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Abstract
Unsupervised visual representation learning has gained

much attention from the computer vision community be-
cause of the recent achievement of contrastive learning.
Most of the existing contrastive learning frameworks adopt
the instance discrimination as the pretext task, which treat-
ing every single instance as a different class. However,
such method will inevitably cause class collision problems,
which hurts the quality of the learned representation. Mo-
tivated by this observation, we introduced a weakly super-
vised contrastive learning framework (WCL) to tackle this
issue. Specifically, our proposed framework is based on two
projection heads, one of which will perform the regular in-
stance discrimination task. The other head will use a graph-
based method to explore similar samples and generate a
weak label, then perform a supervised contrastive learn-
ing task based on the weak label to pull the similar images
closer. We further introduced a K-Nearest Neighbor based
multi-crop strategy to expand the number of positive sam-
ples. Extensive experimental results demonstrate WCL im-
proves the quality of self-supervised representations across
different datasets. Notably, we get a new state-of-the-art re-
sult for semi-supervised learning. With only 1% and 10%
labeled examples, WCL achieves 65% and 72% ImageNet
Top-1 Accuracy using ResNet50, which is even higher than
SimCLRv2 with ResNet101.

1. Introduction
Modern deep convolutional neural networks demon-

strate outstanding performance on various computer vision

*Equal contributions.
†Corresponding author.

Similar Samples

Figure 1. A example of the class collision problem. A typical in-
stance discrimination method will treats the first column and the
third column as a negative pair since there are different instance.
However, the semantic information of the first column and the
third column are very similar, treat them as positive pair should
be much more reasonable.

datasets [11, 15, 30] and edge devices [45, 36, 44, 35].
However, most successful methods are trained in the su-
pervised fashion; they usually require a large volume of
labeled data that is very hard to collect. Meanwhile, the
quality of data annotations dramatically affects the per-
formance. Recently, self-supervised learning shows its
superiority and achieves promising results for unsuper-
vised and semi-supervised learning in computer vision (e.g.
[6, 7, 19, 8, 9, 5, 18, 50]). These methods can learn general-
purpose visual representations without labels and have a
good performance on linear classification and transferabil-
ity to different tasks or datasets. Notably, a big part of the
recent self-supervised representation learning framework is
based on the idea of contrastive learning.
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A typical contrastive learning based method adopts the
noise contrastive estimation (NCE) [27] to perform the non-
parametric instance discrimination [41] as the pretext task,
which encourages the two augmented views of the same im-
age to be pulled closer on the embedding space but pushes
apart all the other images. Most of the recent works mainly
improve the performance of contrastive learning from the
image augmentation for positive samples and the explo-
ration for negative samples. However, instance discrimi-
nation based methods will inevitably induce class collision
problem, which means even for very similar instances, they
still need to be pushed apart, as shown in Figure 1. This in-
stance similarities thus tend to hurt the representation qual-
ity [1]. In this way, identifying and even leveraging these
similar instances plays a key role in the performance of
learned representations.

Surprisingly, the class collision problem seems to attract
much lesser attention in contrastive learning. As far as we
know, there has been little effort to identify similar sam-
ples. AdpCLR [49] finds the top-K closest samples on the
embedding space and treats these samples as their positives.
However, in the early stage of training, the model cannot ef-
fectively extract the semantic information from the images;
therefore, this method needs to use SimCLR [6] to pre-train
for a period of time, and then switch to AdpCLR to get the
best performance. FNCancel [23] proposed a similar idea
but adopts a very different way to find the top-K similar in-
stances; that is, for each sample, it generates a support set
that contains different augmented views from the same im-
age, then use mean or max aggregation strategy over the co-
sine similarity score between the augmented views in sup-
port set and finally identify the top-K similar samples. Nev-
ertheless, the optimal support size is 8 in their experiments,
requiring 8 additional forwarding passes to generate the em-
bedding vectors. Obviously, these methods have two short-
comings. Firstly, they are both time-consuming. In the sec-
ond place, the result of top-K closest samples might not be
reciprocal, i.e. xi is the K closest sample of xj , but xj might
not be the K closest sample of xi. In this case, xj will treat
xi as a positive sample, but xi will treat xj as a negative
sample, which will result in some conflicts.

