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Abstract

This paper presents a deep relational metric learning
(DRML) framework for image clustering and retrieval.
Most existing deep metric learning methods learn an em-
bedding space with a general objective of increasing inter-
class distances and decreasing intraclass distances. How-
ever, the conventional losses of metric learning usually sup-
press intraclass variations which might be helpful to iden-
tify samples of unseen classes. To address this problem,
we propose to adaptively learn an ensemble of features that
characterizes an image from different aspects to model both
interclass and intraclass distributions. We further employ a
relational module to capture the correlations among each
feature in the ensemble and construct a graph to repre-
sent an image. We then perform relational inference on
the graph to integrate the ensemble and obtain a relation-
aware embedding to measure the similarities. Extensive
experiments on the widely-used CUB-200-2011, Carsl96,
and Stanford Online Products datasets demonstrate that our
framework improves existing deep metric learning methods
and achieves very competitive results. '

1. Introduction

How to effectively measure the similarities among ex-
amples has been an important problem for many computer
vision tasks. Metric learning aims to learn a distance metric
under which samples from one class are close to each other
and far away from samples from the other classes. Taking
advantage of the deep learning technique [15, 26, 45, 50],
deep metric learning (DML) methods utilize the combina-
tion of a convolutional neural network (CNN) and fully
connected layers (FCs) to construct a mapping from the
image space to an embedding space and employ the Eu-
clidean distance in this space to measure the similarities
between samples. Deep metric learning has outperformed
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Figure 1. Comparisons of the proposed DRML framework with
conventional deep metric learning methods and ensemble-based
deep metric learning methods. Conventional DML employs a
deep neural network to obtain an embedding for each image and
measures the similarity of two samples by the Euclidean distance
between their corresponding embeddings. Ensemble-based DML
learns an ensemble of embeddings but simply concatenates them
to obtain the final embedding, which ignores the structural rela-
tions among them. Differently, the proposed DRML framework
represents one image using an ensemble of features as well as
their interactions and then incorporates the relations to infer the
final embedding. (Best viewed in color.)

conventional methods by a large margin and demonstrated
promising results in a variety of tasks, such as image re-
trieval [35, 46, 47, 67], face recognition [16, 30, 43, 53],
and person re-identification [4, 5, 44, 52, 68].

Most existing metric learning methods utilize a discrim-
inative objective to learn the embedding space, which en-
courages the metric to discard intraclass variations so that
intraclass samples will form a compact cluster with a large
margin from the other clusters. The large margin nature
of metric learning has been proven useful to improve its ro-
bustness and generalization for seen class retrieval or classi-
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fication [7, 53, 59]. However, the essence of metric learning
is the ability to generalize to unseen classes in the test phase,
as is usually evaluated in standard deep metric learning set-
tings [35, 46, 47]. Directly learning a discriminative repre-
sentation actually harms the performance for unseen class
retrieval [41, 62], since the discarded intraclass variations
may be useful to differentiate the unseen classes. Moreover,
it seems in conflict with the general discriminative objective
of metric learning to preserve certain characteristics that is
unhelpful for distinguishing training data but might be help-
ful for unseen test data. A natural question is raised: can we
learn a discriminative metric that also generalizes well?

In this paper, we provide a positive answer to this ques-
tion. We propose a deep relational metric learning (DRML)
framework which learns to comprehensively characterize
an instance as well as distinguish different instances. We
first learn a set of feature extractors to produce an ensem-
ble of features, where each of them describes an image in
one aspect. We adopt a bottleneck architecture to determine
the dominant characteristics of each image and only use
samples with the corresponding dominant characteristics to
train each feature. The learned ensemble of features mod-
els both interclass differences and intraclass variations, and
thus is not discriminative enough to be directly used to com-
pute the distance between images. To effectively measure
the similarity between two ensembles of features, we further
propose a relational model to discover structural patterns in
the feature ensemble and exploit them to obtain a relation-
aware embedding. The proposed DRML framework can be
trained effectively in an end-to-end manner and enjoys the
advantage of efficient retrieval similar to existing deep met-
ric learning methods. Differently, our framework induces
a stronger relational bias than the combination of convolu-
tional layers and fully connected layers and thus can gener-
alize better to unseen classes. Figure | compares our frame-
work with existing deep metric learning methods. We con-
duct extensive experiments on three widely-used datasets
which demonstrate the effectiveness of the proposed frame-
work.

