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Abstract

Recently, some contrastive learning methods have been
proposed to simultaneously learn representations and clus-
tering assignments, achieving significant improvements.
However, these methods do not take the category infor-
mation and clustering objective into consideration, thus
the learned representations are not optimal for clustering
and the performance might be limited. Towards this issue,
we first propose a novel graph contrastive learning frame-
work, and then apply it to the clustering task, resulting in
the Graph Constrastive Clustering (GCC) method. Dif-
ferent from basic contrastive clustering that only assumes
an image and its augmentation should share similar repre-
sentation and clustering assignments, we lift the instance-
level consistency to the cluster-level consistency with the
assumption that samples in one cluster and their augmen-
tations should all be similar. Specifically, on the one hand,
we propose the graph Laplacian based contrastive loss to
learn more discriminative and clustering-friendly features.
On the other hand, we propose a novel graph-based con-
trastive learning strategy to learn more compact cluster-
ing assignments. Both of them incorporate the latent cat-
egory information to reduce the intra-cluster variance as
well as increase the inter-cluster variance. Experiments on
six commonly used datasets demonstrate the superiority of
our proposed approach over the state-of-the-art methods.'

1. Introduction

Based on a large number of annotated training sam-
ples, deep learning achieves significant success in the past
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Figure 1. Motivation of the proposed GCC. (a) Existing contrastive
learning based clustering methods mainly focus on instance-
level consistency, which maximizes the correlation between self-
augmented samples and treats all other samples as negative sam-
ples. (b) GCC incorporates the category information to perform
the contrastive learning at both the instance and the cluster levels,
which can better minimize the intra-cluster variance and maximize
the inter-cluster variance.

decade [15]. However, it is very expensive and time-
consuming to manually label a large training dataset. It is
also impractical to collect a labeled dataset for each domain
or task. In this case, clustering attracts more attention re-
cently, which aims to divide the samples into separate clus-
ters without knowing the label information.
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Clustering [3, 36, 16, 17] is a very challenging task since
samples in the same class have various appearances and su-
pervision signals are lacked to train the model. Classic clus-
tering methods [43, 10, 2, 35, 37], such as spectral cluster-
ing [26] and subspace clustering [24, 9], suffer from two ob-
vious limitations, including indiscriminative feature repre-
sentation and sub-optimal solution for clustering caused by
the separation of feature extraction and clustering. Some re-
cent deep learning based methods can well handle the above
issues. For example, auto-encoder related methods [34, 19]
minimize the reconstruction error and assign various reg-
ularization terms in the latent feature space, such as the
KL-divergence [39]. Deep adaptive clustering (DAC) [3]
maximizes the similarity between self-augmented samples
to adaptively train the neural network. Deep comprehensive
correlation mining (DCCM) [36] thoroughly investigates
various kinds of correlation among samples and features.
These approaches achieve good clustering performance, but
their upper bound accuracy is limited since the learned fea-
tures are not discriminative enough.

Recently, contrastive learning [4] has received much at-
tention in unsupervised feature learning, which emphasizes
the importance of data augmentation and maximizes the
agreement between two augmented samples. Because of its
success, a few approaches [16, 44, 23, 36] are proposed to
jointly optimize the contrastive learning and clustering. For
instance, partition confidence maximisation (PICA) [16]
learns the most semantically plausible clustering solution
by maximizing partition confidence, which corresponds
to the cluster-wise contrastive learning. Instead of only
using the cluster contrast in PICA, deep robust cluster-
ing (DRC) [44] adopts the conventional contrastive learning
in feature and cluster space simultaneously. These methods
significantly improve the clustering performance, but they
still face another obvious issue: both of them still follow
the basic framework of contrastive learning and only as-
sume that a sample and its augmentations should be similar
in the feature space, which does not incorporate the latent
category information into clustering.