In this paper, we regard the instance similarities as intrin-
sically weak supervision in representation learning and pro-
pose a weakly supervised contrastive learning framework
(WCL) to address the class collision issue accordingly. In
WCL, similar instances are assumed to share the same weak
label comparing to other instances, and instances with the
same weak label are expected to be aggregated. To deter-
mine the weak label, we model each batch of instances as
a nearest neighbor graph; weak labels are thus determined
and reciprocal for each connected component of the graph.
Besides, we can further expand the graph by a KNN-based
multi-crop strategy to propagate weak labels, such that we

can have more positives for each weak label. In this way,
similar instances with the same weak label can be pulled
closer via the supervised contrastive learning [25] task.
Nevertheless, since the mined instance similarities might be
noisy and not completely reliable, in practice, we adopt a
two-head framework, one of which handles this weakly su-
pervised task while the other is to perform the regular in-
stance discrimination task. Extensive experiments demon-
strate the effectiveness of our proposed method across dif-
ferent settings and various datasets.

Our contribution can be summarized as follows:

• We proposed a two-head based framework to address
the class collision problem, with one head focusing on
the instance discrimination and the other head for at-
tracting similar samples.

• We proposed a simple graph based and parameter-free
method to find similar samples adaptively.

• We introduced a K-Nearest Neighbor based multi-
crops strategy that can provide much more diverse in-
formation than the standard multi-crops strategy.

• The experimental result shows WCL establishes a new
state-of-the-art performance for contrastive learning
based methods. With only 1% and 10% labeled sam-
ples, WCL achieves 65% and 72% Top-1 accuracy on
ImageNet using ResNet50. Notably, this result is even
higher than SimCLRv2 with ResNet101.

2. Related Work
Self-Supervised Learning. Early work in self-

supervised learning mainly focuses on the designing of dif-
ferent pretext tasks. For example, predict a relative offset
for a pair of patches [12], solving the jigsaw puzzles [33],
colorize the gay-scaled images [48], image inpainting [14],
predicting the rotation angle [16], unsupervised deep clus-
tering [4] and image reconstruction [2, 17, 13, 3, 28]. Al-
though these methods have shown their effectiveness, they
lack the generality of the learned representations.

Contrastive Learning. Contrastive learning [27, 21, 41,
40] has become one of the most successful methods in the
field of self-supervised learning. As we mentioned, most
recent works mainly focus on the augmentation for positive
samples and the exploration for negative samples. For ex-
ample, SimCLR [6] proposed composition of data augmen-
tations e.g. Grayscale, Random Resized Cropping, Color
Jittering, and Gaussian Blur to making the model robust
to these transformations. InfoMin [37] further introduced
an “InfoMin principle” which suggests that a good aug-
mentation strategy should reduce the mutual information
between the positive pairs while keeping the downstream
task-relevant information intact. To explore the use of neg-
ative samples, InstDisc [41] proposed a memory bank store
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Figure 2. The overall framework of our proposed method. We adopt a two head based structure (g and ϕ). The first head g will play a
regular instance discrimination task. The second head ϕ will generate a weak label based on the connected component labeling process,
then use the weak label to perform a supervised contrastive learning task. Please see more details in section 3.

the representation of all the images in the dataset. MoCo
[19, 8] increasing the number of negatives by using a mo-
mentum contrast mechanism that forces the query encoder
to learn the representation from a slowly progressing key
encoder and maintains a long queue to provide a large num-
ber of negative examples.

Contrastive Learning Without Negatives. Unlike the
typical contrastive learning framework, BYOL [18] can
learn a high-quality visual representation without the neg-
ative samples. Specifically, it trains an online network to
predict the target network representation of the same image
under a different augmented view and using an additional
predictor network on top of the online encoder to avoiding
the model collapse. SimSiam [9] extends BYOL to explore
the siamese structure in contrastive learning further. Sur-
prisingly, SimSiam prevents the model collapse even with-
out the target network and large batch size; although the lin-
ear evaluation result is lower than BYOL, it performs better
in the downstream tasks.

