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Figure 1. Dense correspondence prediction produced by state-of-the-art algorithms, including ANC-Net [26], SCOT [30], DHPF [35] and

our multi-scale matching network. With the predicted key point pairs, images are warped with thin-plate splines algorithm [3].

Abstract

Deep features have been proven powerful in building ac-
curate dense semantic correspondences in various previ-
ous works. However, the multi-scale and pyramidal hier-
archy of convolutional neural networks has not been well
studied to learn discriminative pixel-level features for se-
mantic correspondence. In this paper, we propose a multi-
scale matching network that is sensitive to tiny seman-
tic differences between neighboring pixels. We follow the
coarse-to-fine matching strategy and build a top-down fea-
ture and matching enhancement scheme that is coupled
with the multi-scale hierarchy of deep convolutional neu-
ral networks. During feature enhancement, intra-scale en-
hancement fuses same-resolution feature maps from multi-
ple layers together via local self-attention and cross-scale
enhancement hallucinates higher-resolution feature maps
along the top-down pathway. Besides, we learn comple-
mentary matching details at different scales thus the over-
all matching score is refined by features of different se-
mantic levels gradually. Our multi-scale matching net-
work can be trained end-to-end easily with few additional

*Corresponding author: wfge@fudan.edu.cn

learnable parameters. Experimental results demonstrate
that the proposed method achieves state-of-the-art perfor-
mance on three popular benchmarks with high computa-
tional efficiency. The code has been released at https:
//github.com/wintersun661/MMNet.

1. Introduction

Finding pixel-wise correspondences between a pair of

semantically similar images has been a longstanding funda-

mental problem in computer vision. They have been proven

useful for many tasks including optical flow [16, 45, 46], ge-

ometric matching [39, 32, 50], disparity estimation [36, 60],

object recognition [9, 54, 58], semantic segmentation [17,

24] and etc. Due to large intra-class variations in color,

scale, orientation, illumination and non-rigid deformations,

the problem of semantic correspondence remains very chal-

lenging. With the breakthrough in representation learning,

semantic correspondence has achieved impressive improve-

ments in various scenarios.

Despite that deep features have improved matching ac-

curacy significantly, the multi-scale and hierarchical struc-

tures of deep convolutional neural networks have not been

explored thoroughly for semantic correspondence. It is
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well-known that convolutional neural networks can extract

features of different semantic levels in a bottom-up man-

ner [57]. Bottom convolutional layers close to the input im-

age act like low level feature descriptors, and are sensitive

to colors, edges, textures and other low level statistics. Top

convolutional layers contain high level semantics which are

similar among neighboring points in feature maps. Meth-

ods like NC-Net [40], DualRC-Net [27] and GOCor [49]

use the features from the topmost layer as the feature repre-

sentation. However, in semantic correspondence, the am-

biguity between neighboring pixels in the topmost layer

leads to inferior performance. Hyperpixel flow [21] and its

extension [35] combine features at different semantic lev-

els to generate reliable feature representation and achieve

improved results. However, they have not thoroughly ex-

ploited the multi-scale and hierarchical structure of deep

convolutional neural networks.

Given an image pair, human usually tends to glance at

the whole images, and then compare details carefully to es-

tablish semantic correspondence. It is similar to a coarse-to-

fine matching scheme. In a convolutional neural network,

neurons in the top layers have larger receptive fields while

neurons in the bottom layers have relatively small recep-

tive fields, which means top layers are rich in semantics but

have relatively weak localization ability while the bottom

layers are strong in localization but have less semantics. It

will be helpful to follow the multi-scale and hierarchical

structure of convolutional neural networks to find semantic

correspondence in a coarse-to-fine manner.

In this paper, we propose a new multi-scale matching

network to produce reliable semantic correspondence by in-

tegrating features of different semantic levels hierarchically

and learn complementary matching details in a coarse-to-

fine manner. The multi-scale matching network consists of

an encoder and a decoder. The encoder is a typical convolu-

tional neural network pretrained on the ImageNet ILSVRC

dataset [43]. It contains many layers to capture seman-

tic information at different levels. We divide the feature

maps in the encoder into five convolutional groups with re-

spect to their resolutions. The decoder has two top-down

hierarchical enhancement pathways across different scales.