2. Related Work

Deep Metric Learning: Deep metric learning methods
employ deep neural networks to map an image to an em-
bedding space so that we can effectively measure the simi-
larities between two samples using the Euclidean distance.
To achieve this, a variety of methods impose a discrimina-
tive constraint on the image embeddings [3, 10, 13, 43, 46,

, 49, 55, 57, 64]. For example, the triplet loss [6, 43, 54]
require the distance between each negative pair to be larger
than that between each positive pair with a fixed margin.
Song et al. [47] designed a lifted structured loss to consider
all pairs in one batch and implicitly assign larger weights
to harder samples. The large number of pairs (or tuples)

makes sampling an important component in deep metric
learning. A widely used technique is the hard mining strat-
egy which proposes to select false positive tuples for effec-
tive training [12, 14, 17, 43, 65]. In addition, some meth-
ods explored other sampling schemes to boost the perfor-
mance [8, 9, 12, 29, 31, 34, 39, 48, 60, 66, 67]. For exam-
ple, Wu et al. [60] proposed to select pairs with possibilities
based on their distances to achieve uniform sampling.

Recently proposed methods begin to consider learning
an ensemble of embeddings and concatenate them as the
final representation for distance measure [22, 32, 35, 42,

, 65]. As pointed out by [2], the diversity of the learned
embeddings in the ensemble is crucial to the final perfor-
mance of the ensemble. Existing methods achieve diversity
by initializing the learners diversely [35], using a diversity
loss [22, 38], weighting each sample adaptively for differ-
ent learners [35] or using different samples to train differ-
ent learners [42, 61, 65]. However, they all use a simple
concatenation to aggregate them, which fail to consider the
structural relations between each entity and lead to inferior
generalization performance.

Relational Inference: The recent success of deep learn-
ing in computer vision largely relies on the ability of deep
convolutional neural networks to effectively represent im-
ages. However, it has been demonstrated that CNNs are
not effective for non-Euclidean data and structural relation
modeling [1]. As important complements to CNNs, graph
neural networks (GNNs) [11, 19, 23, 24, 27, 28, 56, 63]
have drawn a lot of attention and demonstrated great power
for relational inference, which achieve promising results
in many tasks like transfer learning [63], few-shot learn-
ing [11], video understanding [56], and scene understand-
ing [19]. For example, Yang et al. [63] proposed to cap-
ture correlations among pixels and transfer a latent rela-
tional graph instead of a generic embedding vector. Wang et
al. [56] utilized a graph to represent a video in order to
model both spatial and temporal relations.

Motivated by recent advances in relational inference, we
propose to represent an image using an ensemble of fea-
tures and employ a relational model to discover structural
patterns. We further perform relational inference to aggre-
gate the ensemble and obtain a relation-aware embedding
to measure similarities. Different from existing methods,
we propose an end-to-end framework to simultaneously ex-
tract generic features and infer their relations to construct a
discriminative metric with good generalization ability.

3. Proposed Approach

In this section, we first introduce our method of adaptive
ensemble learning and then present the formulation of the
relation-aware embedding. Lastly, we detail our framework
of deep relational metric learning.
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Figure 2. Illustration of the proposed adaptive ensemble learning method. We use the output after the global pooling layer of the CNN
as a global feature and employ K parallel fully connected layers to obtain the ensemble of individual features. We then use K decoders
to reconstruct the global feature from the corresponding individual features, where we impose a L2 reconstruction loss. We assign each
image to the individual feature with the minimum reconstruction cost and only use them to train this branch with a discriminative loss J,,
so that each individual feature can describe the image from one aspect. (Best viewed in color.)

3.1. Adaptive Ensemble Learning

We denote a set of images by X = {x1,X2,--* ,Xn}
with L = {l1,ls,--- ,In} as their corresponding labels,
where each [; € {1,2,--- ,n} means that x; is from the /;th

class. Deep metric learning employs a deep neural network
to learn a mapping eg : X % R from the image space X’
to an embedding space R”, and defines the learned metric
as the Euclidean distance in the embedding space:

D(xi,%j:0) = [leq(xi) — eq(x;)][2, (1)

where || - ||2 denotes the L2 norm and 6 is the parameters of
the embedding network.

