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Abstract

The semi-supervised semantic segmentation methods uti-
lize the unlabeled data to increase the feature discrimina-
tive ability to alleviate the burden of the annotated data.
However, the dominant consistency learning diagram is
limited by a) the misalignment between features from la-
beled and unlabeled data; b) treating each image and re-
gion separately without considering crucial semantic de-
pendencies among classes. In this work, we introduce
a novel C3-SemiSeg to improve consistency-based semi-
supervised learning by exploiting better feature alignment
under perturbations and enhancing the capability of dis-
criminative feature cross images. Specifically, we first in-
troduce a cross-set region-level data augmentation strat-
egy to reduce the feature discrepancy between labeled data
and unlabeled data. Cross-set pixel-wise contrastive learn-
ing is further integrated into the pipeline to facilitate fea-
ture representation ability. To stabilize training from the
noisy label, we propose a dynamic confidence region se-
lection strategy to focus on the high confidence region for
loss calculation. We validate the proposed approach on
Cityscapes and BDD100K dataset, which significantly out-
performs other state-of-the-art semi-supervised semantic
segmentation methods.

1. Introduction
Semantic segmentation is a fundamental and challeng-

ing problem in the computer vision community and has
been studied for the long term. It aims to generate high-
resolution pixel-wise categories prediction given an im-
age and can be applied to many applications such as au-
tonomous driving [39, 51, 9] and medical image analy-
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sis [36, 53]. Most of the methods enjoy the merit of
Convolutional Neural Networks (CNNs) and improve it by
designing specific architectures as well as training strate-
gies [26, 36, 5, 43]. However, these data-driven methods
depend on the large scale and the high quality of the anno-
tated dataset, which becomes a burden to apply in the real
world. Regarding limited annotations, the network cannot
discern the various appearance within the category and is
easily over-fitted to the restricted samples, which results in
error prediction in some confusing categories.

Semi-supervised learning aims to utilize datasets that
have labels for only a fraction of their samples [18] by learn-
ing representation from both labeled and unlabeled data.
The trained network usually has better generalization ability
on unseen data than that trained with fully supervised set-
ting. Adding consistency regularization is a common way
in semi-supervised learning [23, 38, 13]. It encourages the
network to generate similar predictions for the same un-
labeled image with different augmentation by calculating
the difference between outputs as the loss function. Nev-
ertheless, previous methods only facilitate the intra-image
feature consistency inside the unlabeled dataset. Although
both labeled data and unlabeled data are sampled i.i.d. from
the same data distribution, it is observed the empirical dis-
tribution of labeled data often deviates from the true sam-
ples distribution [44], which further leads to the misalign-
ment in the feature space [27] and even hurts the perfor-
mance [31]. Therefore, reducing the feature misalignment
and enhancing feature discriminative ability is crucial for
semi-supervised pixel-level recognition.

In this work, we introduce a novel C3-SemiSeg to allevi-
ate those constraints of consistency-based semi-supervised
methods by exploiting better feature alignment under per-
turbations, and enhancing discriminative of the inter-class
features cross images from both labeled and unlabeled set.

Specifically, we adopt the mean teacher networks [38]
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into our framework, where each model contains a shared
CNN encoder followed by a segmentation head and a pro-
jection head in parallel during training. To fully enjoy the
merit of consistency regularisation, we propose the asym-
metric data augmentation strategy with the cross-set region-
level data mixing that feeds the strong augmented data into
the student to match the prediction of weak augmented data
from the teacher network. The data mixing method can fur-
ther narrow the feature misalignment between labeled and
unlabeled data throughout cross-set fusion.