The first one is the feature enhancement pathway which up-

samples spatially coarser, but semantically stronger feature

maps and fuse them with features from lateral connections

to hallucinate higher resolution features. The second one

is the matching enhancement pathway that learns finer and

complementary matching details to enhance coarser match-

ing results from a lower resolution. We start from the first

layer in the decoder to generate the coarsest matching re-

sults, and upsample and enhance them with complementary

matching details at different semantic levels.

To increase fine-grained details in feature maps, during

intra-scale feature enhancement, we fuse all feature maps

from the same convolutional group in the encoder not just

the feature map of the last layer. We also design a trans-

former with a local self-attention mechanism to enhance

features that are discriminative among neighboring pixels.

Besides, we supervise matching detail learning at different

scales to make sure the network learns reliable semantic

correspondences. Our multi-scale matching network adds

relatively few learnable parameters with little extra compu-

tational cost, and can be trained in an end-to-end manner

easily.

In summary, the main contributions of this work can be

summarized as follows:

• We propose a multi-scale matching network that uti-

lizes the multi-scale and hierarchical structure of deep

convolutional neural network to learn semantic corre-

spondences in a coarse-to-fine manner. Two top-down

pathways in the decoder are built to couple the back-

bone encoder. The feature enhancement pathway in-

creases the representation power of feature maps with

intra-scale enhancement and cross-scale enhancement.

The matching enhancement pathway learns matching

details that are complementary to matching results

from coarser levels.

• We design a novel intra-scale feature enhancement

module that simultaneously fuses all the feature maps

in each convolutional group and further increases the

discriminative ability of the fused feature map with a

local transformer.

• Experimental results demonstrate that our multi-scale

matching network achieves state-of-the-art perfor-

mance on multiple popular benchmarks, including PF-

PASCAL [11], CUB [53] and SPair-71k [34].

2. Related Work

Semantic Correspondence. Methods for semantic corre-

spondence can be roughly categorized into several groups:

handcrafted feature based methods [31, 2, 42, 7, 48], learn-

able feature based methods [26, 27, 35, 49], graph match-

ing and optimization based methods [52, 30, 58, 56], meth-

ods focusing on geometry displacement [5, 18, 12, 11, 50],

and etc. Hand crafted features, such SIFT [31], HOG [47]

and DAISY [48], design robust feature descriptors with low

level statistics. In NC-Net [40], DualRC-Net [27] and GO-

Cor [49], high level semantic features of convolutional neu-

ral networks are used to build dense correspondences be-

ween image pairs. SCOT [30] and DeepEMD [58] formu-

late the semantic correspondence as an optimal transport

problem and give closed-form solutions. PCA-GM [52]

and other graph matching based methods focus on solving
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Figure 2. Illustration of the multi-scale matching network. Our multi-scale matching network contains a convolutional backbone, and

a top-down feature and matching enhancement pathway. In feature enhancement, coarser but semantically richer features are upscaled

and combined with finer but semantically weaker features to enhance the discrminaitve ability of pixel-level features. Then the matching

enhancement module directly upsamples the matching results of the previous scale and adds it with the current matching details to learn

complementary correspondences across scales.

a general quadratic assignment programming (QAP) prob-

lem to get matching results. Besides, PHM [5, 11] and

SCNet [12] develop the probabilistic Hough matching in

a Bayesian probability framework to model the geometry

displacement of objects between two images.

In this paper, we learn semantic correspondence in a

coarse-to-fine manner with a top-down matching enhance-

ment scheme. By such hierarchical matching scheme, se-

mantics at different levels and scales are fused and enhanced

to get accurate pixel-wise correspondences.

Multi-scale Feature Fusion. Multi-scale feature fusion

can improve the representation ability of features in many

tasks, including object detection [28, 61], semantic seg-

mentation [41, 29] and semantic correspondence [33, 35].

Feature pyramid networks (FPN [28]) build a decoder with

a top-down pathway and lateral connections, and achieve

impressive results on object detection. Hyperpxiel flow

(HPF [33]) searches the most informative convolutional fea-

ture to get superior results on semantic correspondence. Its

extension Hypercolumns [35] designs a learning algorithm

to select convolutional features in different layers in a much

more efficient learning scheme.

Different from FPN [28], in the top-down pathway of

our multi-scale matching network, feature maps in every

layer of a convolutional group are fused to generate the lat-

eral connection, not just the output of the last layer. Com-

pared with HPF [33] and Hypercolumns [35], our multi-

scale learning scheme is much more flexible with simple

top-down and lateral connections, and can benefit from the

multi-scale and pyramid hierarchy more efficiently..

