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Abstract

Temporal action localization (TAL) in videos is a chal-
lenging task, especially due to the large variation in ac-
tion temporal scales. Short actions usually occupy a ma-
jor proportion in the datasets, but tend to have the low-
est performance. In this paper, we confront the challenge
of short actions and propose a multi-level cross-scale solu-
tion dubbed as video self-stitching graph network (VSGN).
We have two key components in VSGN: video self-stitching
(VSS) and cross-scale graph pyramid network (xGPN). In
VSS, we focus on a short period of a video and magnify
it along the temporal dimension to obtain a larger scale.
We stitch the original clip and its magnified counterpart
in one input sequence to take advantage of the comple-
mentary properties of both scales. The xGPN component
further exploits the cross-scale correlations by a pyramid
of cross-scale graph networks, each containing a hybrid
module to aggregate features from across scales as well
as within the same scale. Our VSGN not only enhances
the feature representations, but also generates more posi-
tive anchors for short actions and more short training sam-
ples. Experiments demonstrate that VSGN obviously im-
proves the localization performance of short actions as well
as achieving the state-of-the-art overall performance on
THUMOS-14 and ActivityNet-v1.3. VSGN code is available
at https://github.com/coolbay/VSGN .

1. Introduction
Nowadays has seen a growing interest in video under-

standing both from industry and academia, owing to the
rapidly produced video content on the Internet. Temporal
action localization (TAL) in untrimmed videos is one im-
portant task in this area, which aims to specify the start and
the end time of an action as well as to identify its cate-
gory. TAL is not only the key technique of various appli-
cation such as extracting highlights in sports, but also lays
the foundation for other higher-level tasks such as video
grounding [10, 13] and video captioning [17, 27].

Though many methods (e.g., [1, 2, 8, 19, 20, 23, 40,

Figure 1. Short actions are the majority in numbers, but have
the lowest performance. a) Distribution of action duration in
ActivityNet-v1.3 [6]. Actions are divided into five duration groups
(in seconds): XS (0, 30], S (30, 60], M (60, 120], L (120, 180],
and XL (180, inf). b) TAL Performance of different methods on
actions of different duration.

41, 42, 44]) in recent years have been continuously break-
ing the record of TAL performance, a major challenge hin-
ders its substantial improvement – large variation in ac-
tion duration. An action can last from a fraction of a sec-
ond to minutes in the real-world scenario as well as in the
datasets [6, 14]. We plot the distribution of action duration
in the dataset ActivityNet-v1.3 [6] in Fig. 1 a). We notice
that actions shorter than 30 seconds dominate the distribu-
tion, but their performance is obviously inferior to longer
ones with all different TAL methods (Fig. 1 b)). Therefore,
the accuracy of short actions is a key factor to determine the
performance of a TAL method.

Why are short actions hard to localize? Short actions
have small temporal scales with fewer frames, and there-
fore, their information is prone to loss or distortion through-
out a deep neural network. Most methods in the litera-
ture process videos regardless of action duration, which as
a consequence sacrifices the performance of short actions.
Recently, researchers attempt to incorporate feature pyra-
mid networks (FPN) [21] from the object detection problem
to the TAL problem [23, 26], which generates different fea-
ture scales at different network levels, each level with differ-
ent sizes for candidate actions. Though by this means short
actions may go through fewer pooling layers to avoid be-
ing excessively down-scaled, yet their original small scale
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as the source of the problem still limits the performance.
Then how can we attack the small-scale problem of

short actions? A possible solution is to temporally up-scale
videos to obtain more frames to represent an action. Recent
literature shows the practice of re-scaling videos via linear
interpolation before feeding into a network [2, 19, 20, 42,
46], but these methods actually down-scale rather than up-
scale videos (e.g., using only 100 snippets on AcitivityNet-
v1.3). Even if we can adapt a method to using a larger-scale
input, how can we ensure that the up-scaled videos contain
sufficient and accurate information for detecting an action?
Moreover, it makes the problem even harder that re-scaling
is usually not performed on original frames, but on video
features which do not satisfy linearity.

Up-scaling a video could transform a short action into
a long one, but may lose important information for local-
ization. Thus both the original scale and the enlarged scale
have their limitations and advantages. The original video
scale contains the original intact information, while the en-
larged one is easier for the network to detect. In contrast
to other works that either use the original-scale video or a
down-scaled video, in this paper, we use both to take ad-
vantage of their complementary properties and mutually en-
hance their feature representations.

