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Abstract

Existing single image high dynamic range (HDR) recon-
struction methods attempt to expand the range of illumi-
nance. They are not effective in generating plausible tex-
tures and colors in the reconstructed results, especially for
high-density pixels in ultra-high-definition (UHD) images.
To address these problems, we propose a new HDR re-
construction network for UHD images by collaboratively
learning color and texture details. First, we propose a
dual-path network to extract the content and chromatic fea-
tures at a reduced resolution of the low dynamic range
(LDR) input. These two types of features are used to fit
bilateral-space affine models for real-time HDR reconstruc-
tion. To extract the main data structure of the LDR input, we
propose to use 3D Tucker decomposition and reconstruc-
tion to prevent pseudo edges and noise amplification in the
learned bilateral grid. As a result, the high-quality con-
tent and chromatic features can be reconstructed capital-
ized on guided bilateral upsampling. Finally, we fuse these
two full-resolution feature maps into the HDR reconstructed
results. Our proposed method can achieve real-time pro-
cessing for UHD images (about 160 fps). Experimental
results demonstrate that the proposed algorithm performs
favorably against the state-of-the-art HDR reconstruction
approaches on public benchmarks and real-world UHD im-
ages.

1. Introduction
High dynamic images can display rich appearances, such

as brightness, contrast, and texture details. However, most
mobile devices can only capture images within a limited dy-
namic range due to the physical limitations of the hardware
device. Existing methods fuse LDR images of different ex-
posures into a single HDR image [9, 14]. However, this
technique only works well on static scenes, while ghosting
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Figure 1. Trade-off of speed and accuracy between our proposed
enhancement method and state-of-the-art methods on the FiveK
dataset [8]. The red line indicates the real-time method for UHD
image reconstruction. The right yellow region represents the
methods that cannot handle UHD images directly and need to
use the downsampling-enhancement-upsampling (DEU) strategy.
For example, the maximum resolution can be handled by Ex-
pandNet [26], HDRCNN [15], FMFPL [29] and JSI-GAN [21]
is around 2K, while LRCP [25] and UnModNet [42] can only run
on images around 512 × 512 resolution. The proposed algorithm
generates enhanced images efficiently and accurately at UHD res-
olution (4K or more).

artifacts often occur in dynamic scenes or hand-held cam-
eras. Furthermore, it is difficult to get multiple LDR images
with different exposure levels in the same scene.

Recently, several methods [10, 16, 21, 25, 29, 36, 39, 42]
have been developed to reconstruct an HDR image from an
LDR input using translational invariance models (CNNs).
However, these methods have the following natural limi-
tations [41]. First, since the parameters of existing deep
models are fixed, these networks need to enhance saturation
issues and texture loss with the same weights. Second, ex-
isting models usually enhance an LDR image with the help
of a learnable model, which inevitably consumes a large
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number of computational resources. For example, the re-
cent single image HDR reconstruction methods of UnMod-
Net [42] and LRCP [25] cannot directly enhance ultra high
resolution images (4K) on a GPU with 24G RAM. Although
the early light-weight deep models HDRCNN [15] and Ex-
pandNet [26] can run on 2K images, the performances of
the evaluation metrics are below FMFPL [29] and ours as
shown in Figure 1. Therefore, recovering lost edges and
colors from LDR images is still a tricky problem.

In summary, designing a deep network with both high
accuracy and high efficiency for reconstructing the edges
and colors of UHD images is still a challenge. To achieve
this, we propose a collaborative learning framework to fuse
various information with an efficient and interpretable filter-
ing module in bilateral space [11]. We design a dual-path
network with edge-aware affine modules for collaborative
learning color and texture details. Specially, our algorithm
extracts low-resolution content and chromatic features for
bilateral grids learning and restores two high-quality fea-
ture maps (one is mainly focused on edge and texture, the
other is for color). However, we note that the learned bi-
lateral grid by the dual-path network tends to result in new
edges, a halos, or noises in the restored image. Therefore,
we present a 3D Tucker reconstruction scheme to prevent
pseudo edges and noises amplification based on the low-
rank characteristic. Finally, we fuse the two high-resolution
features to yield the reconstructed UHD HDR image.