4-D Correlation. The 4-D correlation between two feature

volumes is popular in semantic correspondence learning

which calculates the matching scores densely. NC-Net [40]

analyzes neighborhood consensus patterns in the 4-D cor-

relation space to get reliable dense correspondences. ANC-

Net [26] introduces a set of non-isotropic 4-D convolution

layers to capture adaptive neighborhood consensus. In this

paper, we don’t normalize the feature maps with L2 nor-
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malization as that in NC-Net [40] and ANC-Net [26]. We

simply use the 4-D correlation tensor of two feature maps

which stores the pair-wise scalar products as the matching

score tensor. Then this 4-D correlation tensor is normal-

ized with softmax to get the matching probability of every

feature point. Experiments demonstrate that our proposed

method without L2 normalization can achieve impressive

results.

Transformer. Transformers have led to a series of break-

throughs in computer vision [62, 4, 59] and natural language

processing [51, 8, 1]. In [51], elements in a sequence are en-

coded with a self-attention mechanism uniformly. While, in

our local self attention, only neighborhood pixels are con-

sidered to enhancement the local patterns. Experimental re-

sults show that this local property in our local self attention

works quite well for semantic correspondence.

3. Multi-scale Matching Networks
Multi-scale matching networks utilize the multi-scale

and hierarchical structures of deep convolutional neural net-

works to get discriminative pixel-level semantics for se-

mantic correspondence. Figure 2 gives an overview of

the proposed method. Given a pair of images
(
Is, It

)
and the ground truth of their matched key points Mgt =
{mi = (ps

i ,p
t
i) |i = 1, ...,K}, our multi-scale matching

network adopts a top-down feature enhancement scheme

and a coarse-to-fine matching enhancement scheme respec-

tively. In the feature enhancement, we design a local self at-

tention which models dependencies between neighborhood

neurons to reduce the semantic ambiguity. In the match-

ing enhancement, we learn the matching details that are

complementary at different semantic levels. Besides, dif-

ferent from that in [40, 26], feature volumes of two images

are multiplied together directly without L2 normalization

to get 4-D matching scores. This scheme ensures the pixel-

level similarity can be learnt with deep neural networks effi-

ciently. Then we can train the multi-scale matching network

by adding supervision at different scales in an end-to-end

manner.

Network Structure. A typical convolutional neural net-

work for image classification [23, 14] usually has five con-

volutional groups with different resolutions. Here we adopt

ResNet [14] as our backbone and follow the feature pyra-

mid network (FPN [28]) to broadcast semantics from high

level layers to low level layers with a top-down pathway

and lateral connections as shown in Figure 2 (a). Then in

the decoding part, we get 4 feature maps with successive

increasing resolutions by a scaling factor 2.

Feature Enhancement. There are feature enhancements

both in the same scale and across different scales. During

intra-scale enhancement, unlike FPN [28] which only takes

the feature map of the last residual block in each convolu-

tional group, we simultaneously fuse the feature maps of all

residual blocks in the same group to capture semantics at

different levels. To enlarge the receptive field of a single

neuron and capture semantics at different scales, every fea-

ture map passes a scale enhancement module (SEM [13])

before fusion. Then these feature maps are simply added

together and go into a local self attention module to finish

intra-scale enhancement.

The local self attention module is designed to special-

ize every feature point. As common transformers [51, 59],

our local self attention operates on queries(Q), keys(K) and

values(V) with an input feature map X ∈ R
C×H×W , and

output a transformed version X̃ with the same shape as X .

For every location in X , we select its r × r neighborhood

to conduct the self-attention. Feature vectors of the neigh-

borhood locations in X are collected, and then we get a

neighborhood feature tensor X ′ ∈ R
C×H×W×r×r. We

send the input feature map X into the query transforma-

tion function Fq , and send the neighborhood feature tensor

X ′ into the key and value transformation functions Fk/Fv

respectively. The query/key/value transformation functions

are implemented with 1×1 convolutions followed by ReLU

activations respectively. The local interaction of our trans-

former is written as,

X̃i = Xi + G
(
Fv

(
X ′

i

)
δ
(
Fq (Xi)

T Fk

(
X ′

i

))T
)
,

(1)

where Xi is the feature vector of the ith grid cell in X ,

X ′
i is the neighborhood feature tensor of the ith grid cell,

Fq (Xi) ∈ R
C′

is ith query, Fk

(
X ′

i

) ∈ R
C′×r2 and

Fv

(
X ′

i

) ∈ R
C′×r2 is ith key/value pair, δ is the SoftMax

operation, and G is a transformation function implemented

with 1× 1 convolution.