In view of the above limitations, we propose the graph
contrastive framework and apply it to the clustering task, re-
sulting in the Graph Contrastive Clustering (GCC) method.
As shown in Figure 1, we assume that samples in one
cluster and their augmentations should share similar fea-
ture representations and clustering assignments, which lifts
the commonly-used instance-level consistency in PICA and
DRC to the cluster-level consistency. By incorporating
the latent category/cluster information, GCC can help to
learn more discriminative features and better clustering as-
signments, which is more suitable for the clustering task.
Specifically, we first construct a similarity graph based on
the current features, then we apply it to both representation
learning and clustering learning. For representation learn-

ing, the graph Laplacian based contrastive loss is proposed
to learn more clustering-friendly features. For clustering
learning, a novel graph-based contrastive learning strategy
is proposed to learn more compact clustering assignments.
Both of them can help to decrease the intra-class variance
and increase inter-class variance. Experimental results on
six challenging datasets validate the effectiveness of the
proposed method. We also perform extensive ablation anal-
ysis to demonstrate the superiority of graph contrastive.
Our main contributions are summarized as follows:

1. By incorporating the latent category information, we
propose a novel graph contrastive framework, which
assumes that samples in one cluster and their augmen-
tations should share similar representations and clus-
tering assignments. This framework lifts the tradition
instance-level consistency to cluster-level consistency,
thus can better reduce the intra-class variance as well
as increase the inter-class variance.

2. We apply the proposed graph contrastive framework
to the clustering task, and come up with the graph
contrastive clustering method (GCC), which consists
of two graph contrastive modules. For representation
graph contrastive module, a graph Laplacian based
contrastive loss is proposed to learn more discrimina-
tive and clustering-friendly features. For assignment
graph contrastive module, a novel graph-based con-
trastive learning strategy is proposed to learn more
compact clustering assignments.

3. We conduct extensive experiments on image cluster-
ing and our proposed method achieves significant im-
provement on various datasets. We also conduct an ex-
tensive ablation study to validate the effectiveness of
each proposed module.

2. Related work
2.1. Deep Clustering

According the difference in self-supervised signal, deep
clustering methods can be mainly divided into two cate-
gories, including the reconstruction based methods [39, 28,

, 11, 40] and the self-augmentation based methods [3, 36,

, 12, 16, 33, 44].

The former adopts the auto-encoder [34] framework and
imposes different regularization terms on the latent feature
learning. For example, DEC [39] and IDEC [! I] minimize
the KL-divergence for features in the latent subspace. Peng
et al. [28] incorporate the sparsity prior. Yang et al. [40]
combine it with K-means. DEPICT [&8] proposes the relative
entropy minimization based on convolutional auto-encoder.
The latter focuses on exploiting the consistent information
between original images and their transformed images to
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train the network. DAC [3] adopts a binary pairwise classi-
fication framework for image clustering to make the feature
learning in a “supervised” manner. DCCM [36] compre-
hensively utilizes various kinds of correlations among rep-
resentations. IIC [17] maximizes the mutual information
of positive pairs to make them keep a similar assignment
probability. PICA [16] learns the most semantically plausi-
ble clustering solution by maximizing partition confidence.
DRC [44] tries to learn invariant features and clusters by
introducing contrastive learning to optimize the consistency
between image and its augmentation. SCAN [33] utilizes
a three-stage method to improve the clustering. These ap-
proaches achieve good results, but they ignore the connec-
tions between cluster assignment learning and representa-
tion learning. As a contrast, our method considers their
connections, and simultaneously learns both feature repre-
sentation and cluster assignment.

2.2. Contrastive Learning

Recently, constrastive learning achieves significant
progress, and it can learn discriminative feature represen-
tation without any manual annotations. For example, Wu
et al. [38] introduce a memory bank to store the embed-
ding of instance representation. Zhuang et al. [45] extend
the above memory bank by learning an embedding function
to maximize a metric of local aggregation, causing simi-
lar data instances to move together in the embedding space.
MoCo [14] views contrastive learning as dictionary loop-up
and builds a dynamic dictionary with a queue and a moving-
averaged encoder. MoCo v2 [0] makes simple modifica-
tions to MoCo by using an MLP projection head and more
data augmentations. simCLR [4] simplifies recently pro-
posed contrastive self-supervised learning algorithms with-
out requiring specialized architectures or a memory bank.
simCLR v2 [5] finds that bigger self-supervised models are
more label efficient, performing significantly better when
fine-tuned on only a few labeled examples, even though they
have more capacity to potentially overfit. Tianetal. [31, 32]
extend the constrastive learning to the multi-view case and
representation distillation. Although these methods can
learn good feature representations, how to apply them to
the clustering task to improve the performance still remains
challenging.