3. Method
In this section, we will first revisit the preliminary work

on contrastive learning and address its limitations. Then
we will introduce our proposed weakly supervised con-
trastive learning framework (WCL), which automatically
mines similar samples while doing the instance discrimi-
nation. After that, the algorithm and the implementation
details will also be explained.

3.1. Revisiting Contrastive Learning

Typical contrastive learning methods adopt the noise
contrastive estimation (NCE) objective for discriminating
different instance in the dataset. Concretely, NCE objective
encourages different augmentations of the same instance to
be pulled closer in a latent space yet pushes away different
instances’ augmentations. Following the setup of SimCLR
[6], given a batch of unlabeled samples {x}Ni=1, we ran-
domly apply a composition of augmentation functions T (·)

to obtain two different views of the same instance, which
can be written as {x1}Ni=1 = T (x, θ1) and {x2}Ni=1 =
T (x, θ2) where θ is random seed for T . Then, a convo-
lutional neural network based encoder F(·) will extract the
information from different augmentations, that can be ex-
pressed by {h1} = F({x1}Ni=1) and {h2} = F({x2}Ni=1).
Finally, a non-linear projection head z = g(h) maps rep-
resentations h to the space where the NCE objective is ap-
plied. If we denote (zi, zj) as a positive pair, the NCE ob-
jective can be expressed as

LNCE = − log
exp(sim(zi, zj)/τ)∑N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
. (1)

3.2. Instance Similarities as Weak Supervision

The instance discrimination based methods have already
shown promising performance for unsupervised pretrain-
ing. However, this line of solution ignores the relationships
between different images because only the augmentations
from the same image will be regarded as the same class. In-
spired by previous works, we can leverage the embedding
vectors to explore the relations between different images.
Specifically, we will generate a weak label based on the
embedding vectors and then use it as a supervisory signal
to attract similar samples in the embedding space. How-
ever, direct use of weak supervision will cause two prob-
lems. First, there is a natural conflict between “instance
discrimination” and “similar sample attraction” since one
wants to push all the different instances away, and the other
wants to pull similar samples closer. Second, there might
be noise in the weak label, especially in the early training
stages. Simply attracting similar samples based on the weak
label will slow down the convergence of the model.

Two-head framework. To resolve these issues, we pro-
posed an auxiliary projection head ϕ(·). In this case, the
primary projection head g(·) will still perform a regular
instance discrimination task to focus on the instance level
information; the auxiliary projection head consists of the
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Figure 3. The procedure of weak label generation.

same structure with g(·) and will explore the similar sam-
ples and generate a weak label as the supervisory signal to
attract similar samples. With these two heads of distinct
responsibilities, we can further transform the features ex-
tracted by the encoder F into different embedding spaces to
resolve the conflict. Moreover, the primary projection head
will ensure the model’s convergence even when the weak
label has some noise. The information extracted from the
auxiliary projection head can be written as

vi = ϕ(F(T (xi, θ)))). (2)

Suppose we have obtained a weak label y ∈ RN×N based
on v which denotes whether a pair of samples is similar (i.e.
yij = 1 means xi and xj are similar). Different from Eq.
(1) that naturally forms positive pairs through augmenta-
tions, we can then leverage the label yij to indicate whether
xi and xj can produce a positive pair or not. By introducing
an indicator 1yij=1 into Eq. (1), we achieve the supervised
contrastive loss [25]

Lsup =
1

N

N∑
i=0

Li
sup (3)

Li
sup = −

N∑
j

1yij=1 log
exp(sim(vi,vj)/τ)∑N

k=1 1[k ̸=i] exp(sim(vi,vk)/τ)
,

(4)

which has been shown to be more effective than the tradi-
tional supervised cross-entropy loss.

3.3. Weak Label Generation

In this section, we will elaborate how to generate the
weak label for the mini-batch of samples. The overall idea
can be summarized into two points: First, for each sample,
the closest sample can be regarded as a similar sample. Sec-
ond, if (xi,xj) and (xj ,xk) are two pairs of similar sam-
ples, then we can think that xi and xk are also similar.

Suppose we use the auxiliary projection head ϕ to map a
batch of samples to N embeddings V = {v1,v2, ...,vN}.