The general objective of deep metric learning is to pull
closer samples from the same class and push further sam-
ples from different classes, which progressively discards in-
traclass variations and enlarges the distance margin between
positive and negative pairs to enhance robustness. However,
the discarded intraclass variations might contain informa-
tion that is useful to differentiate unseen classes, and thus
harm the generalization ability of the learned metric.

To address the above problem, we propose to learn an
ensemble of individual features to comprehensively charac-
terize an image from different aspects. The characteristics
of an image include class-relevant ones like textures and
class-irrelevant ones like backgrounds, resulting in the in-
terclass and intraclass distributions, respectively. Instead
of discarding the intraclass variations, we propose to cap-
ture both interclass and intraclass distributions by enforcing
different individual features to capture different character-
istics. We adaptively learn the feature ensemble and train
each individual feature using only a subset of the samples.

Formally, we use a trunk CNN to extracts a global
feature y = f(x) € R? (e, the feature af-
ter the final global pooling operation) of an image x
and propose to learn K parallel fully connected layers
1,82, - , K toobtain an ensemble of individual features
G(x) = {g1(f(x)), &2(f(x)), - , gx (F(x))}, where each
gi(f(x)) € Ré(d < d') is expected to characterize one as-
pect of the image. In this paper, we use the set of feature
extractors G to represent both the trunk CNN and the sub-
sequent parallel FCs for convenience.

To achieve this, we employ a bottleneck structure to
determine the dominant characteristics of each image and
only train each individual feature using a subset of train-
ing samples with the corresponding dominant characteris-
tics. Specifically, we use a set of K fully connected layers
P ={p1,p2, - ,Px} as decoders to map each individual
feature back to the d’-dimension space RY to reconstruct
the global feature y. We adopt the L2 loss the train the re-
construction layers P:

. 1 &
Heli.n Jrecon(ya P(G(X))) = Hgllljn ? ]; ||pk(gk(}’)) - Y||2, (2)

where || - ||2 denotes the L2 norm. Note that we only use
Jrecon to learn the parameters of the decoders which has no
effect on the individual features.

We assume that different images can possess different
sets of dominant characteristics that can best describe this
image. For example, color is an important characteristic to
distinguish different bird species, but it usually cannot be
used to identify a specific car model since one car model
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Figure 3. The flowchart of the proposed DRML framework. We employ a shared CNN network and 3K different fully connected layers
to extract K individual features and 2K meta-relational features. We use the meta-relational features to produce the relational features
between each pair in the ensemble of individual features. We then construct a graph to represent the input image by using the individual
features and relational features as the node features and edge features, respectively. We further perform relational inference on the graph to
update each individual feature and concatenate them to obtain a relation-aware embedding to measure similarities. (Best viewed in color.)

can present different colors. We further argue that if one
individual feature mainly represents the dominant charac-
teristics of the image, it should contain more information
and we should be able to better reconstruct the global fea-
ture. Therefore, we first classify each image to the individ-
ual feature with the minimum reconstruction cost:

F*(x) = arg min|px(8k (y)) — ¥ll2- 3)

We then use the corresponding classified subset of im-
ages to train each individual feature:

r9mn JE(x)) = 1911111 Z Jm({x}), “4)

G x|k (x)=k}

where 0, represents the parameters of the trunk CNN f
and the kth fully connected layer gy, and .J,,, can be any dis-
criminative loss of metric learning like the triplet loss [43]
or Proxy-NCA loss [34], and {x} denotes a tuple depending
on the specific form of J,,,.

The K decoders (i.e., P) are trained with J,.¢cop, using all
the samples, while each encoder (i.e., g) is trained with J;,,4
using the subset of samples with the minimal reconstruction
cost. The set of decoders serves as a classifier to assign
each sample to the feature extractor that best preserves its
characteristics. Still, we allow the gradients of J;,,4 through
the backbone CNN so that it is trained using all the samples.

Intuitively, we learn the feature ensemble to comprehen-
sively represent an image as well as reinforce the character-
istics that can well recognize samples. We only use a subset
of training samples to learn each individual feature, which
essentially imposes a less discriminative constraint. Still,
Jing restricts the feature ensembles of a positive pair to have
at least one feature that can well determine the resemblance

between them and strengthens only the dominant charac-
teristics to differentiate the negative pair to avoid pushing
away features on which they actually resemble each other.