Specifically, we propose a Video self-Stitching Graph
Network (VSGN) for improving performance of short ac-
tions in the TAL problem. Our VSGN is a multi-level
cross-scale framework that contains two major components:
video self-stitching (VSS); cross-scale graph pyramid net-
work (xGPN). In VSS, we focus on a short period of a
video and magnify it along the temporal dimension to ob-
tain a larger scale. Then using our self-stitching strategy,
we piece together both the original-scale clip and its mag-
nified counterpart into one single sequence as the network
input. In xGPN, we progressively aggregate features from
cross scales as well as from the same scale via a pyramid of
cross-scale graph networks. Hence, we enable direct infor-
mation pass between the two feature scales. Compared to
simply using one scale, our VSGN adaptively rectifies dis-
torted features in either scales from one another by learning
to localize actions, therefore, it is able to retain more infor-
mation for the localization task. In addition to enhancing
the features, our VSGN augments the datasets with more
short actions to mitigate the bias towards long actions dur-
ing the learning process, and enables more anchors, even
those with large scales, to predict short actions.

We summarize our contributions as follows:
1) To the best of our knowledge, this is the first work that
sheds light on the problem of short actions for the task of
temporal action localization. We propose a novel solution
that utilizes cross-scale correlations of multi-level features
to strengthen their representations and facilitate localiza-
tion.

2) We propose a novel temporal action localization frame-
work VSGN, which features two key components: video
self-stitching (VSS); cross-scale graph pyramid network
(xGPN). For effective feature aggregation, we design a
cross-scale graph network for each level in xGPN with a
hybrid module of a temporal branch and a graph branch.
3) VSGN shows obvious improvement on short actions over
other concurrent methods, and also achieves new state-
of-the-art overall performance. On THUMOS-14, VSGN
reaches 52.4% mAP@0.5, compared to previous best score
40.4% under the same features. On ActivityNet-v1.3,
VSGN reaches an average mAP of 35.07%, compared to
the previous best score 34.26% under the same features.

2. Related Work
2.1. Multi-scale solution in object detection

Temporal action localization is analogous to the task of
object detection in images, though the scale variation in im-
ages is not as large as in videos. Multiple methods have
been proposed to deal with small objects specifically [3, 28]
or object scale variation in general [4, 21] in images.

A representative work for object scale invariance is
the feature pyramid network (FPN) [21], which generates
multi-scale features using an architecture of encoder and
decoder pyramids. FPN has become a popular base archi-
tecture for many object detection methods in recent years
(e.g., [29, 34, 35, 45]). Following FPN, some methods
are proposed to further improve the architecture for higher
efficiency and better accuracy, such as PANet [24], NAS-
FPN [11], BiFPN [33]. Our proposed cross-scale graph
pyramid (xGPN) adopts the idea of FPN and builds a pyra-
mid of video features in the temporal domain instead of im-
ages in the spatial domain. Moreover, we embed cross-
scale graph networks in the pyramid levels.

Another perspective to address the scale issue, especially
for the small scale, is data augmentation, e.g. mosaic aug-
mentation in YOLOv4 [4], which pieces together four im-
ages into one large image and crop a center area for training.
It helps the model learn to not overemphasize the activations
for large objects so as to enhance the performance for small
objects. Our VSGN is inspired by mosaic augmentation,
but it stitches the same video clip of different scales along
the temporal dimension rather than different videos.

2.2. Temporal action localization

Recent temporal action localization methods can be gen-
erally classified into two categories based on the way they
deal with the input sequence. In the first category, the works
such as BSN [20], BMN [19], G-TAD [42], BC-GNN [2]
re-scale each video to a fixed temporal length (usually a
small length such as 100 snippets) regardless of the orig-
inal video duration. Methods using this strategy are effi-
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Figure 2. Architecture of the proposed video self-stitching graph network (VSGN). Its takes a video sequence and generates detected
actions with start/end time as well as their categories. It has three components: video self-stitching (VSS), cross-scale graph pyramid
network (xGPN), and scoring and localization (SoL). VSS (red dashed box, see Fig. 3 for details) contains four steps to prepare a video
sequence as xGPN input. xGPN is composed of multi-level encoder and decoder pyramids. The encoder aggregates features in different
levels via a stack of cross-scale graph networks (xGN) (yellow trapezoid area, see Fig. 4 for details); the decoder restores the temporal
resolution and generates multi-level features for detection. SoL (blue dashed box) contains four modules, the top two predicting action
scores and boundaries, the bottom two producing supplementary scores and adjusting boundaries.

cient owing to the small input scale, but would harm short
actions especially those in long videos, since these short
actions are essentially down-scaled and their information
easily gets lost or distorted. However, it is non-trivial to
up-scale videos as input instead for these methods limited
by their architectures. For example, BSN relies on the
startness/endness curves to identify proposal candidates, but
when more frames are used, the curves will have too many
peaks and valleys to generate meaningful proposals. In G-
TAD, if too many snippets are interpolated and neighboring
snippets become similar, it tends to find graph neighbors
only in the temporal vicinity (referred to as scaling curse).