Then, for each sample vi, we find the closest sample vj by
computing the cosine similarity score. Now, we can define
an adjacency matrix by:

A(i, j) =

{
1, if i = k1j or j = k1i
0, otherwise

(5)

Here, we use k1i to denote the 1-nearest neighbour of vi.
Basically, Eq.(5) will generate a sparse and symmetric 1-
nearest neighbor graph where each vertex is linked with its
closest sample. To find out all similar samples, we can con-
vert this problem into a Connected Components Labeling
(CCL) process; that is, for each sample, we want to find
all the reachable samples based on the 1-nearest neighbor
graph. This is a traditional graph problem that can be eas-
ily solved by the famous Hoshen–Kopelman algorithm [22]
(also known as the two-pass algorithm). We define an undi-
rected graph by G = (V,E) where V is the embedding
from ϕ, and edges E connecting the vertex A(i, j) = 1.
The algorithm adopts a Disjoint-set data structure that con-
sists of three operations: makeSet, union and find (see the
definition in Algorithm 1). Basically, it first creates a sin-
gleton set for each v in V , then traverses each edge in E
and merges different sets through the edges; finally, it re-
turns the set for each vertex that belongs to. Back to our
proposed idea, we will treat the samples in the same set as
similar samples. Now, the weak label can be defined as:

yij =

{
1, if find(vi) = find(vj) and i ̸= j

0, otherwise
(6)

Such weak label generation method has several advantages.

• This is a parameter-free process, so we do not need any
hyperparameter optimization.

• Based on the definition of an undirected graph and con-
nected components, the weak label is always recipro-
cal. (i.e. yij = yji)

• This is a deterministic process; the final result does not
depend on any initial state.
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Algorithm 1: Connected Components Labeling
Input: An adjacency matrix G = (V,E)
Define makeSet(v) : Create a new set with element v
Define union(A, B): Return the set A ∪B
Define find(v): Return the set which contains v
for v in V do

makeSet(v)
end
for each (vi, vj) in E do

if find(vi) ̸= find(vj) then
union(find(vi), find(vj))

end
end
for each v in V do

return the set contains v: find(v)
end
Output: The corresponding identification of the

connected component for each v.

The weak label will be used as the supervisory signal for
the auxiliary projection head ϕ. However, if vi and vj are
in the same set, sim(vi, vj) is very likely to be a large num-
ber. According to Eq. (4), directly using the weak label will
cause Lsup to be very small, which is not conducive to the
model’s optimization. To resolve this issue, we can simply
swap the weak label to supervise the same batch of sam-
ples with different augmentations. Concretely, we derive
embeddings V 1 and V 2 from two types of augmentations,
based on which we generate the corresponding weak label
y1, y2. Then y1 will be used as the supervisory signal for
V 2 and vice versa. The swapped version of Eq. (3) can be
written as:

Lswap = Lsup(V
1,y2) + Lsup(V

2,y1). (7)

3.4. Label Propagation with Multi-Crops
Since the comparison between random crops of an image

plays the key role in contrastive learning, there are lots of
previous works [10] pointing out that increasing the number
of crops or views can significantly increase the representa-
tion quality. SwAV [5] introduced a multi-crop strategy that
adds K additional low-resolution crops in each batch. Us-
ing low-resolution images can greatly reduce computational
costs. However, the multiple crops of the same image may
have many overlap areas. In this case, more crops may not
provide additional effective information. To address this is-
sue, we proposed a K-Nearest Neighbor based Multi-crops
strategy. Specifically, we will store the feature h1 for every
batch and then use these features to find the K closest sam-
ples based on the cosine similarity at the end of each epoch.
Finally, we will use the low-resolution crops of the K clos-
est images in the next epoch. If we apply the Lswap on the
K-NN multi-crops, the number of positive samples can be
expended to K times. Note that the K-NN result is unre-

Algorithm 2: Weakly Supervised Contrastive
Learning (WCL)

Input: {x1}Ni=1 and {x2}Ni=1: a batch of samples
with different augmentations. F : the
backbone network. g: the first projection
head. ϕ: the auxiliary projection head.

while network not converge do
Initialize an empty list L ;
for i=1 to step do

h1 = F({x1}Ni=1) h2 = F({x2}Ni=1)
z1 = g(h1) z2 = g(h2)
v1 = ϕ(h1) v2 = ϕ(h2)
Calculate contrastive loss LNCE Eq. (1)
Generate weak label y1, y2 based on v1, v2