3.2. Relation-Aware Embedding Learning

While the learned feature ensemble can comprehensively
represent an image, how to exploit them to measure the sim-
ilarities between images is not trivial. Simply concatenating
the features in the ensemble and employing the Euclidean
distance to measure the similarities is not effective since we
do not explicitly constrain the distance between the concate-
nation of individual features. The difference between a pos-
itive pair can be large and the difference between a negative
pair can be small. However, there exist certain relational
patterns other than simple distances in the distributions of
the individual features that can distinguish them, since we
describe each image from different aspects and preserve the
dominant characteristics that best characterize it.

We hence propose a relational model h(G(x)) that can
well capture the relations among the individual features and
emploit them to aggregate the features to obtain the final
embedding. Ideally, we want to model each of the relations
between two features using separate functions, i.e. R =
{Rij,i,j € 1,2,--- , K}, but the total number of func-
tions to be learned is with the complexity of O(K?2), which
is prone to overfitting. Instead, we propose to learn two
set of meta-relational features A = {a;,as, -+ ,ax} and
B = {by,bs, -+ ,bg} to represent the relations among
features. The relation feature between the ¢th and jth indi-
vidual feature of an image x is formulated by the difference
between the corresponding meta-relational features:

Rij(x) = ai(f(x)) — b;(f(x)), ©)

where we only need 2K functions to represent all the rela-
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tions. We can regard A and B as representations of the indi-
vidual feature ensemble in a relational space, where the dif-
ference between two features indicates the relations. Note
that the relations are not symmetric, i.e., R;; # Rj;. This
enables the proposed relational model to encode more com-
plex and structural relations.

Having obtained the relations, we construct a graph with
the individual features as node features and the relational
features as edge features. The graph representation of an
image encodes more information than the conventional em-
bedding representation, as it not only expresses the charac-
teristics of the image but also the relations among them.

We can then employ any Graph Neural Networks to per-
form the relational inference and obtain a final global graph
embedding for each image. In this work, we design a sim-
ple but effective module to aggregate the individual features
based on the learned relations. We first produce the mes-
sages sent to each individual feature by a weighted sum of
all features:

K
M; = > rjig;(£(x)). 6)
j=1

r;; is the weight of the jth individual feature computed by
the normalized relational score:

- s(Ryi(x))
YR s(Ri(x)

where s(-) is a relational score function instantiated by
a fully connected layer to compute a score reflecting the
“closeness” between two individual features.

We then integrate the incoming message into the individ-
ual feature and update it as follows:

gi'(x) = U(concat([gi(f(x)); Mi])),

; )

®)

where concat(-) denotes the concatenation operation and U
is an updater instantiated by a fully connected layer.

We concatenate all the updated individual features to ob-
tain the final relation-aware embedding of the image z =
concat([g}(x); g% (x); - -+ ;8% (x)]) and measure the sim-
ilarities between two images by the Euclidean distance of
the relation-aware embeddings:

D(xi,%;) = |[h(G(x:)) = h(G(x)))[|2 = |lzi — 22 (9)

We then apply an embedding loss J¢,,; to the embeddings
similar to existing deep metric learning methods.

Though eventually our model still uses a single embed-
ding to represent the similarity between images, the under-
lying model to obtain the embedding is essentially differ-
ent from conventional deep metric learning methods. The
proposed DRML framework first extracts an ensemble of
features to comprehensively characterize an image and then

employs a relational model to exploit their relations to pro-
duce the final embedding. It exploits more structural infor-
mation and induces a stronger relational bias than the simple
combination of CNNs and FCs.

3.3. Deep Relational Metric Learning

We present our proposed DRML framework, which is
composed of the trunk CNN to extract the comprehensive
feature, a set of FCs {g1,g2, - , gk} to produce an en-
semble of individual features, and a relational model h to
obtain the relation-aware embedding to compute the dis-
tance, as shown in Figure 3.