3. Graph Contrastive Clustering
3.1. Problem Formulation

Given a set of N unlabelled images I = {I3,...,In}
from K different categories, deep clustering aims to sepa-
rate these images into K different clusters by convolutional
neural network (CNN) models such that the images with the
same semantic labels can be grouped into the same cluster.
Here we aim to learn a deep CNN network based mapping

function ¢ with parameters 6, such that each image I; can
be mapped to (z;,p;), where z; is the d-dimensional rep-
resentation feature with regularization ||2;|ls = 1 and p;
is the K -dimension assignment probability which satisfies
ZJI'{=1 pi; = 1. Then the cluster assignment for the i-th
sample ( = 1,...,N) can be predicted by the following
maximum likelihood:

¢; = argmax(p;;),1 <j < K.
J

3.2. Graph Contrastive (GC)

Let G = (V, E) be an undirected graph with vertex set
V = {v1, - ,un}. The edge set E can be represented by
the adjacency matrix A such that:

1, if (vs,v;) € E;
Ay = b )€ ()
0, otherwise.

Let d; be the degree of v;, if we define D =
d -+ 0

: . .|, then the normalized symmetric Graph
0 - d,

Laplacian of G can be defined as:

L=I-D 2AD 2, 2)

. Ay

It is easy to check that L;; = Vi 1 7.

Given N representation features x = {z1, ...,z } with
unit 5 norm, the intuition of GC is that x; should be close to
x; if A;; > 0 while z; should be far away from z; if A;; =
0. Assume that the graph can be partitioned into several
communities, the intuition of GC tells us that the similarities
of feature representations in the same community should be
larger than that between communities. Approximately, we
can define

Sintra = Z —Li;S(xs,x5) 3
L;;<0

as the total intra-community similarity and

Sinter = Z S(l’i,l’j) (4)
L

i =0

as the total inter-community similarity, where S(z;, ;) is
the similarity between x; and x;. Then we can mathemati-
cally define the loss of GC as:

N
1 ZL <0 _LijS(xi,%‘)
,C = —— IOg ij . (5)
“ N ; ( ZLij:O S(I“IJ)

Minimizing Lgc can simultaneously increase total intra-
community similarity and decrease total inter-community
similarity, which can improve the separableness and lead to
the result that learned feature representations are consistent
with the graph structure.
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Figure 2. Framework of the proposed Graph Contrastive Clustering. GCC has two heads with shared CNN parameters. The first head is a
representation graph contrastive (RGC) module, which helps to learn clustering-friendly features. The second head is an assignment graph
contrastive (AGC) module, which leads to a more compact cluster assignment.

3.3. Framework of GCC

We introduce a novel end-to-end deep clustering frame-
work by applying GC to both representation learning and
assignment learning. As shown in Figure 2, there are two
heads with shared CNN parameters in our GCC model.
The upper head is a representation graph contrastive (RGC)
module, which learns clustering-friendly features based
on representation graph contrastive learning. The bottom
head is an assignment graph contrastive (AGC) module,
which achieves the final cluster assignment with cluster-
level graph contrastive learning. With these two modules,
GCC can simultaneously learn more discriminative features
and clusters to improve clustering. We will present the de-
tails of GCC below.