After local self feature enhancement, we perform cross

scale feature enhancement. Like the top-down pathway in

FPN [28], the feature map from the previous matching stage

are upsampled with a deconvolutional layer and are con-

catenated with X̃ before going through another convolu-

tional layer. Then the enhanced feature map can be used to

calculate the matching scores of an image pair and enhance

features in the next stage.

Matching Enhancement. Unlike many cascaded meth-

ods such as FPN [28] and BDCN [13] where results of dif-

ferent scales are jointly fused, we enhance the matching re-

sult in a top-down manner by learning matching comple-

ment at different scales. For a pair of images
(
Is, It

)
, de-

note their feature maps at the lth scale with Xs
l and Xt

l re-

spectively. Xs
l and has the resolution Hs

l ×W s
l , and Xt

l has

the resolution Ht
l ×W t

l . We calculate the exhaustive pair-
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(a) Matching at Scale 1 (b) Matching at Scale 2 (c) Matching at Scale 3 (d) Matching at Scale 4 (e)  Ground Truth

Figure 3. Matching results at different feature resolutions. From left to right, displacements between predictions and the destination points

are reduced with the increase of the feature resolution.

wise products between Xs
l and Xt

l , and store the results

in a 4-D tensor S̃l ∈ R
Hs

l ×W s
l ×Ht

l×W t
l referred to as the

matching score. Sl (i, j,m, n) is the match score between

the (i, j) grid cell in Xs
l and the (m,n) grid cell in Xt

l .

Given the matching score Sl+1 ∈ R
Hs

l+1×W s
l+1×Ht

l+1×W t
l+1

from the previous scale, the matching complementation is

conducted as follows,

Sl = S̃l + U (Sl+1) , (2)

where U is the 4-D bicubic upscaling interpolation. Then

the l-th scale just learns the matching residuals that are com-

plementary with the matching results in the (l+1)-th scale.

Note that we start from the 5-th scale with the highest se-

mantic level where S5 = S̃5, and end at the 2-nd scale.

Figure 3 visualizes the improvements caused by the match-

ing enhancement. Given these four matching results, we

test their performance on the validation set, and select the

scale that has the best performance to conduct testing.

Correspondence Learning with Rich Supervision. La-

beling dense semantic correspondences of image pairs re-

quires huge amount of human labours which is impracti-

cal in real applications. We evaluate the effectiveness of

the proposed method on existing datasets with sparse key-

point annotations including PF-PASCAL [11], CUB [53]

and SPair-71k [34]. The sparse key-point annotation stores

many one-tn-one mapping between images, where each

mapping can be viewed as a probability distribution of a

pixel in a source image Is matched with all pixels in a tar-

get image It. Then these annotations can be utilized in

a straightforward way to train a CNN model for semantic

matching by minimizing the distance between the match-

ing distribution and the ground-truth distribution. To ben-

efit from the multi-scale matching mechanism further, we

design loss functions at every scale to supervise the learn-

ing process. This rich supervision style leads to much more

accurate matching results as stated in Table 3.

For a key point ps
i in the source image, the matching

score Sl(p
s
i ) ∈ R

Ht
l×W t

l with the target image in the l-th
scale is denoted in a 2-D form. Since deep features have

very strong discriminative ability, we simply get the match-

ing probability matrix P l(p
s
i ) by applying the SoftMax op-

eration spatially. We first rescale the key-points in Mgt to

the same resolution as the feature maps at different scales.

Then following ANC-Net [26], we pick its four nearest

neighbours and set their probability according to distance to

establish the 2-D ground-truth matching probabilities at ev-

ery scale. Then we apply 2-D Gaussian smoothing of size 3

on that probability map. Our training objectives for seman-

tic matching is then,

L =
∑
l

αl

[
B
(
P l(p

s
i ), P̃ l(p

s
i )
)
+ B

(
P l(p

t
i), P̃ l(p

t
i)
)]

,

(3)

where αl (=1) is the weight at the l scale, B is the binary

cross entropy loss, and P̃ l(p
s
i ) and P̃ l(p

t
i) are the ground-

truth probability map of the key-point pair (ps
i ,p

t
i).