Since the change of the bilateral grid occurs according to
the content and color of the local area, our proposed algo-
rithm enables the recovery of spatial changes. The proposed
dual-path network can also help refine color and texture de-
tails in the learned bilateral affine model. In addition, our
method processes UHD images in less than 6 ms on a single
Titan RTX GPU.

The contributions of this paper are as summarized as:
• We propose a new dual-path network by collabora-

tively learning textural and chromatic features in the
bilateral space, which enables the proposed network to
process a UHD HDR image in real-time.

• We enforce a smoothness term in the bilateral grid
learning process by a 3D Tucker reconstruction block,
which prevents pseudo edges and noises amplification
in the reconstructed results.

• We propose a LeakAdaIN and a self-evolving loss
function for training acceleration and visual percep-
tion enhancement. Experimental results on synthetic
and real-world images demonstrate the proposed al-
gorithm performs favorably against the state-of-the-art
HDR reconstruction methods on arbitrary spatial sizes.

2. Related Work
Multi-image HDR reconstruction. The most traditional
HDR reconstruction techniques rely on multiple expo-

sure LDR images. [14, 32]. Image alignment and post-
procession are required to eliminate artifacts for dynamic
scenes. Recent approaches [20, 30, 34, 37] apply CNNs or
combine some other methods to fuse multiple LDR images.
The difference is that we focus on constructing an HDR im-
age from a single over- or under-exposure LDR image.

Single image HDR reconstruction. Single LDR image
reconstructed into HDR image is more challenging than
multi-image fusion reconstruction because of the lack of
color and texture information. Convention approaches es-
timate the density of illumination and saturation to improve
the dynamic range [1, 2, 3, 4, 5]. However, with the ad-
vances of deep learning [10, 21, 25, 29, 42], some methods
have been developed to learn a mapping function from LDR
input to HDR output. For instance, the HDRCNN method
focuses on recovering missing details by falling back upon
encoder-decoder architecture in the over-exposure or under-
exposure regions [15]. Marnerides et al. [26] build a multi-
branch network to obtain the high and the low frequency in-
formation of the image by dilated convolution. In addition,
a fixed inverse camera response function (CRF) is applied to
reconstruct missing information that was lost from the orig-
inal signal. However, the fixed CRF may not be applicable
to images captured from multi-exposure images.

Some recent methods [25, 42] are constrained by strict
prior knowledge and physical rules. Due to a large num-
ber of rule constraints, these models are divided into mul-
tiple processes to enhance a single LDR image. For exam-
ple, LRCP [25] employs dequantization, nonlinear mapping
and clipping the dynamic range to contruct the final result.
However, these methods consume a large amount of com-
putational resources. In contrast, our method directly recon-
structs an HDR image by learning color and texture infor-
mation to enhance the LDR input in an end-to-end manner
and saves a lot of computing resources.

UHD image enhancement. Some approaches [17, 18,
33, 35, 38, 40] have been proposed to reconstruct high-
resolution images in real-time. Most of the existing meth-
ods achieve real-time processing by using a few convolu-
tional layers [40]. In particular, bilateral filters/grids have
attracted long term attention in acceleration [7, 12, 13],
which is an edge-aware manipulation of images in the bi-
lateral space [6, 33, 35]. For example, HDRNet [17] casts
the enhancement task in the bilateral space via affine trans-
formation of pixel-level perception. However, there are two
drawbacks to this locally-affine model. First, a single net-
work that directly extracts and transforms the input tends to
lose the color and texture details due to limited cell storage
capacity in a single bilateral grid. Second, directly trans-
forming the bilateral grid to the high-resolution image ig-
nores the noise amplification of the bilateral grid. In con-
trast, our proposed method recovers colors and edges in a
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Figure 2. Architecture of the proposed single image LDR-to-HDR network, which consists of three parts. The first step starts with a
low-resolution coefficient prediction stream (the dual-path network) that jointly learns the content and chromatic features to fit two affine
bilateral grids. Then we use a 3D Tucker reconstruction scheme to remove pseudo edges and noises of the bilateral grid, which is used
to restore the high-resolution texture and color features using slicing and application operators. Finally, a feature fusion block combines
these two high-quality features to yield an enhanced result. Our proposed algorithm supports UHD images HDR reconstruction at 6 ms on
a single Titan RTX GPU shader.