Calculate swapped loss Lswap Eq. (7)
Calculate LcNCE and Lcswap

Optimize the network by Loverall Eq. (8)
Append h1 to list L ;

end
Compute the K-NN for each sample based on L.

end
Output: The well trained model F

liable in the early training; hence, we should use the stan-
dard multi-crops strategy to warm up the model for a certain
number of epochs and then switch to our K-NN multi-crops
to get better performance. (See more details in our exper-
iments.) If we use LcNCE and Lcswap to denote the con-
trastive loss and swapped loss for the multi-crops images,
then the overall training objective for our weakly supervised
contrastive learning framework can be expressed as

Loverall = LNCE + λLcNCE + βLswap + γLcswap, (8)

where λ, β and γ are the hyper-parameters. We simply take
λ = 1, β = 0.5 and γ = 0.5 in our implementation. Please
see more details in Algorithm 2.

4. Experimental Results
4.1. Ablation Studies

In this section, we will empirically study our Weak Su-
pervised Contrastive Learning (WCL) framework under dif-
ferent batch sizes, epochs, datasets(CIFAR-10, CIFAR-100,
ImageNet100) and show the effectiveness of each compo-
nent by extensive experiments.

CIFAR-10 and CIFAR-100. The CIFAR-10 [26]
dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training im-
ages and 10000 test images. CIFAR-100 is just like the
CIFAR-10, except it has 100 classes containing 600 im-
ages each. There are 500 training images and 100 testing
images per class. We use the ResNet50 [20] as our back-
bone network. Because the training images only contain
32x32 pixels, we replace the first 7x7 Conv of stride 2 with
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Table 1. Experiments on CIFAR-10 and CIFAR-100 with different batch size and training epochs

Batch Size Method
CIFAR10 CIFAR100

100 ep 200 ep 300 ep 400 ep 100 ep 200 ep 300 ep 400 ep

64 SimCLR 77.20 80.64 82.77 84.48 52.35 55.86 58.18 59.96

64 WCL (Ours)
79.17

(+1.97)
83.54

(+2.90)
85.68

(+2.91)
86.64

(+2.16)
53.54

(+1.19)
56.57

(+0.71)
59.29

(+1.11)
60.76

(+0.80)

128 SimCLR 79.64 83.57 85.70 86.72 54.72 59.19 60.88 62.20

128 WCL (Ours)
81.82

(+2.18)
85.65

(+2.08)
87.81

(+2.91)
88.65

(+1.93)
55.46

(+0.74)
60.30

(+1.11)
61.73

(+0.85)
63.17

(+0.97)

256 SimCLR 81.78 85.34 87.29 88.48 57.16 61.18 63.49 64.20

256 WCL (Ours)
83.12

(+1.34)
87.57

(+2.23)
88.85

(+1.56)
89.47

(+0.98)
57.85

(+0.70)
62.98

(+1.80)
64.21

(+0.72)
64.93

(+0.73)

3x3 Conv of stride 1 and also remove the first max pool-
ing operation. We use 2-Layer-MLP for the two non-linear
projection heads. For data augmentation, we use the ran-
dom resized crops (the lower bound of random crop ratio is
set to 0.2), color distortion (strength=0.5), and leaving out
Gaussian blur. The model is trained using LARS optimizer
[46] with a momentum of 0.9 and weight decay of 1e−6.
We linear warm up the learning rate for 10 epochs until it
reaches 0.25 × BatchSize/256, then switch to the cosine
decay scheduler [31]. The temperature parameter τ is al-
ways set to 0.1. To perform the Connected Components La-
beling process, we simply use the “connected components”
function from the Scipy Library [39]. We will use the same
training strategy for both CIFAR-10 and CIFAR-100.