The second category is to use sliding windows to crop
the original video into multiple input sequences. This can
preserve the original information of each frame. The works
R-C3D [40], TAL-NET [8], PBRNet [23], belonging to this
category, perform pooling / strided convolution to obtain
multi-scale features. Compared to these two categories, our
proposed VSGN uses both the original video clip and its
up-scaled counterpart, and takes advantage of their comple-
mentary properties to enhance their representations.

2.3. Graph neural networks for TAL

Graph neural networks (GNN) are a useful model for ex-
ploiting correlations in irregular structures [16]. As they
become popular in different computer vision fields [12, 36,
38], researchers also find their application in temporal ac-
tion localization [2, 42, 44]. G-TAD [42] breaks the re-
striction of temporal locations of video snippets and uses a
graph to aggregate features from snippets not located in a

temporal neighborhood. It models each snippet as a node
and snippet-snippet correlations as edges, and applies edge
convolutions [36] to aggregate features. BC-GNN [2] im-
proves localization by modelling the boundaries and con-
tent of temporal proposals as nodes and edges of a graph
neural network. P-GCN [44] considers each proposal as a
graph node, which can be combined with a proposal method
to generate better detection results.

Compared to these methods, our VSGN builds a graph
on video snippets as G-TAD, but differently, beyond mod-
elling snippets from the same scale, VSGN also exploits
correlations between cross-scale snippets and defines a
cross-scale edge to break the scaling curse. In addition, our
VSGN contains multiple-level graph neural networks in a
pyramid architecture whereas G-TAD only uses one level.

3. Video Self-Stitching Graph Network
Fig. 2 demonstrates the overall architecture of our pro-

posed Video self-Stitching Graph Network (VSGN). It is
comprised of three components: video self-stitching (VSS),
cross-scale graph pyramid network (xGPN), scoring and lo-
calization (SoL), which will be elaborated in Sec. 3.2, 3.3,
and 3.4, respectively. Before delving into the details, in
Sec. 3.1 we first introduce our ideas behind these compo-
nents to deal with the problem of short actions.

3.1. VSGN for Short Actions

Larger-scale clip. To solve the problem of short ac-
tion scales, let us first think about how humans react when
they find themselves interested in a short video clip that just
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Figure 3. Video self-stitching (VSS). a) Snippet-level features are
extracted for the entire video. b) Long video is cut into multiple
short clips. c) Each video clip is up-scaled along the temporal
dimension. d) Original clip (green dots) and up-scaled clip (orange
dots) are stitched into one feature sequence with a gap.

fleeted away. They would scroll back to the clip and re-play
it with a lower speed, by pause-and-play for example. We
mimic this process when preparing a video before feeding it
into a neural network. We propose to focus on a short period
of a video, and magnify it along the temporal dimension to
obtain a video clip of a larger temporal scale (VSS in Fig. 2,
see Sec. 3.2 for details). A larger temporal scale, is not only
able to retain more information through the network aggre-
gation and pooling, but also associated with larger anchors
which are easier to detect.

Multi-scale input. The magnification process may in-
evitably impair the information in the clip, thus the original
video clip, which contains the original intact information,
is also necessary. To take advantage of the complemen-
tary properties of both scales, we design a video stitching
technique to piece them together as one single network in-
put (VSS in Fig. 2, see Sec. 3.2 for details). This strat-
egy enables the network to process both scales in one single
pass, and the clip to have more positive anchors of different
scales. It is also an effective way to augment the dataset.

Cross-scale correlations. The original clip and the mag-
nified clip, albeit different, are highly correlated since they
contain the same video content. If we can utilize their cor-
relations and draw connections between their features, then
the impaired information in the magnified clip can be recti-
fied by the original clip, and the lost information in the orig-
inal clip during pooling can be restored by the magnified
clip. To this end, we propose a cross-scale graph pyramid
network (xGPN in Fig. 2, see Sec. 3.3 for details), which
aggregates features not only from the same scale but from
cross scales, and which progressively enhances the features
of both scales at multiple network levels.

3.2. Video Self-Stitching

The video self-stitching (VSS) component transforms a
video into multi-scale input for the network. As illustrated
in Fig. 3, it takes a video sequence, extracts snippet-level

features, cuts into multiple short clips if it is long, up-scales
each short clip along the temporal dimension, and stitches
together each pair of original and up-scaled clips into one
sequence. Please note that in addition to using VSS to gen-
erate multi-scale input, we also directly use all original long
videos as input in order to detect long actions as well.

Feature extraction (Fig. 3 a)). Let us denote a video
sequence as X = {xt}Tt=1 ∈ RW×H×T×3, where W ×H
refers to the spatial resolution and T is the total number
of frames. We use a feature encoding method (such as
TSN [39], I3D [7]) to extract its features on a snippet ba-
sis (one snippet is defined as τ consecutive video frames).
We generate one feature vector for each snippet and obtain
a feature sequence denoted as F = {ft}T/τt=1 ∈ RT/τ×C ,
where C is the feature dimension.