(a) Input (b) AdaIN (c) LeakyAdaIN (d) Ground truth

Figure 3. Effectiveness of LeakyAdaIN for fitting the data distri-
bution. (a) Histogram of the LDR input images. (b) The fitted
histogram by AdaIN. (c) Our proposed LeakyAdaIN models the
data distribution close to the ground truth in (d).

collaborative dual-path network, while the information of
bilateral grid is denoised by Tucker reconstruction.

3. Proposed Method
Given a UHD LDR image, our model first reconstructs

two bilateral coefficient grids via the proposed dual-path
network at a reduced resolution. We propose a new leaky
adaptive instance normalization (LeakyAdaIN) to adap-
tively fuse color and texture features in the dual-path net-
work. Meanwhile, to eliminate pseudo edges and remove
noises in the learned bilateral grids, we introduce 3D Tucker
decomposition and reconstruction to constrain these affine
matrices to vary smoothly. Capitalizing on these two re-
gressed affine bilateral grids, we can generate high-quality
edge/texture and color feature maps via the guidance ten-
sor of full-resolution. Figure 2 shows the architecture of the
proposed UHD image HDR reconstruction network.

3.1. Collaborative Bilateral Grid Learning

Although two pixels in an LDR input across a weak edge
are close in the spatial and frequency domains because of
the degradation of contrast and visibility, these two pixels
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Figure 4. The pipeline of high-quality features reconstruction us-
ing 3D Tucker reconstruction.

are distant from bilateral filter perspective. Therefore, we
consider predicting affine models to restore sharp contents
(structures, edges, and textures) and colors in the bilateral
space by a dual-path network. Specifically, the upstream
path uses the gray image of the LDR input to extracts con-
tent information, while the downstream path takes the Gaus-
sian blurred color image as the input to focus on the chro-
matic information.

Collaborative learning via LeakyAdaIN. Given an LDR
input, we first reduce the UHD image to a fixed resolution
of 256 × 256. Then we split the network into a dual-path
by feeding the corresponding gray image and a Gaussian
blurred color image, and extract content Fc and chromatic
features Fc using the pre-trained VGG19 [31], respectively.

During the learning process, we propose a new
LeakyAdaIN to help regularize the transforms of each path,
so that the network yields a vivid color output while respect-
ing edges. Our LeakyAdaIN is an extension of adaptive
instance normalization (AdaIN) [19] that contains a content
input x and a style input y and aligns the channel-wise mean
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(a) w/o Tucker (b) 1D Tucker (c) Ours (d) GT

Figure 5. 3D Tucker reconstruction allows our model to learn bet-
ter data distribution in the bilateral space. (a) and (b) show the
data distribution of the learned bilateral grid without Tucker re-
construction and with 1D Tucker reconstruction, respectively. (c)
is the data distribution learned by our model, which is close to the
target distribution of (d).

µ and variance σ of x,

AdaIN(x,y) = σ(y)

(
x− µ(x)
σ(x)

)
+ µ(y). (1)

Generally, AdaIN is the nearest method of distributing data
toward the target, which is cost-effective and often used in
style transfer. However, (1) has strong physical constraints
and offsets for data distribution fusion of two inputs. In this
paper, we consider the content features that lack color infor-
mation need to replenish the style of color features. Inspired
by [19], we propose a LeakyAdaIN to yield fused informa-
tion with a higher degree of freedom,

LeakyAdaIN(x,y) = s(p(y))σ(y)

(
x− µ(x)

σ(x)

)
+ s(p(y))µ(y),

(2)
where p denotes the global pooling and linear transforma-
tion of style data, s is the sigmoid function. To evaluate
the effectiveness of the proposed LeakyAdaIN, we compare
our LeakyAdaIN with AdaIN, and show the histogram of a
learned feature map after the last LeakyAdaIN layer in Fig-
ure 3. As shown, using LeakyAdaIN can better model the
content distribution (c) than the AdaIN in (b).