ImageNet-100. ImageNet-100 dataset is a randomly
chosen subset from ILSVRC2010 ImageNet [11]. (We
simply take the first 100 class in our experiments.) For
training the ImageNet-100, we strictly follow the training
strategy reported in SimCLR [6]. Specifically, we set the
BatchSize = 2048, and use the LARS optimizer with
lr = 0.075 ×

√
BatchSize. Moreover, we found that

the default augmentation that used in SimCLR might be
too strong, which makes the model very hard to converge
in the beginning; thus, we adopt the same but a little bit
weaker version of the augmentation (the one that used in
MoCoV2[8]) in the first 10 epochs and then switch it back
to the original augmentations after warm-up. The model
will be optimized for 200 epochs, and the rest of the settings
(including temperature, weight decay, etc.) are the same as
our CIFAR training.

Evaluation Protocol. For testing the representation
quality, we evaluate our well-trained model on the widely
adopted linear evaluation protocol - We will freeze the en-
coder parameters and train a linear classifier on top of it by
using the standard SGD optimizer with a momentum of 0.9,
learning rate of 0.1 × BatchSize/256 and cosine decay
scheduler. We don’t use any regularization techniques such
as weight decay and gradient clipping. The model will be
trained for 80 epochs, then evaluated on the testing set.

Effect of weak supervision. We choose SimCLR as our
baseline, and compare it with our method on BatchSize =
64, 128, 256 and Epoch = 100, 200, 300, 400. Note, in
these experiments; we do not use any multi-crops strategy;
only an additional Lswap is applied on top of the SimCLR.
Table 1 shows the results. Obviously, our proposed method
substantially outperforms the baseline across all settings.
For CIFAR-10, we have various improvements from 0.98%
to 2.91% based on different settings. For CIFAR-100, the
improvement is from 0.73% to 1.80%.

Table 2. Effectiveness of two-head framework (ImageNet100)
g ϕ LNCE Lswap LcNCE Lcswap Top-1
✓ ✓ 75.79

✓ ✓ 71.33
✓ ✓ ✓ 75.26
✓ ✓ ✓ ✓ 77.51
✓ ✓ ✓ ✓ ✓ 79.06
✓ ✓ ✓ ✓ ✓ 79.08
✓ ✓ ✓ ✓ ✓ ✓ 79.77

Effect of two-head framework. We also perform an
extensive ablation study to examine the effectiveness of our
two head based framework. The experiments are mainly
performed on the ImageNet-100 dataset, and the result is
shown in Table 2. Note, the LcNCE and Lcswap in this
experiment is based on the standard multi-crops strategy
(without KNN). The first row is the SimCLR baseline. The
second row is the case that only Lswap is applied; the model
can still learn a meaningful representation but result in a
worse accuracy than the baseline. We also try to apply both
LNCE and Lswap on the same head; from the third row, we
can see there is a 0.53% performance drop. We doubt this
is because of the conflicts between the instance discrimina-
tion and similar sample attraction. The fourth row shows
our proposed method, which separates the two tasks on dif-
ferent heads. In this case, we get 1.72% improvements over
the baseline, which verified our hypothesis. The last three
rows show the result with the multi-crops strategy, and the
performance can be further improved by 2.26%.
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Effect of K-NN Multi-Crops. As we have mentioned,
the K-NN result is unreliable in the early training, and we
need to use the standard multi-crops strategy to warm up
the model for a certain number of epochs. Table 3 shows
the result for a different number of warm up epochs. We
can see clearly that with 50 epochs of warm up, our K-NN
multi-crops strategy has 1% improvements over the stan-
dard multi-crops (see the last row in Table 2). Finally, our
proposed method achieved 80.78% Top-1 accuracy on lin-
ear evaluation, which has 5% improvements than the Sim-
CLR baseline (75.79%).

Table 3. Warm up epochs for K-NN Multi-Crops (K=4)
Epochs 0 25 50 75 100

Accuracy 79.73 80.25 80.78 80.63 80.23

Visualization. Figure 4 shows the t-SNE visualization
[38] of h from a randomly selected 10 classes. Com-
pare to SimCLR; our weakly supervised contrastive learn-
ing framework can enhance a much better intra-class com-
pactness and inter-class discrepancy.

SimCLR Ours

Figure 4. t-SNE visualization for SimCLR and our method

4.2. Comparison on ImageNet-1K Dataset

We also performed our algorithm on the large-scale
ImageNet-1k dataset [11]. The training strategy is the same
as our ImageNet-100 training, except we adopt a larger
batch size (4096) and use the 3-Layer-MLP for the two pro-
jection heads. For the K-NN Multi-crops, we simply take
the best strategy from Table 3, which means we will use the
standard multi-crops strategy for the first 25% epochs, and
then switch to our K-NN version.