Video cutting (Fig. 3 b)). Suppose the requirement for
our network input is L snippet features1 F0 = {f0t }Lt=1 ∈
RL×C . We define a short clip as those that contain no more
than γL snippets, where 0 < γ < 1 is called a short factor.
In training, if a sequence is no longer than γL, we directly
use the whole sequence without cutting; otherwise, we need
to cut it to into multiple short clips. When determining the
cutting positions, we include as many actions as possible in
one short clip, and shift the clip boundary inward to exclude
boundary actions that are cut in halves. If an action is longer
than γL, we don’t include it in the video self-stitching stage
(note that long actions still get to be detected because we
also directly use all original sequences without cutting as
xGPN input). Therefore short clips may vary in length with
the cutting positions. In inference, we do not cut sequences.

Clip up-scaling (Fig. 3 c)). In order to obtain a larger
scale, we magnify each short clip along the temporal di-
mension via an up-scaling strategy, such as linear interpola-
tion [20]. For a short clip, the up-scaling ratio depends on
its own scale. Specifically, if a short clip contains M snip-
pet features, then it is up-scaled to a length L − G − M ,
where G is a constant representing a gap length (see next
paragraph). In other words, the up-scaled clip will fill in
the remaining space in the network input F0. The shorter
a clip is, the longer its up-scaled counterpart will be. This
not only makes full use of the input space, but also put more
focus on shorter clips.

Self-stitching (Fig. 3 d)). Then we stitch the original
short clip (Clip O) and the up-scaled clip (Clip U) into one
single sequence. If we directly concatenate the two clips
side by side, one issue arises that the network would easily
mistake a stitched sequence for a long sequence and tend
to generate predictions spanning across the the two clips.
To address this issue, we devise a simple strategy: inserting

1If a video sequence contains more than L snippet features, we slide
a window of length L along the temporal dimension with a stride L/4 to
generate multiple sub-sequences, each used as an independent sequence in
the following steps.
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a gap between the two clips, as shown in Fig. 3 d). We
simply fill in zeros in the gap to make the network learn
to distinguish a long sequence and a stitched sequence by
identifying the zeros. This turns out an effective approach.

3.3. Cross-Scale Graph Pyramid Network

Inspired by FPN [21], which computes multi-scale fea-
tures with different levels, we propose a cross-scale graph
pyramid network (xGPN). It progressively aggregates fea-
tures from cross scales as well as from the same scale at
multiple network levels via a hybrid module of a temporal
branch and a graph branch. As shown in Fig. 2, our xGPN
is composed of a multi-level encoder pyramid and a multi-
level decoder pyramid, which are connected by a skip con-
nection at each level. Each encoder level contains a cross-
scale graph network (xGN), deeper levels having smaller
temporal scales; each decoder level contains an up-scaling
network comprised of a de-convolutional [43] layer, deeper
levels having larger temporal scales.

Cross-scale graph network. The xGN module contains
a temporal branch to aggregate features in a temporal neigh-
borhood, and a graph branch to aggregate features from
intra-scale and cross-scale locations. Then it pools the ag-
gregated features into a smaller temporal scale. Its architec-
ture is illustrated in Fig. 4. The temporal branch contains a
Conv1d(3, 1)2 layer. In the graph branch, we build a graph
on all the features from both Clip O and Clip U, and apply
edge convolutions [36] for feature aggregation.

Graph building. We denote a directed graph as G =
{V, E}, where V = {vt}Jt=1 are the nodes, and E = {Et}It=1

are the edges pointing to each node. Suppose we have input
features Fi = {f it}Jt=1 ∈ RJ×C at the ith level. We build
such a directed graph that each node vt is a feature f it , which
hasK inward edges formulated as Et = {(vtk , vt) |1 ≤ k ≤
K, tk ̸= t}. The edges fall into one of the following two
categories: free edges and cross-scale edges.

We illustrate these two types of edges in Fig. 4. We make
K/2 edges of a node free edges, which are only determined
based on feature similarity between nodes, without consid-
ering the source clips. We measure the feature similarity be-
tween two nodes vt and vs using their negative mean square
error (MSE), formulated as −

∥∥f it − f is
∥∥2
2
/C. As long as a

node is among a target node’s top K/2 closest neighbors
in terms of feature similarity, it has a free edge pointing
to the target node. Since free edges have no restriction
on clip types of the two nodes, they can connect features
within the same scale or cross different scales. We make
the other K/2 edges cross-scale edges, which only con-
nect nodes from different clips, meaning that nodes from
Clip O can only have cross-scale edges with nodes from
Clip U and vice versa. Given a target node, we pick from

2For conciseness, we use Conv1d(m,n) to represent 1-D convolutions
with kernel size m and stride n.

those nodes satisfying this condition the top K/2 in terms
of feature similarity after excluding those that already have
free edges with the target node. These cross-scale edges en-
force correlations between the stitched two clips of differ-
ent scales. It enables the two scales to exchange informa-
tion and mutually enhance representations with their com-
plementary properties. In addition, since it enables edges
from beyond a node’s temporal vicinity, it resolves the scal-
ing curse (see Sec. 2.2) of using graph networks on inter-
polated features.