Bilateral grid via 3D Tucker reconstruction. We then re-
shape the content feature Fc and color feature Fg into two
bilateral grids, where each coordinate is in three-dimension.
The reshaped Fl and Fg can be viewed as a 16 × 8 × 8
bilateral grid, where each grid cell contains 12 numbers.
Then, we use the grid sample1 function to restore the high-
resolution content and color feature maps. As shown in
Figure 4, two guidance maps with coordinate guidance are
constructed with the same dimension of the LDR input. We
need the grid cell of the bilateral grid and use trilinear in-
terpolation to fill the guidance tensor (a tensor with the 12
channels). Finally, we employ affine transformation by us-
ing 12-channel tensor cutting and three R, G, B channels of

1https://pytorch.org/docs/master/nn.functional.html#
torch.nn.functional.grid_sample

the LDR input as a linear transformation, and then generates
3-channel high-quality full-resolution feature maps.

Although the bilateral grid is an effective feature storage
container that maintains detailed edges and textures in the
LDR input, it is easy to introduce some pseudo edges and
noises since the lack of physical constraints on the bilateral
grid, especially for UHD images. To address this problem,
we enforce a smoothness term in the bilateral grid by intro-
ducing Tucker reconstruction [22]. Different from [22], we
propose a 3D Tucker reconstruction block to remove arti-
facts in the learned affine models. As shown in Figure 4, we
first make three copies of the learned bilateral grid B. We
can regard the bilateral grid as a 3D tensor (H ×W × C)
by ignoring the grid cell, and use the Tucker decomposition
and reconstruction method to operate each bilateral grid un-
der three perspectives of H , W , and C, respectively,

Fz[l,m, n]← TRr1→z(TR
d
z→1(Bu[l

′,m′, n′])), (3)

where [l′ = 16,m′ = 8, n′ = 8] denote the coordinates
of the bilateral grid cell, d and z are tensor decomposi-
tion and reconstruction process, respectively. We use the
tucker decomposition2 approach to compress the dimen-
sion l

′
to 1, and then we use the tucker reconstruction2 to

expand the dimension 1 to l
′
. We set the tucker rank =

[l
′
//2,m

′
//2, n

′
//2], init =′ random′, and tol = 10e−5

for the tucker reconstruction2. This operation first com-
presses a certain dimension z to a low-rank representation,
which indicates that the space has only one layer of data,
and finally uses this layer of data to restore the original
space dimension z. The reconstructed three grids are av-
eraged to generate the final smoothed bilateral grid. 3D
Tucker reconstruction enforces the learned bilateral grid to
remove pseudo edges and noises, and acts as a low-rank
prior to regularize the data distribution of clear images in
the bilateral space. Without 3D Tucker reconstruction, the
network erroneously estimate the data distribution as shown
in Figure 5.

As a result, high-quality content and color features at the
UHD resolution can be reconstructed after the slice and ap-
plication operations. Figure 6 shows a comparison between
the LDR input and our reconstructed features. As shown,
both the content and color features reconstructed by the col-
laborative bilateral learning are close to the distribution of
the ground truth. Furthermore, grayscale images can ex-
press the spatial and structural information of an image, and
blurred images can express color characteristics.

3.2. High-Quality Features Fusion

To effectively blend the reconstructed high-quality con-
tent and color features, we concatenate three multi-layer
convolution blocks with skip connections in each block to

2http://tensorly.org/stable/auto_examples.html
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(a) Input (b) Ours (texture) (c) GT

(d) Input (e) Ours (color) (f) GT

Figure 6. Our collaborative bilateral learning method can effec-
tively extract content (edge/texture) details and color distribution.
(a) shows the edge information of the LDR input; The recovered
high-quality edges in (b) is close to the ground truth in (c). (d)
shows the color histogram of the LDR input. The recovered high-
quality color histogram in (e) is close to the ground truth in (f).

filter the important features. Each convolution block is
brought into inverted residuals [28], which reduces com-
putational effort while maintaining performance.

3.3. Loss Function

We optimize the proposed network by minimizing theL1

loss and a new self-evolving loss Lse on the training set,

L =
1

D

D∑
i=1

‖Ii − Ji‖+ λLse, (4)

where D is the number of training images, I is the result
of our network output, and J is the corresponding ground
truth of the network output. We introduce an adaptive self-
evolving loss, which allows the network to automatically
learn an appropriate gamma correction Ig of the network
output I during each iteration,

Lse =
1

D

D∑
i=1

∥∥∥∥∥Ii −
[
Ii(a, b)

]γ[a,b,N(a,b)]
∥∥∥∥∥ , (5)

where
γ[a, b,N(a, b)] = 2[128−mask(a,b)], (6)

where the mask is generated by performing inverse color
processing on the original image, and then convolved by a
3 × 3 Gaussian kernel with stride 2. In addition, a and b
denote the pixel of the image network training process. We
also tried the adversarial losses, but we notice that the L1

loss and Lse can obtain vivid colors and clear texture in the
enhanced LDR. As shown in Figure 7, we validate the effect
of adaptive gamma correction on the training process.