The feature extractors G and the relational model h can
be trained simultaneously, and we block the effect of J,,,;
on G. This enables the set of feature extractors G to focus
on learning a more comprehensive representation of the im-
ages, while the relational model h aims to mine the relations
among the individual features and discover patterns to iden-
tify the images. The two modules work together towards
the same direction only with slightly different purposes.

We use the ensemble 1oss J,;,sem to train the set of fea-
ture extractors G, the reconstruction 10ss J;.c.or to learn the
decoders P, and the embedding loss J..,; to train the rela-
tional model h:

min J = min Jepsem + At min Jrecon + A2 min Jemp,
0c,0p,0n e op On

where Jepsem = 22{21 JE , represents the ensemble ob-
jective, O, Op and 6y, are the parameters of G, P, and h,
respectively, and A, and A5 are two pre-defined parameters
to balance the contributions of the three losses. Though G
has an effect on the final embedding z and thus J,,,;, we do
not backpropagate the gradients of J.,; through G.

Our framework can be generally applied to existing deep
metric learning methods with various loss functions and
sampling strategies. In this paper, we adopt the same dis-
criminative loss as the individual feature loss J,,, and the
embedding loss J..,,5, but note that our DRML framework
does not stipulate this identity. We can use different sam-
pling strategies to sample tuples based on the employed loss
and use them to compute the embedding 10ss Je,p-

The proposed DRML framework can be trained in an
end-to-end manner. We use an ensemble of individual fea-
tures to describe an image and employ a relational model
with stronger relational inductive biases than existing deep
metric learning methods to improve the generalization abil-
ity. Still, our framework preserves the advantage of efficient
retrieval, where we can pre-compute the embeddings of all
the images in the gallery and simply compare the embed-
ding of a query image with them.
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4. Experiments

In this section, we evaluated our framework on three
widely used datasets on image clustering and retrieval tasks.

4.1. Datasets

To evaluate the generalization performance of our frame-
work on unseen classes, we followed existing methods [46,

, 67] to conduct experiments under a zero-shot setting,
where the training subset has no intersection with the test
subset. The three datasets were split as follows.

The CUB-200-2011 dataset [51] includes 200 bird
species of 11,788 images. We used the first 100 species of
5,864 images as the training subset and the remaining 100
species of 5,924 images as the test subset. The Cars196
dataset [25] contains 196 car makes and models of 16,185
images. We used the first 98 models of 8,054 images as
the training subset and the remaining 100 models of 8,131
images as the test subset. The Stanford Online Products
dataset [47] includes 22,634 products of 120,053 images
collected from eBay.com. We used the first 11,318 products
of 59,551 images as the training subset and the remaining
11,316 products of 60,502 images as the test subset.

4.2. Implementation Details

We used the PyTorch package in all the following ex-
periments. We used the ImageNet [40] pretrained CNN as
the backbone model in our framework for a fair compari-
son with most existing deep metric learning methods. We
set the number of individual features K to 4. We added
twelve randomly initialized fully connected layers after the
global pooling layer, where four of them output the individ-
ual features in the ensemble and eight of them output the
meta-relational features. We set the dimensions of individ-
ual features and meta-relation features to 128. We set the
output dimension of the updater to 128 which is the same
with that of the individual features. We first normalized all
the images to 256 x 256. For training, we performed data
augmentation by standard random cropping to 227 x 227
and random horizontal mirror. We fixed the batch size to 80
and set the learning rate to 10~° for the CNN and 10~ for
the other fully connected layers. We set A\; and A5 to 0.1
and 10 to balance the effects of the losses.

4.3. Evaluation Metrics

We conducted experiments on both image clustering and
retrieval tasks following existing works [46, 47, 67]. For the
image clustering task, we adopted the normalized mutual
information (NMI) and F score as the evaluation metrics.
NMI computes the mutual information between clusters and
the ground truth classes normalized by the arithmetic mean
of the entropies of them, i.e., NMI(Q2,C) = %,
where Q = {w1, - ,wk} denotes the set of clusters and

Table 1. Effect of different numbers of individual features.

No. of features R@1 R@2 R@4 R@8 NMI

2 68.0 714 85.7 909  68.6
4 68.7 78.6 86.3 91.6  69.3
8 66.1 76.0 84.8 909  68.0
16 65.7 76.2 84.2 90.1 66.8

Table 2. Ablation study of different model settings.