3.3.1 Graph Construction

Since the deep learning model usually fluctuates during
training, the representation features of an epoch may have
large biases. We take advantage of moving average to
reduce this kind of bias before graph construction. To
be specific, assume that (bét) is the model and Z(H =
(zY), e ,z](\?)) = ((bét)(ll),~-~ ,q)ét)(IN)) are the repre-
sentation features of ¢-th epoch, the moving average of rep-
resentation features can be defined as:

0

i i=1,---,N,

_(6) (1- a)Zi(t_l) + az
z. = s
11— @)z + az?|,

7

where « is a parameter to trade-off current and past effects

i(o) = zi(o). Then we can construct the KNN graph by

A0 _ {1, if 21" € A*(z) or 2V € NF(z\);

and Z

(t 6
* 0, otherwise ©

fori,7 = 1,---, N. After that, the Graph Laplacian L®
can be obtained by Eq. (2).

3.3.2 Similarity Function

To compute the similarity between two samples, we adopt
the Gaussian kernel function which is commonly used in
spectral clustering. The similarity in GC loss Eq. (5) can be
defined as:

S(ai,x;) = e lwimwslz/m)

where 7 is a parameter that represents variance or temper-
ature. Since ||z; — z;[13 = ||zil|3 + |23 — 22 - z; =
2 — 2x; - xj, we use the following similarity function as a
substitution:

S(zi, ) = /T, 7

3.3.3 Representation Graph Contrastive

Assume I' = {I}, ..., I} is a random transformation of
original images, and their corresponding features are Z =
(21, -+ ,2y). According to graph contrastive mentioned

before, z; and z; should be similar if they are linked while

be far away if they are disconnected. Let x = z in Eq. (5),
we can get the loss of RGC learning as:

7 (@® z;-z/»/fr
Zngv)<0 Lijen™

z:z;/‘r

N
1
Lhte =~ Do (®)
i=1

Li;j=0€
3.3.4 Assignment Graph Contrastive

For traditional contrastive learning based clustering, images
and their augmentations should share similar cluster assign-
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ment distribution, e.g. the index of images and their aug-
mentations assigned to cluster k£ should be consistent. It is
reasonable but does not take advantage of clustering infor-
mation. As the model gets better and better during train-
ing, images and their neighbors also should share similar
cluster assignment distribution with high probability. Due
to this motivation, we propose the assignment graph con-
trastive learning.

Assume that I' = {I}, ..., Iy } are the random augmenta-
tions of original images and I = {1}, ..., I} satisfies that
I~; is a transformation of a random neighbor of I; according
to graph A® | the assignment probability matrix for I and

I can be defined as

D1 DPrN(1y)

/ /

p=1.. andp =

)

’
N NxK PRNUIN) | N k¢

where RN(I;) denotes a random neighbor of image I;.
We can reformulate them by the following column vector
forms:

’

q :I:qllv ?q/[(]NXK7

’

q :[lep 7@;{]NXK’

where q; and q~; can tell us which pictures in T and T" will
be assigned to cluster ¢, respectively. Then we can define
the AGC learning loss as:

1o
edi “q;/T

| X
Lacc = 7 Z log ©)

K q/[j//T
i=1 E:j:1€t J

3.3.5 Cluster Regularization Loss

In deep clustering, it is easy to fall into a local optimal so-
lution that assign most samples into a minority of clusters.
To avoid trivial solution, we also add a clustering regular-
ization loss similar to PICA [16] and SCAN [33]:

Lop =log(K) — H(Z), (10)

N P
where H is the entropy function, Z; = %
i=1 2uj=19ij

q= [Q1, ) QK] N« i 18 the assign probability of I.
Then the overall objective function of GCC can be for-

mulated as:

, and

L = Lrcc + AMace +nLer, 1D
where A\ and 7 are weight parameters.
3.4. Model Training

The objective function in Eq. (11) is differentiable and
end-to-end, enabling the conventional stochastic gradient
descent algorithm for model training. The training proce-
dure is summarized in Algorithm 1.