Meanwhile, a pixel-wise contrastive loss is added on
both labeled and unlabeled features to simultaneously pro-
mote the embedding to be close to that from the same cat-
egory while being far away from different categories. The
intuition is to enforce the feature compactness within the
class and increase the discriminative across classes, simi-
lar to [45], but the target scope is different. [45] only
conducts contrastive learning within labeled data, while our
method leverages both labeled and unlabeled data. There-
fore, our method could not only enhance feature discrimi-
native, but also reduce feature misalignment between two
sets, and extend the hard negative sampling space. Further-
more, to reduce the negative effect brought by noisy predic-
tions, we proposed the Dynamic Confident Region Selec-
tion (DCRS) to preserve class-balanced samples adaptively
with high confidence for network optimization at each step.

We conduct experiments on Cityscapes and BDD100K
datasets with different proportions of labeled data to demon-
strate the effectiveness of our proposed approach in differ-
ent situations. It even closes the performance gap between
1/4 labeled data and fully labeled data by 79%. Our contri-
butions can be summarised as follow:

• We propose a novel C3-SemiSeg framework to improve
conventional consistency-based semi-supervised learning
by the asymmetric data augmentation with the cross-set
region-level data mixing to narrow the feature misalign-
ment between labeled and unlabeled data.

• A pixel-wise contrastive learning loss function is pro-
posed to enhance inter-class feature discrepancy and
inter-class feature compactness across the dataset, with
the Dynamic Confident Region Selection module to fur-
ther prevent the misleading from noisy predictions.

• Extensive experiments on two autonomous driving
dataset, named Cityscapes and BDD100K demonstrates
C3-SemiSeg outperforms other state-of-the-art methods
significantly with all the labeled data ratio.

2. Related Works
Semi-supervised learning. Semi-supervised learning is
considered a promising way to reduce the need for ex-
pensive annotations. Most methods are designed accord-

ing to one or several following considerations: (1) Con-
sistency regularisation. Some methods [23, 38] assume
that by giving input with different perturbations, the pre-
dictions should be consistent. Different data augmentation
are added to the same unlabeled data, equipped with the
loss function to encourage the predictions to be close to
each other. (2) Pseudo-labeling. These methods [24, 42]
gives pseudo-label to unlabeled data through the network
pre-trained from labeled data. Then, they retrain the net-
work and refine the pseudo-label iteratively. (3) Entropy
regularisation. It encourages the network to be confident in
the decision making by minimizing the entropy [14].
Semi-supervised Semantic Segmentation. Early
works [30, 20] introduce GAN-based framework and
adversarial training to encourage the predictions from
labeled and unlabeled data to be indistinguishable.

Recently, people investigates the self-training strategy
on this task [57, 58, 59, 4, 12, 28]. These methods fo-
cus on calibrating the pseudo-label from reliable predic-
tions. Zou et al. [57] jointly performed network learning
and pseudo-label estimation with the class-specific thresh-
old for class-balanced self-training. [59] further incorpo-
rated two types of confidence regularisation to encourage
the network output’s smoothness. Based on [57], Mei et
al. [28] proposed an exponential moving average method
to generate the threshold of each instance for unsupervised
domain adaptation. Compared with the previous method, it
is more flexible to adjust the class-aware threshold dynam-
ically. Hence, we adapt [28] into our method. Recently,
[59] introduced a calibrated fusion strategy by combining
the self-attention Grad-CAM maps with predictions. Nev-
ertheless, to acquire reasonable Grad-CAM results on the
dataset where most images have the same image-level label,
more aggressive geometric data augmentation is needed.