Methods R@l R@2 R@4 R@8 NMI
DiVA [32] 66.4 772 85.8 91.5 69.6
DRML-DiVA  63.8 74.8 84.1 902 675
AEL-PA 60.5 71.8 81.1 88.1 62.6
DRML-PA 68.7 78.6 86.3 91.6 693

Table 3. Ablation study using different loss functions.

Method R@1 R@2 R@4 R@8 NMI
DRML w/0 Jensem 45.6 59.5 72.2 82.5 56.3
DRML w/o Jemp 60.4 71.4 81.1 88.4 61.3
DRML w/0 Jrecon 66.6 77.3 85.3 90.7 69.3
DRML-PA 68.8 79.3 87.1 91.6 71.6

C = {c1,- -+ ,ck } denotes the set of ground truth classes.

w; includes samples predicted to belong to the ¢th cluster,
and c; includes samples from the jth class. The F; score
computes the harmonic mean of the precision and recall ,
ie., F; = %. For the image retrieval task, we adopted
the Recall@Ks as the evaluation metrics. Recall@K mea-
sures the percentage of legitimate samples in the test sub-
set. A sample is deemed legitimate if there exists at least
one positive sample in its K nearest neighbors. We direct

interesting readers to [47] for detailed explanation.

4.4. Results and Analysis

Number of individual features: The proposed DRML
framework employs K individual features to describe an
image from different aspects. We conducted experiments
on the CUB-200-2011 dataset to analyze the effect of the
number of individual features, as shown in Table 1. We ap-
ply the proposed DRML to the ProxyAnchor loss [21] (i.e.,
DRML-PA) and fix the embedding size to 512. We use 2,
4, 8, and 16 as the number of individual features, render-
ing the size of each individual feature to 256, 128, 64, and
32, respectively. We see that our method achieves the best
result at K = 4, and using a larger K slightly harms the
performance. This is because, with a larger K, each indi-
vidual feature possesses a lower information capacity which
cannot fully describe the main characteristics of an image.

Ablation study of each module: We conducted an abla-
tion study to analyze the effectiveness of each module in the
proposed DRML framework. We first remove the relational
module and only employ the proposed adaptive ensemble
learning method to learn a set of individual features using
the ProxyAnchor loss and simply concatenate them as the
final embedding (i.e., AEL-PA). We also adopt the state-of-
the-art ensemble learning method DiVA [32] to learn the in-
dividual features and employ the proposed relational mod-
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Figure 5. Diversity analysis of the proposed ensemble learning.

ule to model the relations to infer the final embedding (i.e.,
DRML-DiVA). Table 2 shows the experimental results on
the CUB-200-2011 dataset using BN-Inception [18] as the
trunk CNN. We observe that adding the relational module
hinders the performance of DiVA. We suspect this is be-
cause the ensemble learned by DiVA cannot describe an im-
age from different aspects and our relational module cannot
capture their relations. On the contrary, though the concate-
nation of the proposed adaptive ensemble is not discrimi-
native enough to distinguish different samples, further em-
ploying a relational module improves the performance dra-
matically. This demonstrates the effectiveness of exploiting
relations to infer the final embedding.

Ablation study of each loss function: We also con-
ducted an ablation study of each loss function on the CUB-
200-2011 dataset as shown in Table 3. We see that com-
bining the three proposed loss functions achieves the best
result, which demonstrates the effectiveness of each loss.

Effectiveness of the learned relations: We learn the re-
lations in an end-to-end manner to produce valid embed-
dings. To directly verify the effectiveness of the relations,
we conducted an experiment to use random relations and fix
them while training the other modules with the ProxyAn-
chor loss on the CUB-200-2011 dataset. We discover that
the R@1 performance decreases from 68.7 to 62.6, which
shows that using the learned relations is helpful.

Effect of embedding dimension: To study the effect of
using different embedding dimensions, we conducted a se-
ries of experiments on the CUB-200-2011 datasets using an
embedding dimension of 32, 64, 128, 256, 512, and 1024.
Figure 4 shows the performance of the proposed DRML-PA
using different embedding dimensions with a fixed K = 4.

Table 4. Experimental results (%) of DRML in comparison with
baseline methods on the CUB-200-2011 dataset.

