images,
and supporting simultaneous feature interactions across
all scales. Our graph feature pyramid network inherits
its structure from a superpixel hierarchy constructed
according to a hierarchical segmentation. Contextual and
hierarchical graph neural network layers are defined to
achieve feature interactions within the same scale and
across different scales, respectively. To make these layers
more powerful, we further introduce two types of local
channel attention for graph neural networks. Exten-
sive experiments demonstrate that Faster R-CNN+FPN
integrated with our graph feature pyramid network
outperforms existing state-of-the-art object detection
methods on MS-COCO 2017 validation and test datasets.

2770

References
[1] Heterogeneous graph attention network. In The World Wide

Web Conference, 2019. 3

[2] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape

matching and object recognition using shape contexts. IEEE
transactions on pattern analysis and machine intelligence,

24(4):509–522, 2002. 3

[3] Elie Bienenstock, Stuart Geman, and Daniel Potter. Com-

positionality, mdl priors, and object recognition. Advances
in neural information processing systems, pages 838–844,

1997. 3

[4] Piotr Bilinski and Victor Prisacariu. Dense decoder shortcut

connections for single-pass semantic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6596–6605, 2018. 2

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229. Springer, 2020. 1,

6, 7

[6] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei

Fang, and Hanqing Lu. Dual attention network for scene

segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3146–

3154, 2019. 5

[7] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceed-
ings of the 36th International Conference on Machine Learn-
ing, 2019. 3

[8] G. Ghiasi, T. Y. Lin, and Q. V. Le. Nas-fpn: Learning s-

calable feature pyramid architecture for object detection. In

2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019. 1

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

580–587, 2014. 1

[10] Liyu Gong and Qiang Cheng. Exploiting edge features for

graph neural networks. In The IEEE Conference on Comput-
er Vision and Pattern Recognition (CVPR), June 2019. 3

[11] C. Guo, B. Fan, Q. Zhang, S. Xiang, and C. Pan. Augfpn:

Improving multi-scale feature learning for object detection.

In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 1

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 6

[13] Geoffrey Hinton. Some demonstrations of the effects of

structural descriptions in mental imagery. Cognitive Science,

3(3):231–250, 1979. 1

[14] Geoffrey Hinton. How to represent part-whole hierarchies in

a neural network. arXiv preprint arXiv:2102.12627, 2021. 3

[15] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix

capsules with em routing. In International conference on
learning representations, 2018. 1

[16] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 5

[17] Debesh Jha, Michael A Riegler, Dag Johansen, Pål Halvors-

en, and Håvard D Johansen. Doubleu-net: A deep con-

volutional neural network for medical image segmentation.

In 2020 IEEE 33rd International Symposium on Computer-
Based Medical Systems (CBMS), pages 558–564. IEEE,

2020. 1, 2

[18] Y. Kim, B. N. Kang, and D. Kim. San: Learning relationship

between convolutional features for multi-scale object detec-

tion: 15th european conference, munich, germany, septem-

ber 8–14, 2018, proceedings, part v. In Springer, Cham,

2018. 1

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[20] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 3

[21] T. Kong, F. Sun, W. Huang, and H. Liu. Deep feature pyra-

mid reconfiguration for object detection. 2018. 1

[22] Adam R Kosiorek, Sara Sabour, Yee Whye Teh, and Geof-

frey E Hinton. Stacked capsule autoencoders. arXiv preprint
arXiv:1906.06818, 2019. 1

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1, 5

[24] Guohao Li, Matthias Muller, Ali Thabet, and Bernard

Ghanem. Deepgcns: Can gcns go as deep as cnns? In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 9267–9276, 2019. 3

[25] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang

Zhang. Scale-aware trident networks for object detection.