Feature aggregation. With all the edges of a node f it ,
we perform edge convolution operations [36] to aggregate
features of all its correlated nodes. Specifically, we first
concatenate the target node f it with each of its correlated
node f itk , 1 ≤ k ≤ K, and apply a multi-layer perceptron
(MLP) with weight matrix W = {wc}Cc=1 ∈ R2C×C to
transform each concatenated feature. Then, we take the
maximum value in a channel-wise fashion to generate the
aggregated feature f̃ it . This process is formulated as

f̃ it = max
tk∈{s|(vs,vt)∈Et}

(
f itk ||C f it

)T
W, (1)

where ||C is concatenation along the channel dimension.
We fuse the aggregated features from the graph branch

and those from the temporal branch by feature summation.
Finally, we generate the features for the next level i+1 after
applying activation and pooling. This is formulated as

Fi+1 = σmax

(
ϕ
(
F̃i + F̂i

))
, (2)

where F̃i = {f̃ it}Jt=1 is the aggregated features of the graph
branch, F̂i is the output of the temporal branch, ϕ is the rec-
tified linear unit (ReLU), and σmax refers to max pooling.

Figure 4. Cross-scale graph network (xGN). Top: temporal
branch; bottom: graph branch. The two branches are fused by
addition, followed by an activation function and pooling. Each dot
represents a feature, green dots from Clip O and orange dots from
Clip U. In the graph branch, the blue arrows represent free edges
and the purple arrow represents a cross-scale edge.

3.4. Scoring and Localization

As shown in the scoring and localization component of
Fig. 2, we use four modules to predict action locations and
scores. In the top area, the location prediction module
(Mloc) and the classification (Mcls) module make a coarse
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prediction directly from each decoder pyramid level. In the
bottom area, the boundary adjustment module (Madj) and
the supplementary scoring module (Mscr) further improve
the start/end locations and scores of each predicted segment
from the top two modules.
Mloc and Mcls each contain 4 blocks of Conv1d(3, 1),

group normalization (GN) [37] and ReLU layers, followed
by one Conv1d(1, 1) to generate the location offsets and
the classification scores for each anchor segment (anchor
segments are multi-scale windows at uniformly distributed
temporal locations given as references for a prediction mod-
ule). Here we use pre-defined anchor segments for Mloc,
whereas for Mcls we update the anchor segments by apply-
ing their predicted offsets from the Mloc module (we use
the same mechanism to update the segment boundaries with
predicted offsets as in [40]). These two modules are shared
by all the decoder levels.

To further improve the boundaries generated from Mloc,
we design Madj inspired by FGD in [23]. For each up-
dated anchor segment from the Mloc, we sample 3 features
from around its start and end locations, respectively. Then
we temporally concatenate the 3 feature vectors from each
location and apply Conv1d(3, 1) − ReLU − Conv1d(1, 1)
to predict start/end offsets. The anchor segment is fur-
ther adjusted by adding the two offsets to the start and
end locations respectively. Mscr, comprised of a stack
of Conv1d(3, 1) − ReLU − Conv1d(1, 1), predicts action-
ness/startness/endness scores [20] for each sequence.

In training, we use a multi-task loss function based on
the output of the four modules, which is formulated as

L = Lloc + λclsLcls + λadjLadj + λscrLscr, (3)

where Lloc, Lcls, Ladj and Lscr are the losses correspond-
ing to the four modules, respectively, and λcls, λadj , and
λscr are their corresponding tradeoff coefficients. The
losses Lloc and Ladj are computed based on the distance
between the updated / adjusted anchor segments and their
corresponding ground-truth actions, respectively. To rep-
resent the distance, we adopt the generalized intersection-
over-union (GIoU) [30] and adapt it to the temporal domain.
For Lcls, we use focal loss [22] between the predicted clas-
sification scores and the ground-truth categories. Lscr is
computed the same way as the TEM losses in [20]. To deter-
mine whether an anchor segment is positive or negative, we
calculate its temporal intersection-over-union (tIoU) with
all ground-truth action instances, and use tIoU thresholds
0.6 for Lloc and Lcls, and 0.7 for Ladj .