4. Experiments

Dataset. We conduct experiments on three popu-

lar benchmarks for semantic correspondence: PF-

PASCAL [11], CUB [53] and SPair-71k [34]. The

PF-PASCAL contains 1351 image pairs which are selected

from all the 20 categories in PASCAL VOC [10]. We split

the dataset as done in [12] where approximately 700 image

pairs are used for training, 300 image pairs are used for

validation and 300 image pairs are used for test. The CUB

dataset [53] contains 11,788 images of 200 bird species

with large intra-class variations. Each image is annotated

with the locations of 15 key-parts. Following the protocol

in [26], we randomly sample 10,000 pairs from the CUB

as training data and use the same test set provided by [22].

SPair-71k is composed of total 70,958 image pairs in 18

categories with large view-point and scale variations. We
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Methods
PF-PASCAL CUB time

0.05 0.1 0.15 0.1 (ms)

PFHOG [11] 31.4 62.5 79.5 - -

CNNGeoResNet-101 [38] 41.0 69.5 80.4 - -

A2NetResNet-101 [44] 42.8 70.8 83.3 - -

SFNetResNet-101 [25] 53.6 81.9 90.6 - -

DCTMCAT-FCSS [20] 34.2 69.6 80.2 - -

WeakAlignResNet-101 [39] 49.0 74.8 84.0 - -

SCNetVGG-16 [12] 36.2 72.2 82.0 - -

RTNsResNet-101 [19] 55.2 75.9 85.2 - -

UCNGoogLeNet [6] - 55.6 - 48.3 -

UCNResNet-101 [6] - 75.1 - 52.1 -

NC-NetResNet-101 [40] 54.3 78.9 86.0 64.7 393

DCCNetResNet-101 [15] 55.6 82.3 90.5 66.1 -

HPFResNet-50 [33] 60.5 83.4 92.1 - -

HPFResNet-101 [33] 60.1 84.8 92.7 - -

HPFResNet-101-FCN [33] 63.5 88.3 95.4 - -

DHPFResNet-50 [35] 72.6 88.9 94.3 - 55

DHPFResNet-101 [35] 75.7 90.7 95.0 - 95

SCOTResNet-101 [30] 63.1 85.4 92.7 - 180

SCOTResNet-101-FCN [30] 67.3 88.8 95.4 - 109

ANC-NetResNet-101 [26] - 83.7 - 69.6 600

ANC-NetResNeXt-101 [26] - 88.7 - 74.1 -

ANC-NetResNet-101-FCN [26] - 86.1 - 72.4 -

MMNetResNet-50 75.3 88.0 93.2 80.6 51

MMNetResNet-101 77.6 89.1 94.3 81.8 86

MMNetResNeXt-101 78.9 90.3 94.4 83.1 101

MMNetResNet-101-FCN 81.1 91.6 95.9 87.0 87

Table 1. Comparison with state-of-the-art algorithms in PCK and

speed on PF-PASCAL [11] and CUB [53] dataset. Subscripts of

the method names indicates the backbone used.

use the same split proposed in [34] where 53340, 5384,

12234 image pairs are used for training, validation and

testing respectively.

Evaluation metric. Performances of different methods

are evaluated using the percentage of correct key-points

(PCK@α). A point is considered correct if the predicted

point is within the circle of radius α × d centering at the

ground-truth point, where d is the longer side of an image

or an object bounding box as in [12, 40, 26, 30, 35].

Implementation Details For fair comparison with state-

of-the art methods, we use four different backbones includ-

ing ResNet-50 [14], ResNet-101 [14], ResNeXt-101 [55]

and ResNet101-FCN [14]. All backbone networks are pre-

trained on Image-Net1k classification set [23] and then fine-

tuned for corrrespondence task.

The multi-scale matching network structure is visualized

in Figure 2. We only introduce additional parameters in fea-

ture enhancement. As shown in Figure 2 (b), we have many

SEMs each of which is followed by a 1 × 1 convolutional

layer. We upscale the low resolution feature with a 4 × 4
deconvolutional layer whose stride is 2 at different scales.

Then the upsampled feature map is concatenated with the

output of the intra-scale feature enhancement, and pass a

Figure 4. The PCK-α curves of our method and compared works

on PF-PASCAL [11].

3 × 3 convolution layer. Note that the SEM in our MM-

Net is in the same settings as in BDCN [13], and the output

channel numbers of both the convolutional layers and the

deconvolutional layers is set to 21 to save computation cost.