Table 4. Compare to FNCancel on ImageNet-1K

Method Epochs GPU(time) Acc
SimCLR 100 1.00 66.4
FNCancel 100 - 68.1
WCL (Ours) 100 1.01 68.1
SimCLR 1000 10.00 70.3
FNCancel + multi-crops 100 2.85 70.4
WCL (Ours) + multi-crops 100 1.31 71.0

Compare to FNCancel. [23] Table 4 shows the com-
parison between our proposed method with FNCancel and
SimCLR. Note, for a fair comparison, all models are trained
with a 3-Layer-MLP projection head. As we can see, with
a negligible additional computational cost (0.01), our pro-
posed method can surpass the SimCLR baseline 1.7% and

achieved the same result with FNCancel. FNCancel does
not report the standard time usage on the paper, but since it
requires 8 additional forward passes to generate the support
view embeddings, their actual computational cost will be
much higher than ours. We also compare the result with the
multi-crops strategy. In this case, we use 2 160×160 images
as our main views and 6 additional 96 × 96 K-NN crops.
Look at the last row; our proposed method can achieve 71.0
top-1 accuracy with only 31% more additional cost than
SimCLR. This is twice faster than FNCancel and has 0.6%
improvements on linear evaluation.

Table 5. Top-1 accuracy under the linear evaluation on ImageNet
with the ResNet-50 backbone. The table compares the methods
over 200 epochs of pretraining. * denotes multi-crops strategy.

Method Arch Param Epochs Top-1
Supervised R50 24 - 76.5
InstDisc [41] R50 24 200 58.5
LocalAgg [51] R50 24 200 58.8
SimCLR [6] R50 24 200 66.8
MoCo [19] R50 24 200 60.8
MoCo v2 [8] R50 24 200 67.5
MoCHi [24] R50 24 200 68.0
CPC v2 [27] R50 24 200 63.8
PCL v2 [29] R50 24 200 67.6
SimSiam [9] R50 24 200 70.0
SwAV [5] R50 24 200 69.1
SwAV* [5] R50 24 200 72.7
WCL (Ours) R50 24 200 70.3
WCL* (Ours) R50 24 200 73.3

Table 6. Top-1 accuracy under the linear evaluation on ImageNet.
The table compares the methods with more epochs of pretraining.
* denotes multi-crops strategy.

Method Arch Param Epochs Top-1
Supervised R50 24 - 76.5
SeLa [43] R50 24 400 61.5
SimCLR [6] R50 24 800 69.1
SimCLR v2 [7] R50 24 800 71.7
MoCo v2 [8] R50 24 800 71.1
SimSiam [9] R50 24 800 71.3
SwAV [5] R50 24 800 71.8
BYOL [18] R50 24 1000 74.3
FNCancel* [23] R50 24 1000 74.4
AdpCLR [49] R50 24 1100 72.3
WCL (Ours) R50 24 800 72.2
WCL* (Ours) R50 24 800 74.7
Others
SwAV* [5] R50 24 800 75.3

Linear Evaluation. For the linear evaluation of
ImageNet-1k, we strictly follow the setting in SimCLR
[6]. Table 5 and 6 shows our result for 200 epochs and
800 epochs of training. We also report the result with 2
224 × 224 and 6 additional 96 × 96 K-NN crops (as in
SwAV [5]). We can see clearly that when the model is opti-
mized for 200 epochs, our proposed method achieved state-
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Table 7. Low-shot image classification on VOC07