Algorithm 1: Training algorithm for GCC

Input: Training images Z = {1, ..., Iy}, training
epochs N, and number of clusters K.
Output: A deep clustering model with parameters
0.
Initializing graph A and parameters 6;

for each epoch do
Step 1: Sampling a random mini-batch of

images and their neighbors according to A;

Step 2: Generating augmentations for the
sampled images and their neighbors;

Step 3: Computing RGC loss by Eq. (8);

Step 4: Computing AGC loss by Eq. (9);

Step 5: Computing cluster regularization loss
according to Eq. (10);

Step 6: Update 6 with SGD by minimizing the
overall loss according to Eq. (11);

Step 7: Update A according to Eq. (6).

end

4. Experiments
4.1. Experimental Settings
4.1.1 Datasets

We conducted extensive experiments on six widely-adopted
benchmark datasets. For a fair comparison, we adopted the
same experimental setting as [3, 16]. The characteristics of
these datasets are introduced in the following.
CIFAR-10/100: [20] The image size is 32 x 32 x 3. 10
classes and 20 super-classes are considered for the CIFAR-
10/CIFAR-100 dataset in experiments. All 60,000 images
are jointly utilized to clustering.

STL-10: [7] The STL-10 is an image recognition dataset
containing 500/800 training/test images for each of 10
classes with image size 96 x 96 x 3 and additional 100,000
samples from several unknown classes for training stage.
ImageNet-10 and ImageNet-Dogs: [3] Two subsets of Im-
ageNet [21]: the former contains 10 randomly selected sub-
jects and the latter contains 15 dog breeds. Their size is set
to 96 x 96 x 3.

Tiny-ImageNet: [22] It is a very challenging tiny Ima-
geNet dataset for clustering with 200 classes. There are
100,000/10,000 training/test images with dimension 64 X
64 x 3 in each category.

4.1.2 Evaluation Metrics

Similar to [16], we adopted three standard metrics for
evaluating the performance of clustering, including Accu-
racy (ACC), Normalized Mutual Information (NMI), and
Adjusted Rand Index (ARI).
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Table 1. Clustering performance of different methods on six challenging datasets.

Datasets CIFAR-10 CIFAR-100 STL-10 ImageNet-10 Imagenet-dog-15 Tiny-ImageNet
Methods| NMI  ACC ARI | NMI ACC ARI | NMI ACC ARI | NMI ACC ARI | NMI ACC ARI | NMI ACC ARI
K-means| 0.087 0.229 0.049 | 0.084 0.130 0.028 | 0.125 0.192 0.061 | 0.119 0.241 0.057 | 0.055 0.105 0.020 | 0.065 0.025 0.005
SC 0.103  0.247 0.085 | 0.090 0.136 0.022 | 0.098 0.159 0.048 | 0.151 0.274 0.076 | 0.038 0.111 0.013 | 0.063 0.022 0.004
AC 0.105 0.228 0.065 | 0.098 0.138 0.034 | 0.239 0.332 0.140 | 0.138 0.242 0.067 | 0.037 0.139 0.021 | 0.069 0.027 0.005
NMF | 0.081 0.190 0.034 | 0.079 0.118 0.026 | 0.096 0.180 0.046 | 0.132 0.230 0.065 | 0.044 0.118 0.016 | 0.072 0.029 0.005
AE 0.239 0.314 0.169 | 0.100 0.165 0.048 | 0.250 0.303 0.161 | 0.210 0.317 0.152 | 0.104 0.185 0.073 | 0.131 0.041 0.007
DAE | 0.251 0.297 0.163 | 0.111 0.151 0.046 | 0.224 0.302 0.152 | 0.206 0.304 0.138 | 0.104 0.190 0.078 | 0.127 0.039 0.007
GAN | 0.265 0315 0.176 | 0.120 0.151 0.045 | 0.210 0.298 0.139 | 0.225 0.346 0.157 | 0.121 0.174 0.078 | 0.135 0.041 0.007
DeCNN | 0.240 0.282 0.174 | 0.092 0.133 0.038 | 0.227 0.299 0.162 | 0.186 0.313 0.142 | 0.098 0.175 0.073 | 0.111 0.035 0.006
VAE | 0.245 0.291 0.167 | 0.108 0.152 0.040 | 0.200 0.282 0.146 | 0.193 0.334 0.168 | 0.107 0.179 0.079 | 0.113 0.036 0.006
JULE | 0.192 0.272 0.138 | 0.103 0.137 0.033 | 0.182 0.277 0.164 | 0.175 0.300 0.138 | 0.054 0.138 0.028 | 0.102 0.033 0.006
DEC | 0.257 0.301 0.161 | 0.136 0.185 0.050 | 0.276 0.359 0.186 | 0.282 0.381 0.203 | 0.122 0.195 0.079 | 0.115 0.037 0.007
DAC |0.396 0.522 0.306 | 0.185 0.238 0.088 | 0.366 0.470 0.257 | 0.394 0.527 0.302 | 0.219 0.275 0.111 | 0.190 0.066 0.017
DCCM | 0496 0.623 0.408 | 0.285 0.327 0.173 | 0.376 0.482 0.262 | 0.608 0.710 0.555 | 0.321 0.383 0.182 | 0.224 0.108 0.038
11c - 0.617 - - 0.257 - - 0.610 - - - - - - - - - -
PICA | 0591 0.696 0.512|0.310 0.337 0.171 | 0.611 0.713 0.531 | 0.802 0.870 0.761 | 0.352 0.352 0.201 | 0.277 0.098 0.040
DRC | 0.621 0.727 0.547 | 0.356 0.367 0.208 | 0.644 0.747 0.569 | 0.830 0.884 0.798 | 0.384 0.389 0.233 | 0.321 0.139 0.056
GCC [0.764 0.856 0.728(0.472 0.472 0.305|0.684 0.788 0.631|0.842 0.901 0.822|0.490 0.526 0.362|0.347 0.138 0.075