During the training, we adopt SGD with momentum as

our optimizer. The learning rate is set to 0.0005 for initial-

ization and is decreased by 10 times every 10000 iterations.

Momentum and weight decay are set to 0.9 and 0.0002 re-

spectively. Learning rate is decreased by 10 times every

10,000 iterations. The batch-size is set to 5 for all exper-

iments. The training will converge within 10000, 32000

and 30000 iterations for PF-PASCAL [11], CUB [53] and

SPair-71k [34] respectively. All experiments are imple-

mented with PyTorch [37], and run on NVidia TITAN RTX

GPUs.

4.1. Comparisons with State-of-the-art Methods

For PF-PASCAL[11], our MMNet with ResNet101-FCN

as the backbone outperforms all previous state-of-art meth-

ods with 81.1% PCK@0.05, 91.6% PCK@0.1, and 95.9%

PCK@0.15. When compared with ANC-Net [26] which

also conducts end-to-end training with 4-D correlation,

MMNet gets 5.4%, 1.6%, and 5.5% increases on PCK@0.1

with three different backbones respectively. It demonstrates

the effectiveness of the multi-scale feature learning and

matching complementation. When compared with previous

best SCOT [30] with ResNet101-FCN as the backbone, we

achieve a significant improvement on PCK@0.05 by 13.8%.

We attribute this to that the end-to-end training of deep

neural networks has a higher efficiency that optimization

based methods to enforce one-on-one matching with dis-

criminative features. We also compare with the multi-scale

feature fusion based methods HPF [33] and DHPF [35].

MMNet with ResNet101-FCN as the backbone outperforms

HPF with the same backbone by 17.6% PCK@0.05, 3.3%
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Methods aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv all

CNNGeo [38] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6

A2Net [44] 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3

WeakAlign [39] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9

NC-Net [40] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.0 14.8 9.6 24.2 31.1 20.1

HPF [33] 25.3 18.5 47.6 14.6 37.0 22.9 18.3 51.1 16.7 31.5 30.8 19.1 23.7 23.8 23.5 14.4 30.8 37.2 27.2

HPF [33] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 1.9 31.5 35.6 28.2

DHPF [35] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3

SCOT [30] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6

MMNet 43.5 27.0 62.4 27.3 40.1 50.1 37.5 60.0 21.0 56.3 50.3 41.3 30.9 19.2 30.1 33.2 64.2 43.6 40.9

MMNet-FCN 55.9 37.0 65.0 35.4 50.0 63.9 45.7 62.8 28.7 65.0 54.7 51.6 38.5 34.6 41.7 36.3 77.7 62.5 50.4

Table 2. Comparisons on SPair-71k [34] with state-of-art methods. The backbone in methods listed is ResNet101 [14]. The best results are

reported in bold.

PCK@0.1 and 0.5% PCK@0.15. Since HPF doesn’t con-

duct end-to-end training, it is reasonable that our MMNet

gets better results. DHPF [35] selects features from the

backbone, and get slightly better results on PCK@0.1 and

PCK@0.15 with ResNet50, ResNet101 backbone. How-

ever, when α = 0.05, our MMNet get 1.9% improvement

on PCK. It may because MMNet are much more sensitive to

small difference between neighborhood, and thus get better

matching results with much more strict matching criteria.

For CUB[53], our MMNet outperforms all state-of-art al-

gorithms with 87.0% on PCK@0.1 and achieve prominent

betters on three different backbone compared with ANC-

Net [26].For SPair-71k[34], our MMNet with ResNet101-

FCN backbone outperforms the state-of-art algorithms by

at least 13.1% on PCK@0.1, which is a huge improvement.

Among all listed methods in Table 1, our algorithm sur-

passes all state-of-art by a large margin on 15 of the 18

classes. This proves the effectiveness and robustness of our

MMNet in establishing reliable matching.

Figure 4 shows the results in comparison with state-of-

art method with varying α. When α is small, only points

matched with the destination point closely is treated as a

correct match, otherwise failure. When we increase α,

lager matching displacement will be allowed. It can be

found that our MMNet achieves the best performance when

α varies from 0.02 to 0.3. When α varies from 0.02 to

0.1, all algorithms will get improvements on PCK fast. It

means the allowed match displacement influences the per-

formance greatly. When α varies from 0.15 to 0.3, all meth-

ods get almost the same results with very high matching

accuracy. This indicates too large α can not be used to

measure the performance of different methods accurately.