4. Experimental Results
Our proposed model is evaluated on synthetic datasets

and real-world images. All the results are compared

(a) I (40 epo.) (b) Ig (40 epo.) (c) I (60 epo.) (d) Ig (60 epo.) (e) I (80 epo.) (f) Ig (80 epo.)

Figure 7. Outputs (I) of the network and the corresponding gamma
corrected image (Ig) at different epochs in the training phase. As
shown, our proposed adaptive gamma correction darken the output
if it is too bright (e.g., 40 and 60 epochs), while tend to brighten
the output is it is too dark (e.g., 80 epoch).
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Figure 8. Comparisons of LDR-to-HDR strategies (SES and
DEU). The SES scheme ignores global information, so it is prone
to generate artifacts and pseudo edges.

against eight state-of-the-art HDR enhancement methods
of LRCP [25], UnModNet [42], 3DLUT [38], Expand-
Net [26], HDRCNN [15], FMFPL [29], JSI-GAN [21], and
HDRNet [17]. In addition, we performed three ablation
studies to demonstrate the effectiveness of each part of our
approach.. The implementation code will be made available
to the public.

4.1. Training Data

To train and evaluate the proposed network, we use two
datasets from [9] and [8] to train the proposed method as
well as the comparison methods. The first training data
in [9] is multi-exposure fusion data, which is divided into
m1-m9 exposure levels, and the normal-exposure can be re-
garded as the ground truth. We reserve 80 percent of the
images for training, and test on the remaining 20 percent of
the images. For another dataset [8], we select the image re-
touched by Expert A as the corresponding enhanced image
for the input image, while we use the toolkit (image format
converter) to convert the DNP format to the JPG format. We
reserve 4500 images for training, and test on the remaining
500 images. For fair comparisons, we have fine-tuned all
the compared methods on the same training dataset as our
algorithm.

4.2. Implementation Details

The implementation environment is PyTorch 1.7 version
and the Adam optimizer is applied to train the model. We
use the resolution of 512 × 512 images with a batch size
of 16 to train the network for 3000 epochs in total. Due
to the recent HDR enhancement models of HDRCNN [15],
ExpandNet [26], FMFPL [29], JSI-GAN [21], LRCP [25],
UnModNet [42] cannot directly enhance UHD images on a
single Titan TRX GPU. Inspired by [41], we design two
strategies for these approaches. First, the downsample-
enhancement-upsample (DEU) scheme applies HDR en-
hancement approaches at a reduced resolution and then up-
samples the enhanced images. The other one is splitting-
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PSNR/SSIM 20.50/0.49 15.76/0.49 14.02/0.36 15.84/0.31 21.43/0.53 +∞/1

PSNR/SSIM 23.52/0.65 17.33/0.59 16.51/0.57 15.34/0.49 24.08/0.67 +∞/1

PSNR/SSIM 16.92/0.48 18.44/0.47 19.98/0.50 16.14/0.57 21.61/0.59 +∞/1

(a) Input (PSNR/SSIM) (b) LRCP (19.83/0.59) (c) HDRCNN (20.49/0.61) (d) HDRNET (22.17/0.62) (e) LUT3D (21.65/0.73) (f) Our (24.48/0.0.72) (g) GT (+∞/1)

Figure 9. Enhanced results on the M-exposure dataset [9]. Our method obtains better visual quality and recovers more image details
compared with other state-of-the-art methods.

Table 1. Quantitative evaluations on the FiveK and M-exposure dataset (resolution ranges from 4K to 5K) in terms of PSNR, SSIM,
Q-Score [27], and run time, where ? denotes the run time is computed by the DEU scheme.