In inference, the score s of each predicted segment ψ =
(ts, te, s) is computed with the confidence score cψ from
Mcls, the startness probabilities ps and the endness proba-
bility pe from Mscr, formulated as s = cψ · ps(ts) · pe(te).
We use predictions from both Clip O and Clip U. For predic-
tions from Clip U, we shift the boundaries of each detected

segments to the beginning of the sequence and down-scale
them back to the original scale to get their locations.

4. Experiments
4.1. Datasets and Setup

Datasets and evaluation metrics. We present
our experimental results on two representative datasets
THUMOS-14 (THUMOS for short) [14] and ActivityNet-
v1.3 (ActivityNet for short) [6]. THUMOS-14 contains
413 temporally annotated untrimmed videos with 20 action
categories, in which 200 videos are for training and 213
videos for validation3. ActivityNet-v1.3 has 19994 tempo-
rally annotated untrimmed videos in 200 action categories,
which are split into training, validation and testing sets by
the ratio of 2:1:1. For both datasets, we use mean Average
Precision (mAP) at different tIoU thresholds as the eval-
uation metric. On THUMOS-14, we use tIoU thresholds
{0.3, 0.4, 0.5, 0.6, 0.7}; on ActivityNet-v1.3, we choose 10
values in the range [0.5, 0.95] with a step size 0.05 as tIoU
thresholds following the official evaluation practice.

Implementation Details. In order to achieve higher per-
formance, some works directly process video frames and
learn features for the task of temporal action localization
(TAL) in an end-to-end fashion [23, 40]. However, this has
humongous requirements for GPU memory and computa-
tional capability. Instead, we follow the practice of using
off-the-shelf pre-extracted features, without further finetun-
ing on the target TAL task [2, 18, 20, 42]. For THUMOS,
we sample at the original frame rate of each video and pre-
extract features using the two-stream network TSN [39]
trained on Kinects [15]. For ActivityNet, we evaluate on
two different types of features: TSN features at 5 snippets
per second and I3D [7] features at 1.5 snippets per second
(both networks are trained on Kinetics [15]).

We use an input sequence length L = 1280, a channel
dimension C = 256 throughout the network and a short
factor γ = 0.4. We have 5 levels in the encoder and de-
coder pyramids respectively, with lengths L/2(l+1), where
1 ≤ l ≤ 5 is the level index. For each level, we have
2 different anchor sizes {s1 × 2(l−1), s2 × 2(l−1)}, where
s1, s2 are 4, 6 for THUMOS and 32, 48 for ActivityNet.
The number of edges for each node is K = 10, and the
gap is G = 30. λcls = λadj = λscr = 0.2 for THUMOS
and λcls = λadj = λscr = 1 for ActivityNet. All these
hyper-parameters are empirically selected.

The training batch size is 32 for both datasets. We train
10 epochs at learning rate 0.00005 for THUMOS and 15
epochs at learning rate 0.0001 for ActivityNet. We directly
predict the 20 action categories for THUMOS; we conduct
binary classification and then fuse our prediction scores

3The training and validation sets of THUMOS are temporally annotated
videos from the validation and testing sets of UCF101 [32], respectively.
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Table 1. Action detection results on validation set of THUMOS-
14, measured by mAP (%) at different tIoU thresholds. Our
VSGN achieves the highest mAP at tIoU threshold 0.5 (commonly
adopted criteria), significantly outperforming all other methods.

Method 0.3 0.4 0.5 0.6 0.7 Short
End-to-end learned / Finetuned on THUMOS for TAL

TCN [9] - 33.3 25.6 15.9 9.0 -
R-C3D [40] 44.8 35.6 28.9 - - -
PBRNet [23] 58.5 54.6 51.3 41.8 29.5 -

Pre-extracted features
TAL-Net [8] 53.2 48.5 42.8 33.8 20.8 -
P-GCN [44] 63.6 57.8 49.1 - - -
I.C&I.C [46] 53.9 50.7 45.4 38.0 28.5 49.1
MGG [26] 53.9 46.8 37.4 29.5 21.3 -
BSN [20] 53.5 45.0 36.9 28.4 20.0 -
DBG [18] 57.8 49.4 39.8 30.2 21.7 -
BMN [19] 56.0 47.4 38.8 29.7 20.5 -
TSI [25] 61.0 52.1 42.6 33.2 22.4 -
G-TAD [42] 54.5 47.6 40.2 30.8 23.4 44.2
BC-GNN [2] 57.1 49.1 40.4 31.2 23.1 -
PBRNet∗ [23] 54.8 49.2 42.3 33.1 23.0 43.6
VSGN (ours) 66.7 60.4 52.4 41.0 30.4 56.6
∗ Re-implementation with the same features as ours. We replace 3D
convolutions with 1D convolutions to adapt to the feature dimension.

with video-level classification scores from [39] for Activ-
ityNet following [20]. In post-processing, we apply soft-
NMS [5] to suppress redundant predictions, keeping 200
predictions for THUMOS and 100 predictions for Activi-
tyNet for final evaluation.