Method Epochs k=1 k=2 k=4 k=8 k=16 k=32 k=64 Full
Random - 8.92 9.33 10.10 10.42 10.82 11.34 11.96 12.42
Supervised 90 54.46 68.15 73.79 79.51 82.26 84.00 85.13 87.27
MoCo v2 [8] 200 46.30 58.40 64.85 72.47 76.14 79.16 81.52 84.60
PCL v2 [29] 200 47.88 59.59 66.21 74.45 78.34 80.72 82.67 85.43
SwAV [5] 200 43.07 55.65 64.82 73.17 78.38 81.86 84.40 87.47
WCL (Ours) 200 48.06 60.12 68.52 76.16 80.24 82.97 85.01 87.75
SwAV [5] 400 42.14 55.34 64.31 73.08 78.47 82.09 84.62 87.78
SwAV [5] 800 42.85 54.90 64.03 72.94 78.65 82.32 84.90 88.13
WCL (Ours) 800 48.25 60.68 68.52 76.48 81.05 83.89 85.88 88.64

of-the-art performance among all the recent self-supervised
learning frameworks. When the model is trained for 800
epochs, our model can still outperform most recent works
but slightly lower than SwAV.

Table 8. ImageNet semi-supervised evaluation.

1% 10%
Method Top-1 Top-5 Top-1 Top-5
Supervised 25.4 56.4 48.4 80.4
Semi-supervised
S4L [47] - 53.4 - 83.8
UDA [42] - 68.8 - 88.5
FixMatch [34] - - 71.46 89.1
Self-Supervised
From AvgPool
InstDisc [41] - 39.2 - 77.4
PCL [29] - 75.6 - 86.2
PIRL [32] 30.7 60.4 57.2 83.8
SimCLR v1 [6] 48.3 75.5 65.6 87.8
BYOL [18] 53.2 78.4 68.8 89.0
SwAV [5] 53.9 78.5 70.2 89.9
WCL (Ours) 58.3 79.9 71.1 90.3
From Projection Head
SimCLR v2 (R50) [7] 57.9 - 68.4 -
SimCLR v2 (R101)[7] 62.1 - 71.4 -
FNCancel [23] 63.7 85.3 71.1 90.2
WCL (Ours) 65.0 86.3 72.0 91.2

Semi-Supervised Learning. Next, we evaluate the per-
formance obtained when fine-tuning the model representa-
tion using a small subset of labeled data. For a fair compari-
son, we take the same labeled list from SimCLR [6]. Specif-
ically, we report our results on two different settings. First,
we follow the strategy in PCL [29], and fine-tuning from the
average pooling layer of the ResNet50 [20] network. In this
setting, our model outperforms the previous state-of-the-art
(SwAV) 4.4% on 1% labels and 0.9% on 10% labels. Then,
we also follow the strategy in SimCLRv2 [7] to fine-tuning
from the first layer of the projection head. In this case, our
method has 1.3% and 0.9% improvement on 1% and 10%
labels over FNCancel. Notably, this result is even higher
than the SimCLRv2 with ResNet101 backbone.

Transfer Learning. Finally, We further evaluate the
quality of the learned representations by transferring them
to other datasets. Following [29, 5], we perform linear clas-
sification on the PASCAL VOC2007 dataset [15]. Specif-

ically, we resize all images to 256 pixels along the shorter
side and taking a 224 × 224 center crop. Then, we train a
linear SVM on top of corresponding global average pooled
final representations. To study the transferability of the
representations in few-shot scenarios, we vary the number
of labeled examples k and report the mAP. Table 7 shows
the comparison between our method with previous works.
We report the average performance over 5 runs (except for
k=full). The result of our method and SwAV are both based
on the multi-crop version. When the model has 200 epochs
of pretraining, our method and SwAV can already outper-
form the supervised pretraining on the full dataset. Interest-
ingly, our method is significantly better than all other works,
especially when k is small. When the model has more pre-
training epochs, our method can even surpass the supervised
pretraining with k = 64 and consistently has higher perfor-
mance than SwAV across all different k values.

5. Conclusion

In this work, we proposed a weakly supervised con-
trastive learning framework that consist of two projection
heads, one of which focus on the instance discrimination
task, and the other head adopts the Connected Components
Labeling process to generate a weak label, then perform
the supervised contrastive learning task by swapping the
weak label to different augmentations. Finally, we intro-
duced a new K-NN based multi-crops strategy which has
much more effective information and expanding the num-
ber of positive samples to K times. Experiments on CIFAR-
10, CIFAR-100, ImageNet-100 show the effectiveness of
each component. The results of semi-supervised learning
and transfer learning demonstrate the state-of-the-art per-
formance for unsupervised representation learning.
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Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
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