HDRCNN [15] ExpandNet [26] FMFPL [29] JSI-GAN [21] LRCP [25] UnModNet [42] HDRNet [17] 3DLUT [38] Ours

FiveK
PSNR (dB) 17.25 17.80 21.48 23.14 18.94 17.79 19.83 15.75 23.29

SSIM 0.6559 0.6733 0.7581 0.7711 0.7195 0.7062 0.7641 0.6152 0.7702
Q-Score 42.34 44.17 45.88 46.64 43.98 40.15 43.46 39.88 46.68

Time (ms) 18? 22? 51? 55? 78? 94? 5 6 6

M-exposure
PSNR 16.56 16.89 18.51 20.02 18.79 17.97 19.17 14.95 22.22
SSIM 0.5451 0.5981 0.7170 0.7289 0.6993 0.7029 0.7299 0.4731 0.7593

Q-Score 36.29 40.04 43.55 44.78 39.68 41.90 42.44 33.74 45.76
Time (ms) 20? 23? 78? 90? 81? 95? 6 9 8

enhancement-stitching (SES), which splits images into the
largest patches that the model can handle, then stitches the
enhanced patches to the resolution of the raw image. We
compare these two strategies on our UHD test datasets ex-
tracting from several public datasets. As shown in Figure 8,
SES has pseudo edges since it does not consider the global
structure of the image. Figure 8 also demonstrates that DEU
obtains higher performance and generates the global struc-
ture of the image. So far, we use the DEU strategy for these
six deep models [15, 21, 25, 26, 29, 42].

Table 2. Effectiveness of 3D Tucker reconstruction, self-evolving,
and the dual-path schemes. Quantitative results demonstrate the
effectiveness of each module.

w/o Tucker 1D Tucker w/o Lse Single path Ours
PSNR 20.81 20.35 22.03 19.97 23.29
SSIM 0.69 0.68 0.70 0.58 0.7702

Q-Score 42.89 43.01 44.79 40.51 46.68

4.3. Evaluation

Quantitative evaluation. The proposed method is eval-
uated on two datasets: test data of M-exposure [9] and
FiveK [8]. The comparison results of our proposed method
and the other LDR-to-HDR methods are shown in Figure 9.

It can be observed that recent deep models [15, 17, 25, 26,
38, 42] still some pseudo edges and noises in the visualized
images. However, the enhanced results generated by our al-
gorithm in Figure 9(f) are close to the ground truth images
in Figure 9(g). The quantitative results on the M-exposure
and FiveK datasets are reported in Table 1. Table 1 demon-
strates the effective performance of our method. Note that
we fine-tuned the models in the log domain and compute
the PSNR, SSIM, and Q-Score in the log domain in the test
stage.

Qualitative evaluation. We evaluate the proposed algo-
rithm with different state-of-the-art methods in real-world
UHD LDR images. Figure 10 shows the visual comparison
of five challenging real-world images. As shown, HDRNet
and 3DLUT make the contrast decreased and accompanied
by the appearance of artifacts in the enhanced results, LRCP
and HDRCNN show color distortion in some regions. In
contrast, our algorithm is able to generate vivid colors in
Figure 10(f). Because our method considers the global in-
formation of the UHD image, the deep model takes into
account the contrast and texture information of the whole
image.
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(a) Input (b) LRCP (c) ExpandNet (d) HDRNet (e) 3DLUT (f) Ours

Figure 10. Enhanced results on real-world LDR images. Our method obtains vivid colors and recovers more image details compared with
other state-of-the-art methods. The first two images are 2K resolution, and the last three images are with 4K resolution.

PSNR/SSIM 22.52/0.73 21.01/0.70 23.32/0.78 +∞/1

PSNR/SSIM 21.76/0.69 22.21/0.71 22.14/0.77 +∞/1
(a) Inputs (b) w/o Tucker (c) 1D Tucker (d) Ours (e) Ground truths

Figure 11. Effectiveness of 3D Tucker reconstruction.

(a) Inputs (b) Single path (c) Ours (d) Ground truths

Figure 12. There is no color information to help restore the image
on the dual-path network.