In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6054–6063, 2019. 1

[26] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong

Deng, and Jian Sun. Detnet: Design backbone for object

detection. In Proceedings of the European conference on
computer vision (ECCV), pages 334–350, 2018. 2

[27] Di Lin, Yuanfeng Ji, Dani Lischinski, Daniel Cohen-Or, and

Hui Huang. Multi-scale context intertwining for semantic

segmentation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 603–619, 2018. 2

[28] Di Lin, Dingguo Shen, Siting Shen, Yuanfeng Ji, Dani

Lischinski, Daniel Cohen-Or, and Hui Huang. Zigzagnet:

Fusing top-down and bottom-up context for object segmen-

tation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7490–7499,

2019. 1, 2, 5, 6

[29] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, B-

harath Hariharan, and Serge Belongie. Feature pyramid net-

works for object detection. In Proceedings of the IEEE con-

2771

ference on computer vision and pattern recognition, pages

2117–2125, 2017. 1, 2, 5, 6, 7

[30] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P Dollár. Focal

loss for dense object detection. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PP(99):2999–3007,

2017. 1, 6, 7

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 2, 5, 6, 8

[32] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Ji-

a. Path aggregation network for instance segmentation. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8759–8768, 2018. 1, 2, 6

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 1

[34] Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez,

and Luc Van Gool. Convolutional oriented boundaries: From

image segmentation to high-level tasks. IEEE transaction-
s on pattern analysis and machine intelligence, 40(4):819–

833, 2017. 1, 3, 4, 6, 7

[35] David Marr. Vision: A computational investigation into the

human representation and processing of visual information.

1982. 3

[36] Caroline Pantofaru, Cordelia Schmid, and Martial Hebert.

Object recognition by integrating multiple image segmenta-

tions. In European conference on computer vision, pages

481–494. Springer, 2008. 3

[37] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large

mini-batch object detector. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages

6181–6189, 2018. 2

[38] Jordi Pont-Tuset, Pablo Arbelaez, Jonathan T Barron, Fer-

ran Marques, and Jitendra Malik. Multiscale combinatorial

grouping for image segmentation and object proposal gener-

ation. IEEE transactions on pattern analysis and machine
intelligence, 39(1):128–140, 2016. 1, 3, 4

[39] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 5, 6, 7

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: towards real-time object detection with region

proposal networks. IEEE transactions on pattern analysis
and machine intelligence, 39(6):1137–1149, 2016. 1

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 2

[43] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dy-

namic routing between capsules. arXiv preprint arX-
iv:1710.09829, 2017. 1

[44] Abhinav Shrivastava, Rahul Sukthankar, Jitendra Malik, and

Abhinav Gupta. Beyond skip connections: Top-down modu-

lation for object detection. arXiv preprint arXiv:1612.06851,

2016. 2

[45] P. Sun, R. Zhang, Y. Jiang, T. Kong, C. Xu, W. Zhan, M.

Tomizuka, L. Li, Z. Yuan, and C. Wang. Sparse r-cnn: End-

to-end object detection with learnable proposals. 2020. 1

[46] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincen-

t Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

1

[47] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling

for convolutional neural networks. 2019. 1

[48] Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchi-

cal multi-scale attention for semantic segmentation. arXiv
preprint arXiv:2005.10821, 2020. 1, 2

[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-

tention networks. ICLR, 2018. 3, 4

[50] H. Xu, L. Yao, Z. Li, X. Liang, and W. Zhang. Auto-fpn:

Automatic network architecture adaptation for object detec-

tion beyond classification. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 2020. 1

[51] R. Ying, J. You, C. Morris, X. Ren, William L Hamilton, and

J. Leskovec. Hierarchical graph representation learning with

differentiable pooling. 2018. 3

[52] Dong Zhang, Hanwang Zhang, Jinhui Tang, Meng Wang, Xi-

ansheng Hua, and Qianru Sun. Feature pyramid transformer.

In European Conference on Computer Vision, pages 323–

339. Springer, 2020. 1, 2, 5, 6, 7

[53] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,

Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Con-

text encoding for semantic segmentation. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 7151–7160, 2018. 6

[54] Zhenli Zhang, Xiangyu Zhang, Chao Peng, Xiangyang Xue,

and Jian Sun. Exfuse: Enhancing feature fusion for semantic

segmentation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 269–284, 2018. 1, 2

[55] Qijie Zhao, Tao Sheng, Yongtao Wang, Zhi Tang, Ying Chen,

Ling Cai, and Haibin Ling. M2det: A single-shot object de-

tector based on multi-level feature pyramid network. In Pro-
ceedings of the AAAI conference on artificial intelligence,

volume 33, pages 9259–9266, 2019. 2

[56] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,

and Jifeng Dai. Deformable detr: Deformable transform-

ers for end-to-end object detection. arXiv preprint arX-
iv:2010.04159, 2020. 6, 7

2772