Methods Setting R@1 R@2 R@4 R@8 NMI
N-Pair [46] 512G 50.1 633 743 832 604
Angular [55] 512G 53.6 650 753 837 61.0
HDML [67] 512G 537 657 7677 857 62.6
HTL [12] 512BN  57.1 688 78.7 86.5 -
RLL-H [58] 512BN 574 697 79.2 869 63.6
HTG [66] 512R 59.5 71.8 813 832 -
Margin [60] 128R 63.6 744 831 90.0 69.0
SoftTriple [37] 512BN 654 764 845 904 693
Multi-Sim [57] 512BN 657 77.0 863 912 -
MIC [38] 128R 66.1 76.8 85.6 - 69.7
DR [33] 512BN  66.1 77.0 851 9I.1 -
CircleLoss [49] 512R 66.7 774 862 912 -
RankMI [20] 128R 66.7 772 851 91.0 713
PADS [39] 128BN 673 78.0 859 - 69.9
Ensemble-based methods:

HDC [65] 384G 53.6 657 770 85.6 -
A-BIER [36] 512G 575 68.7 783 86.2 -
ABE-8 [22] 512G 60.6 715 798 874 -
Ranked [58] 1536BN 61.3 727 827 894 66.1
DREML [61] 9216R 639 750 831 89.7 678
D & C[42] 128R 659 76.6 844 90.6 69.6
Triplet-SH* [43] 512R 588 70.6 80.6 883 64.6
DRML-TSH 512R 617 735 824 88.7 65.6
Margin-DW* [60] 512R 623 735 832 899 672
DRML-MDW 512R 657 769 856 91.1 69.0

ProxyAnchor* [21]
DRML-PA

512BN 673 777 857 914 68.7
512BN 687 78.6 863 91.6 69.3
We see that the performance improves as the embedding
size increases and achieves the best result at 512. How-
ever, using a larger embedding size (1024) instead hinders
the performance, suggesting a redundancy in the embed-
ding space. Note that our method still maintains a fairly
good performance even with a small embedding size like
32, where each individual feature only has a size of 8. We
think this is because we further exploit the relations among
individual features to infer the final embedding, which can
partially compensate for the lack of information capacity.

Diversity of the ensemble: Since the diversity of the
ensemble is important to the performance, we visualized
the individual features for all the samples on the CUB-200-
2011 dataset using t-SNE in Figure 5(a). We see that the
learned individual features are very diverse in the feature
space. This is because we encourage each feature extractor
to focus on one set of characteristics by only using the cor-
responding subset of samples to train it. To further study
the ensemble training process, we further tracked the ratio
of samples assigned to each branch as shown in Figure 5(b).
We observe that all the four feature extractors are properly
trained only with different samples, which results in the di-
versity of the individual features.

Quantitative results: Since the proposed DRML frame-
work can be generally applied to existing deep metric learn-
ing methods, we instantiated our framework with various
network architectures, loss functions, and sampling strate-
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Table 5. Experimental results (%) of DRML in comparison with
baseline methods on the Cars196 dataset.

Table 6. Experimental results (%) of DRML in comparison with
baseline methods on the Stanford Online Products dataset.