4.1.3 Compared Methods

We compared the proposed method with both tra-

ditional

and deep

learning based methods,

ing K-means, spectral clustering (SC) [

erative clustering (AC) [10],

trix factorization (NMF) based -clustering [2],

encoder (AE) [!], denoising auto-encoder (DAE) [
], deconvolutional networks (DECNN) [
ational auto-encoding (VAE) [

GAN [

]9

includ-
], agglom-
the nonnegative ma-
auto-

]7

vari-

], deep embedding cluster-

ing (DEC) [39], jointly unsupervised learning (JULE) [41],
deep adaptive image clustering (DAC) [3], invariant in-

formation clustering [
tion Mining (DCCM) [
tion (PICA) [

4.1.4 Implementation Details

We utilized PyTorch [
our framework, we used ResNet-18 [

], and deep robust clustering (DRC) [

], deep comprehensive correla-
], partition confidence maximisa-

1.

] to implement all experiments. In
] as the main net-

onds to construct a KNN graph. Therefore, its time cost is
neglectable and the KNN graph construction does not limit
its application to large scale datasets. For the ablation study,
we adopted the same setting as SCAN [33] to perform self-
labeling processing.

4.2. Experimental Results and Analysis

In Table 1, we presented the clustering results of GCC
and other related methods on these six challenging datasets.
The results of other methods are directly copied from
DRC [44]. Based on the results, we can first see that deep
learning based methods achieve much better results than tra-
ditional clustering methods due to the large parameter ca-
pacity. For instance, the accuracy of most deep learning
based clustering methods on CIFAR-10 is much higher than
0.3, while the accuracy of these classic methods, including
SC, AC, and NMF, is lower than 0.25. Secondly, these con-
trastive learning based methods, such as PICA, DRC and
GCC, are more suitable for the clustering task since they can
learn more discriminative feature representation. Most im-

work architecture and train networks on one Tesla P100
GPU. We first train the model by simCLR [4] loss with
50 epochs. The SGD optimizer is adopt with Ir = 0.4, a
weight decay le — 4 and momentum coefficient 0.9. The
learning rate decays by cosine scheduler with decay rate
0.1. The batch size is set to 256 and the same data augmen-
tation is adopted as [4]{color jitter, random grayscale, ran-
domly resized crop}. The temperatures in RGC and AGC
are set to 7 = 0.1 and 7 = 1.0, respectively. For hyper-
parameters, we set « = 0.5, A = 0.5 and n = 1.0 for all
datasets. For the construction of KNN graph, we set K =5
and utilized the efficient similarity search library ’Faiss’ .
Even for 1 million samples with 256 dimensional features
on a CPU with 64 cores and 2.5GHz, it takes about 50 sec-