4.2. Comparison with State-of-the-Art

We compare the performance of our proposed VSGN
to recent representative methods in the literature on the
two datasets in Table 1 and Table 2, respectively. On
both datasets, VSGN achieves state-of-the-art performance,
reaching mAP 52.4% at tIoU 0.5 on THUMOS and average
mAP 35.07% on ActivityNet. It significantly outperforms
all other methods that use the same features. More remark-
ably, our VSGN which uses pre-extracted features without
further finetuning, is on par with and even better than con-
current methods that finetune features end to end for TAL.

Besides evaluating all actions in general, we also pro-
vide average mAPs of short actions for VSGN as well as
other methods that have detection results available. Here,
we refer to action instances that are shorter than 30 seconds
as short actions. On ActivityNet, there are 54.4% short ac-
tions, whereas on THUMOS, there are 99.7% short actions.
We can see that our performance gains on short actions over
other methods are even more evident.

4.3. Ablation Study

We provide ablation study for the key components VSS
and xGPN in VSGN to verify their effectiveness on the two

Table 2. Action localization results on validation set of
ActivityNet-v1.3, measured by mAPs (%) at different tIoU thresh-
olds and the average mAP. Our VSGN achieves the state-of-the-art
average mAP and the highest mAP for short actions. Note that our
VSGN, which uses pre-extracted features without further finetun-
ing, significantly outperforms all other methods that use the same
pre-extracted features. It is even on par with concurrent methods
that finetune the features on ActivityNet for TAL end to end.

Method 0.5 0.75 0.95 Average Short
End-to-end learned / Finetuned on ActivityNet for TAL

CDC [31] 45.30 26.00 0.20 23.80 -
R-C3D [40] 26.80 - - - -
PBRNet [23] 53.96 34.97 8.98 35.01 -

Pre-extracted I3D features
TAL-Net [8] 38.23 18.30 1.30 20.22 -
P-GCN [44] 48.26 33.16 3.27 31.11 -
I.C & I.C [46] 43.47 33.91 9.21 30.12 14.8
PBRNet∗ [23] 51.32 33.33 7.09 33.08 17.6
VSGN (ours) 52.32 35.23 8.29 34.68 18.8

Pre-extracted TSN features
BSN [20] 46.45 29.96 8.02 30.03 15.0
BMN [19] 50.07 34.78 8.29 33.85 15.2
G-TAD [42] 50.36 34.60 9.02 34.09 17.5
TSI [25] 51.18 35.02 6.59 34.15 -
BC-GNN [2] 50.56 34.75 9.37 34.26 -
PBRNet∗ [23] 51.41 34.35 8.66 33.90 18.0
VSGN (ours) 52.38 36.01 8.37 35.07 19.9
∗ Re-implementation with the same features as ours. We replace 3D
convolutions with 1D convolutions to adapt to the feature dimension.

Table 3. Effectiveness of VSGN components for THUMOS-14.
VSS is highly effective for short actions and xGPN further im-
proves the overall performance.
Baseline VSS xGPN 0.3 0.4 0.5 0.6 0.7 Short

✓ 56.78 50.11 42.54 31.14 19.93 45.1
✓ ✓ 61.41 55.16 45.52 33.43 21.32 48.7
✓ ✓ 63.77 58.66 50.24 39.44 28.36 53.4
✓ ✓ ✓ 66.69 60.37 52.45 40.98 30.40 56.6

Table 4. Effectiveness of VSGN components for ActivityNet-
v1.3. VSS is highly effective for short actions. xGPN benefits
actions of different lengths and improves the overall performance.

Baseline VSS xGPN 0.5 0.75 0.95 Avg. Short
✓ 51.23 34.91 8.53 34.25 17.5
✓ ✓ 51.67 35.17 9.79 34.70 18.3
✓ ✓ 50.87 33.99 9.09 33.79 19.7
✓ ✓ ✓ 52.38 36.01 8.37 35.07 19.9

datasets in Table 3 and 4, respectively. The baselines are
implemented by replacing each xGN module in xGPN with
a layer of Conv1d(3, 2) and ReLU, and not using cutting,
up-scaling and stitching in VSS.

Video self-stitching (VSS). For both datasets, VSS
shows its effectiveness in improving short actions whether
used with or without xGPN. For THUMOS, because most
actions are short, the overall performance also has a boost
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Table 5. Complementary properties of Clip O and Clip U
(ActivityNet-v1.3). Combining predictions from both clips results
in higher performance than using either of them.