When α varies from 0.01 to 0.05, our MMNet outperforms

other state-of-art methods by a clear margin all the time. It

indicates the strong ability of MMNet in identifying neigh-

borhood pixels.

Besides, we also report the running speed to compare

the computational efficiency of state-of-art methods. In Ta-

ble 1, we get the comparable test speed with the previous

best DHPF [35], and are much faster than other methods.

Methods 0.05 0.1 0.15

MMNet 81.1 91.6 95.9

MMNet w/o local self attention 79.9 90.7 95.1

MMNet w/o dense connections 74.9 88.6 93.9

MMNet w/o cross-scale fusion 78.5 89.7 94.3

MMNet w/o complementation 80.0 89.3 94.3

MMNet w/o rich supervision 31.4 45.6 57.0

MMNet w/o last layer 77.9 90.9 94.6

Table 3. Ablation results on various setting on PF-PASCAL [11]

with ResNet101-FCN as backbone.

4.2. Module Analysis with Ablations

To investigate the effectiveness of different modules,

we conduct ablation study by replacing or removing a

single component. All experiments are conducted on

PF-PASCAL [11] with ResNet101-FCN as the backbone.

PCKs are evaluated with α = 0.05, 0.1 and 0.15. Results

are listed in Table 3. First, we remove the local self atten-

tion, the performance drops by 1.2% on PCK@0.05 which

indicates that the contextual information around neighbor-

hood pixels is very important. Then we remove the dense

connections and only get the output of the last layer in ev-

ery convolutional group, the performance of PCK@0.05 is

74.9% which is 6.2% lower than MMNet with dense con-

nections. It shows fusing information at different layers in

a convolutional group is greatly helpful. When we remove

the cross-scale feature fusion, PCK@0.05, PCK@0.10 and

PCK@0.15 decrease by 2.6%, 1.9% and 1.6% respectively.

If we don’t conduct the complementary matching learning

and get the matching score at every layer independently,

PCK@0.05 drops by 1%. At last, if we only supervise the

learning at the last matching complementation layer with

the highest resolution, the performance drops to 31.4% on

PCK@0.05 which is 49.7% lower than the MMNet with

rich supervision during training. It may indicate that su-

pervision in multiple scales are very important to learn se-

mantics at different levels.
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(f) Ground Truth(a) DCC-Net (b) ANC-Net (c) SCOT (d) DHPF (e) Ours
Figure 5. Visualization of the semantic correspondence. The odd rows are the source image, and the even rows are the target images.

Destination key point are denoted with crosses. From left to right: (a) DCC-Net [15], (b) ANC-Net [26], (c) SCOT [30], (d) DHPF [35],

(e) ours MMNet and (f) the ground truth.

4.3. Qualitative Results and Visualization

We visualize the correspondence result by drawing the

point-to-point matches and warping images with the pre-

dicted key point pairs respectively. In Figure 5, the point-

to-point matches are drawn by linking key point pairs with

line segments. The ground truth matching is given at first as

reference for visual comparison. It can be find that our MM-

Net matches all key points on horses correctly. Other state-

of-the art methods, such as DCC-Net [15], ANC-Net [26],

SCOT [30] and DHPF [35], will lead to large mismatch dis-

placement or many-to-one match. In Figure 1, images are

warped based on matched key point pairs. For convenience,

we warp the ground truth annotations as the reference. It

can be found that our MMNet can matches the objects in

images accurately. Especially in the first row, tables in the

source and target images has very large viewpoint and ap-

pearance variations. But our MMNet can still match the cor-

responding key points accurately when other methods fail.

5. Conclusion

In this paper, we propose a multi-scale matching network

that are coupled with the multi-scale and pyramidal hierar-

chy of deep convolutional neural networks to match seman-

tic meaningful points in a coarse-to-fine manner. Our multi-

scale matching network learn discriminative pixel-level se-

mantics by a top-down feature and matching enhancement

scheme. Thus discriminative features are identified and

fused during the complementary matching learning process.

To strengthen the representatve ability of individual pixels,

we introduce a local self attention module to encode local

contextual information to disambiguate the feature repre-

sentation of neighborhood pixels. Extensive experiments

on several popular benchmarks demonstrate that the pro-

posed MMNet outperform existing state-of-the-art semantic

correspondence algorithms. However, how to get reliable

correspondence that can handle drastically changes in real

applications still remains to be an open problem.
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