Zhttps://github.com/facebookresearch/faiss

portantly, it is obvious that our GCC significantly surpasses
other methods by a large margin on most benchmarks un-
der three different evaluation metrics. Even compared with
the recent state-of-the-art methods PICA and DRC, the im-
provement of GCC is also remarkable. Take the clustering
accuracy for example, our results are 12.9%, 10.5%, 4.1%
higher than that of the second best method DRC on CIFAR-
10, CIFAR-100 and STL-10, respectively. The above re-
sults can well demonstrate the effectiveness and robustness
of our proposed method.

4.3. Ablation Study

According to the objective function in Eq. (11), there
are three different losses in total. In this section, we will
demonstrate that RGC loss in Eq. (8), AGC loss in Eq. (9),
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Table 2. Effect of two graph contrastive losses, where v means
using graph information. Metric: ACC.

RGC AGC CIFAR-10 CIFAR-100 ImageNet-10

0.752 0.438 0.878

v 0.809 0.463 0.884
v 0.825 0.462 0.893

v v 0.856 0.472 0.901

Table 3. Effect of cluster regularization loss. Metric: ACC.

Method CIFAR-10 CIFAR-100 ImageNet-10
GCC w/o CR 0.680 0.348 0.828
GCC 0.856 0.472 0.901

and cluster regularization loss in Eq. (10) are all very im-
portant to improve the performance. We will also eval-
uate the influence of a post-processing strategy used in
SCAN [33] and the superiority of graph contrastive for
clustering-oriented representation learning over the basic
contrastive learning method.

4.3.1 Effect of Graph Contrastive Loss

We first investigated how RGC and AGC losses affect
the clustering performance on CIFAR-10, CIFAR-100 and
ImageNet-10. Results are shown in Table 2. Method in the
first line only adopts the basic contrastive loss. Compared
with it, both RGC and AGC improve the clustering results
on all three datasets, especially on CIFAR-10. All best re-
sults are achieved by GCC, which implies that both RGC
and ARC terms are indispensable.

4.3.2 Effect of Cluster Regularization Loss

Deep clustering methods can easily fall into a local optimal
solution when most samples are assigned to the same clus-
ter. We examined how the cluster regularization loss ad-
dresses this problem. As shown in Table 3, we can see that
it significantly helps to improve the clustering performance.
It is interesting to see the cluster regularization loss has little
impact on ImageNet-10 since it is a relatively easy dataset
where images from different classes are well separated.

4.3.3 Effect of Self-labeling Fine-tuning

SCAN [33] proposes a three-stage method for image clus-
tering and achieved high performance. The clustering re-
sults benefit a lot by fine-tuning through self-labeling. For a
fair comparison, we also performed self-labeling after GCC
and the results are shown in Table 4. We can see that GCC
outperforms SCAN [33] both before and after self-labeling
on all three datasets reported in the paper of SCAN, which
indicates that GCC learns more clustering-friendly repre-
sentations and better clustering assignments.

Table 4. Effect of self-labeling. * means that adopting self-label
post-processing. Metric: ACC.
Method CIFAR-10 CIFAR-100 STL-10

SCAN 0.818 0.422 0.755

GCC 0.856 0.472 0.788
SCAN* 0.883 0.507 0.809
GCccr 0.901 0.523 0.833

Table 5. Comparison of features learned by GCC and simCLR.
Metric: ACC.