Methods Setting R@1 R@2 R@4 R@8 NMI Methods Setting R@1 R@10 R@100 NMI
N-Pair [40] 512G 71.1 797 865 91.6 64.0 N-Pair [406] 512G 67.7 83.8 93.0 88.1
Angular [55] 512G 713 80.7 870 91.8 624 Angular [55] 512G 67.9 83.2 92.2 87.8
RLL-H [58] 512BN 740 83.6 90.1 941 654 HDML [67] 512G 68.7 83.2 92.4 89.3
HTG [66] 512R 76.5 847 904 94.0 - Margin [60] 128R 72.7 86.2 93.8 90.7
HDML [67] 512G 79.1  87.1 921 955 69.7 RankMI [20] 128R 74.3 87.9 94.9 90.5
Margin [60] 128R 79.6 86.5 919 951 69.1 HTL [12] 512BN 74.8 88.3 94.8 -
HTL [12] 512BN  81.4 88.0 927 957 - RLL-H [58] 512BN 76.1 89.1 95.4 89.7
MIC [38] 128R 82,6 89.1 932 - 68.4 FastAP [3] 512R 76.4 89.1 95.4 -
RankMI [20] 128R 833 89.8 938 96.5 694 PADS [39] 128BN 76.5 89.0 95.4 89.9
CircleLoss [49] 512R 834 898 94.1 96.5 - MIC [38] 128R 77.2 89.4 95.6 90.0
PADS [39] 128BN  83.5 89.7 93.8 - 68.8 Multi-Sim [57] 512BN 78.2 90.5 96.0 -
Multi-Sim [57] 512BN  84.1 904 940 96.5 - SoftTriple [37] 512BN 78.3 90.3 95.9 92.0
SoftTriple [37] 512BN 845 907 945 969 70.1 CircleLoss [49] 512R 78.3 90.5 96.1 -
DR [33] 512BN 850 90.5 941 964 - Ensemble-based methods:
Ensemble-based methods: HDC [65] 384G 70.1 84.9 932 -
HDC [65] 384G 737 832 895 938 - A-BIER [36] 512G 74.2 86.9 94.0 -
A-BIER [36] 512G 82.0 89.0 932 96.1 - D & C[42] 128R 75.9 88.4 94.9 90.2
Ranked [58] 1536BN  82.1 893 937 967 718 ABE-8 [22] 512G 76.3 88.4 94.8 -
D & C[42] 128R 84.6 907 941 965 703 Ranked [58] 1536BN  79.8 91.3 96.3 90.4
DREMLICI  SNGR 860 917 950 or2 76 MRSHS[N] SR 76l 87 943 03
DRML-TSH 512R 75.7 88.6 95.4 89.8
I T

Margin-DW* [60] S512R 723 823 893 942 64.6
DRML-MDW 512R 733 830 898 944 653

S5I2BN 844 90.7 943 968 69.7
512BN 869 921 952 974 721

ProxyAnchor* [21]
DRML-PA

gies to evaluate the effectiveness, which includes triplet loss
with random sampling [6, 54]. We applied our framework to
the triplet loss with semi-hard sampling (i.e., TSH) [43], the
margin loss with distance-weighted sampling (MDW) [60],
and the ProxyAnchor loss with random sampling (PA) [21].
We use n-G/BN/R to indicate the model setting where n is
the embedding size and G, BN, R to denote GoogleNet [50],
BN-Inception [18], and ResNet-50 [15], respectively.
Tables 4, 5, and 6 show the experimental results on
the CUB-200-2011, Cars196, and Stanford Online Products
datasets, respectively, where * denotes our reproduced re-
sults under the same setting. We use red numbers to in-
dicate the best results and bold numbers to highlight the
improvement of our framework over the associated method
without DRML. We observe that the proposed framework
improves the performance of existing methods on all three
datasets. While the use of an advanced sampling scheme
can benefit the original loss, the proposed DRML can fur-
ther boost the performance. In particular, our framework
performs the best combined with the ProxyAnchor loss and
achieves very competitive results. Note that the ProxyAn-
chor loss in the original paper [21] uses a more sophisti-
cated pooling operation (average + max pooling) and a more
advanced optimizer (AdamW) than the conventional metric
learning setting, so we only report our reproduced results.
Compared with the original methods, our framework repre-
sents the characteristics of an image more comprehensively

DRML-PA 512BN 715 85.2 93.0 88.1

Margin-DW* [60] 512R 76.8 88.9 95.1 89.7

DRML-MDW 512R 79.9 90.7 96.1 90.1
by learning a feature ensemble with a large diversity and
further employs a relational model to capture the structural
relations. Still, our DRML preserves the advantage of met-
ric learning to learn a discriminative embedding space to
effectively measure the similarities among samples.

5. Conclusion

In this paper, we have presented a deep relational metric
learning (DRML) framework for image clustering and re-
trieval. We represent an image by an ensemble of features to
capture both interclass and intraclass distributions and em-
ploy a relational model to characterize the relations among
features. We further perform relational inference to produce
a relation-aware embedding to measure similarities. We
have conducted experiments on three datasets which have
demonstrated that our method can boost the performance
of existing methods on deep metric learning in both image
clustering and retrieval tasks. It is an interesting future di-
rection to extend our framework to process other formats of
input such as video, 3D point clouds, and event-based data.
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