Predictions from 0.5 0.75 0.95 Avg. Short
Clip O 52.26 36.03 7.98 34.96 19.3
Clip U 51.80 34.79 8.68 34.32 19.3

Clip O + Clip U 52.38 36.01 8.37 35.07 19.9

with VSS. For ActivityNet, VSS sacrifices long actions
since it reduces the bias towards long actions with more
short training samples. We design xGPN to mitigate this
effect.

Cross-scale graph pyramid network (xGPN). From
Table 3 and 4, we can see that xGPN obviously improves the
performance of short actions as well as the overall perfor-
mance. On the one hand, xGPN utilizes long-range correla-
tions in multi-level features and benefits actions of various
lengths. On the other hand, xGPN enables exploitation of
cross-scale correlations when used with VSS, thus further
enhancing short actions.

Clip O and Clip U. In Table 5, we compare the per-
formance when generating predictions only from Clip O,
only from Clip U, and from both with the same well-trained
VSGN model. We can see that the two clips still result in
different performance even after their features are aggre-
gated throughout the network. Clip O is better at lower tIoU
thresholds, whereas Clip U has advantage at a higher tIoU
threshold. Combining both predictions can take advantage
of the complementary properties of both clips and results in
higher performance than using either of them.

4.4. Observations of xGPN

In Table 6, we compare VSGN to the model of only using
the xGN modules at certain encoder levels. When we only
use xGN in one level, having it in the middle level achieves
the best performance. Our VSGN uses xGN for all encoder
levels, which achieves the best performance. In Table 7, we
compare the mAPs of using different edge types in xGN.
Our proposed VSGN uses the top K/2 edges as free edges,
and then chooses K/2 cross-scale edges from the rest. The
performance drops if we only use K free edges or K cross-
scale edges. K cross-scale edges is better thanK free edge,
showing the effectiveness of using cross-scale edges.

4.5. Computational Complexity

We compare the inference time of different methods on
the ActivityNet validation set on a 1080ti GPU in Table 8.
Compared to end-to-end frameworks such as PBRNet, the
methods using pre-extracted features such as BMN, G-TAD
and VSGN can re-use the features extracted for other tasks,
and these methods do not introduce complex 3D convolu-
tions in the TAL architecture, therefore, they have obviously
lower inference time. Our VSGN has negligible computa-

Table 6. xGN levels in xGPN (ActivityNet-v1.3). We show the
mAPs (%) at different tIoU thresholds, average mAPs as well as
mAPs for short actions (less than 30 seconds) when using xGN
at different xGPN encoder levels. The levels in the columns with
✓use xGN and the ones in the blank columns use a Conv1d(3, 2)
layer instead.

xGN levels mAP (%) at tIoU threshold Avg. mAP (%)
1 2 3 4 5 0.5 0.75 0.95 Avg. Short
✓ 51.22 34.14 8.22 33.82 19.5

✓ 51.92 34.45 8.89 34.17 19.6
✓ 51.61 34.94 9.26 34.46 19.2

✓ 51.10 34.83 8.90 34.19 19.3
✓ 51.10 34.68 8.50 34.03 19.0

✓ ✓ ✓ ✓ ✓ 52.38 36.01 8.37 35.07 19.9

Table 7. Edge types of each xGN module (ActivityNet-v1.3). We
show the mAPs (%) at different tIoU thresholds 0.5, 0.75, 0.95,
average mAPs as well as mAPs for short actions (less than 30 sec-
onds) when using different types of edges in xGN.

Edge types 0.5 0.75 0.95 Avg. Short
K free 51.59 35.23 7.77 34.48 19.0

K cross-scale 52.33 35.79 7.91 34.75 19.7
K/2 free + K/2 cross-scale 52.38 36.01 8.37 35.07 19.9

Table 8. Inference time of ActivityNet validation set.
Method PBRNet PBRNet∗ BMN G-TAD VSGN

Time (sec) 1600 128 120 183 158
∗ Our re-implementation using the same pre-extracted features.

tion in VSS, and has similar cost in xGPN to the GNNs in
G-TAD. Addtionally, it uses fewer anchors (1240 vs 4950),
and does not have the stage of ROIAlign, so it runs faster
than G-TAD.

5. Conclusions

In this paper, to tackle the challenging problem of large
action scale variation in the temporal action localization
(TAL) problem, we target short actions and propose a
multi-level cross-scale solution called video self-stitching
graph network (VSGN). It contains a video self-stitching
(VSS) component that generates a larger-scale clip and
stitches it with the original-scale clip to utilize the comple-
mentary properties of different scales. It has a cross-scale
graph pyramid network (xGPN) to aggregate features from
across different scales as well as from the same scale. This
is the first work to focus on the problem of short actions in
TAL, and has achieved significant improvement on short
action performance as well as overall performance.
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