4.4. Ablation Study
Effectiveness of 3D Tucker reconstruction. We conduct
the following two experiments: 1) removing Tucker re-
construction, and 2) using 1D Tucker reconstruction, on
the learned bilateral grids. Table 2 compares our method
with these two baselines on the M-exposure [9] dataset. As

(a) Input (b) Color (c) Ours (d) GT

Figure 13. Effectiveness of gray input in the upper content stream
of our proposed network.

shown in Figure 11, without Tucker reconstruction or using
1D Tucker reconstruction tends to generate artifacts. Both
the quantitative and qualitative results demonstrate that the
proposed 3D Tucker reconstruction is able to remove arti-
facts, pseudo edges, and noises.

Effectiveness of the self-evolving loss. We remove the self-
evolving loss function in the training stage and compare
it with our proposed algorithm. We note that the training
loss with the proposed self-evolving loss function decreases
rapidly in the training stage. However, the convergence
speed is relatively slow without using the self-evolving loss.
Table 2 also demonstrates the effectiveness of the proposed
self-evolving loss.

Effectiveness of the collaborative learning. We remove
the color stream and the proposed LeakyAdaIN in the net-
work, and directly regress the final output by the content
stream. Figure 12 demonstrates that the dual-path network
can further enhance the estimated results by ensuring that
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(a) Input (b) Ours (c) Ground truths (d) Input (e) Ours (f) Ground truths

Figure 14. Dehazed (first row) and Deblured (second row) results on the public datasets of [24] and [23], respectively.

the fine structural details and vivid colors are captured in
the results, such as color details of the green tree and the red
carpet shown in Figure 12(c). Table 2 also demonstrates the
effectiveness of the proposed collaborative learning in the
dual-path network. In addition, we also conduct an experi-
ment by changing the gray input of the content stream into
the low-resolution color image. Figure 13 demonstrates that
the gray image as input can further enhance texture details
of the “art-board”.

4.5. Run Time

In terms of run time, the proposed network performs fa-
vorably against all the comparison HDR reconstruction ap-
proaches [15, 17, 21, 25, 26, 29, 38, 42]. All approaches
are executed on the same machine, which was evaluated us-
ing an Inter(R) Xeon(R) CPU and an NVIDIA Titan RTX
GPU. It should be noted that we only consider the run time
of GPU processing.

We counted the average run time for the M-exposure [9]
and FiveK [8] datasets are shown in Table 1. These methods
are clearly less efficient than our algorithm. The early HDR
reconstruction approaches of [15, 26] perform faster than
recent approaches of [21, 29], but still have less efficiency
than ours. Although 3DLUT and HDRNet have similar run
time as ours, these two methods cannot achieve high quan-
titative results on the Fivek and M-exposure datasets.

4.6. Potentials of Model and Network

Our model can be extended to weather conditions (e.g.,
hazy days) and motion blurs. We conduct some experiments
to show the potential. For image dehazing and deblurring
tasks, we randomly select 70% training samples from [24]
and [23] to train the proposed model, respectively.

We show some dehazing and deblurring results for hazy
and blurry images in Figure 14. The luminance of hazy im-
ages tends to have some white drifting due to haze interfer-
ence, while the luminance range of blurred images is com-
pressed since the pixels are smoothed. Since our model can

address the compressed image luminance range problems
by the proposed collaborative bilateral learning of texture
detail and color range, our algorithm can also remove haze
and blur in the degraded inputs. In addition, the construc-
tion of the bilateral grid needs to be the edge information of
the scene in the image. In the frequency domain analysis,
both haze and image blurring are filled with a large number
of low-frequency information, and bilateral learning uses
filters to extract high-frequency details of the original im-
age. Then, the edge details (high frequency information) of
LDR images are used to learn a better bilateral grid acting
on the low-frequency regions of the original image.

5. Conclusion
In this paper, we proposed a UHD image HDR recon-

struction method via a collaborative learning manner. Our
algorithm collaboratively learns the content and color de-
tails in the dual-path network capitalized on the proposed
LeakyAdaIN layer, and builds corresponding bilateral grids
in each patch to maintain detailed content and color in the
LDR input. At the same time, we enforce a smoothness
term on the learned bilateral grids by 3D Tucker reconstruc-
tion to prevent pseudo edges and noise amplification. Quan-
titative and qualitative results show that our proposed algo-
rithm, compared to other state-of-the-art models, can reach
166fps for a single UHD image and generate satisfactory
visual results on real-world UHD images.
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