Method CIFAR-10 CIFAR-100
simCLR + SC 0.660 0.292
GCC + SC 0.746 0.367
simCLR + K-means 0.628 0.380
GCC + K-means 0.754 0.420
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(a) Training Accuracy of Top-5 NN (b) Top-K NN Accuracy
Figure 3. Top- K nearest neighbor accuracy of GCC and simCLR:
(a) The evolution of top-5 NN accuracy for CIFAR-10 and CIFAR-
100 during the training process of GCC. (b) The comparison of
top-K NN accuracy of CIFAR-10 and CIFAR-100 when varying
K from 1 to 50.

4.3.4 Superiority of Graph Contrastive

To demonstrate the superiority of Graph Contrastive on
learned features, we performed two more quantitative anal-
ysis. First, we directly adopted K-means and Spectral Clus-
tering (SC) [30] to cluster the learned features of basic con-
trastive learning (simCLR [4]) and GCC on testing datasets
(10,000 samples). For a fair comparison, here we only used
RGC loss for GCC, and the implementation details are same
to simCLR [4]. As we can see from Table 5, the clus-
tering performance of GCC is much better than simCLR,
which verifies that the features learned by GCC are more
conducive to clustering.

Furthermore, we calculated the accuracy of top-K near-
est neighbor (NN) obtained by GCC and simCLR, and the
results are shown in Figure 3. We can see that the top-5 NN
accuracy of GCC becomes better and better during training
from Figure 3(a), which verifies the motivation of our graph
contrastive learning. The comparison of GCC and simCLR
are shown in Figure 3(b), where the results of GCC are con-
sistently better than simCLR when varying K from 1 to 50.

Several recent methods [13, 18] propose to extend basic
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Figure 4. Case study on ImageNet-10. Successful cases (left), false negative cases (middle), and false positive failure cases (right).

Table 6. Comparison of graph contrastive and ordinary contrastive
learning with multiple positives. Metric: ACC.

Method CIFAR-10 CIFAR-100 ImageNet-10
Multi-positive 0.807 0.426 0.872
GCC 0.856 0.472 0.901

contrastive learning by simply adding more positive sam-
ples. We replaced RGC with this contrastive loss to perform
clustering analysis and the result is shown in Table 6. It is
clear that GCC performs much better, which again demon-
strates the advantages of our GC framework.

4.4. Qualitative Study
4.4.1 Visualization of Representations

To further illustrate that the features obtained by GCC are
more suitable for clustering than simCLR, we visualized
them on CIFAR-10 by t-SNE [25]. To be specific, we plot-
ted the predictions of 6,000 randomly selected samples with
the ground-truth classes color encoded by using t-SNE. As
shown in Figure 5, samples in the same class are more com-
pact and samples of different classes are significantly bet-
ter separated for GCC. For example, the samples of class 2
(in green-yellow) are divided into two parts in simCLR but
gathered together in GCC.

4.4.2 Case Study

At last, we investigated both success and failure cases to
get extra insights into our method. Specifically, we stud-
ied three cases of four classes from ImageNet-10, including
success cases, false negative failure cases, and false posi-
tive cases. As shown in Figure 4, GCC can successfully
group together images of the same class with different back-
grounds and angles. Two different failure cases tell us that
GCC mainly learns the shape of objects. Samples of differ-
ent classes with a similar pattern may be grouped together
and samples of the same class with different patterns may
be separated into different classes. It is hard to look into the
details at the absence of the ground-truth labels, which is
still an unsolved problem for unsupervised learning.

(a) Basic Contrastive Learning (b) Graph Contrastive Clustering

Figure 5. t-SNE visualization for basic contrastive learning and
our graph contrastive learning on the CIFAR-10 dataset.

5. Conclusion

To address the shortage of existing contrastive learning
based clustering methods, we propose a novel graph
contrastive learning framework, which is then applied
to the clustering task and we come up with the GCC
method. Different from basic contrastive clustering that
only maximizes the correlation between an image and its
augmentation, we lift the instance-level feature consistency
to the cluster-level consistency with the assumption that
samples in one cluster and their augmentations should have
similar representations. We perform extensive experiments
on six widely-adopted benchmarks to demonstrate that
GCC learns more clustering-friendly representations than
basic contrastive learning and outperforms a wide range of
state-of-the-art methods.
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