The self-training method’s main disadvantage is that
it requires a well-trained teacher model, while this pre-
requisite is not always held, especially when data is ex-
tremely limited. Compared with it, the consistency train-
ing method [13, 34, 32] performs better in low-data regime.
The main factor to their success is the data augmentation
strategy, where either input augmentation [13, 32] or feature
perturbation are studied [34]. [13] demonstrated the effec-
tiveness of CutOut [11] and CutMix [54] in this task. [32]
used the predicted labels to synthesise new images by mix-
ing half of the semantic class region between two images.
[19] further mixed images according to depth information
from a depth estimation model trained by extra sequential
data. Instead of mixing unlabeled data only [13, 32], we
argue that (1) conducting data mixing [54] between labeled
and unlabeled data, and (2) using weakly-augmented data
for teacher and strong-augmented data for the student is the
best choice for semi-supervised semantic segmentation.
Contrastive Learning for Dense Prediction. Recently,
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Figure 1. Overview of the proposed C3-SemiSeg framework. The approach consists of two networks with the same architecture to
carry out semi-supervised semantic segmentation. Each network contains a shared CNN feature extractor (CNN-t/ CNN-s) followed by
a projection head (PROJ-t/ PROJ-s) and a segmentation head (SEG-t/ SEG-s). We perform the region-level data mixing across strong
augmented data from DU and DL, and encourage the consistency predictions between the teacher and the student. Meanwhile, the unit-
normalized embedding features are sampled according to its segmentation result for pixel-wise contrastive learning to encourage intra-class
compactness and inter-class discriminative. In each forward pass, Dynamic Confident Region Selection (DCRS)strategy is proposed to
update the class-balanced confident threshold adaptively and then select the high confident region for loss calculation.

contrastive learning methods raise researchers’ attention
due to the success on representation learning and other ap-
plications [15, 33, 7, 8, 16]. The core idea of these ap-
proaches is to pull the embedding of positive samples and
push negative samples’ embedding in the projection space.
Here we focus on the most related literature for dense pre-
diction tasks and refer readers to [25, 21] for other de-
tails. Methods of self-supervised pre-training for dense
prediction [47, 48, 49, 3] focus on defining novel posi-
tive/negative pairs and designing specific learning frame-
work. Recently, Wang et al. [46] proposed a pixel-wise
metric learning paradigm by exploring labeled pixels’ struc-
ture using contrastive learning and shows promising results
on supervised semantic segmentation. Zhao et al. [56] de-
signed a contrastive learning-based training strategy for a
semi-supervised setting. However, [56] still needs a con-
trastive pre-training step before adding unlabeled data. In
contrast, we aim to encourage the class-specific embedding
to be discriminative and the predictions of augmented in-
puts to be consistent together throughout end-to-end train-
ing to enjoy the merit of the complementary information
from both labeled and unlabeled data.

3. Method

3.1. Overview of C3-SemiSeg.

Following the setting of semi-supervised semantic seg-
mentation, we are provided with a small set of labeled data
with pixel-level annotation DL and a large set of unlabeled
data DU . Let BL and BU denotes the labeled and unlabeled
data in each batch, a standard pixel-wise cross-entropy loss
is applied on the segmentation head for labeled data, similar

to previous semi-supervised methods [13]:

Lsup = − 1

|BL|
∑
x∈BL

1

ML

ML∑
i=1

yTi log(f (θ;A ◦ xi)), (1)

where θ is the learnable weight of the encoder and the seg-
mentation head (CNN-s and SEG-s in Figure 1), ML de-
notes the number of valid pixels in one image, yi ∈ Rc is
the one-hot vector label, and A(·) represents the weak aug-
mentation function applied on the labeled image.

For unlabeled data, an unsupervised consistency loss
term is applied to encourages consistent predictions in re-
sponse to one image with different perturbations. To con-
struct prediction pairs, we adopt the mean teacher frame-
work [38]. An exponential moving average weight of the
student network is used to update the teacher: θ̂t = αθ̂t−1+
(1− α)θt, where α is the hyper-parameter that controls the
update ratio. Hence, it tends to produce a more accurate
model [35]. Let f(θ̂; ·) denotes the combination of the en-
coder and the segmentation head from the teacher network,
the unsupervised consistency loss term is formed:

Lconsist =− 1

|BU |
∑
x∈BU

1

MU

MU∑
i=1

f
(
θ̂;A ◦ xi

)T

log
(
f
(
θ; Â ◦ xi

))
,

(2)

where Â(·) is the strong augmentation function for the un-
labeled data (details in Section 3.2), MU represents the size
of confidence region (details in Section 3.4). Equation 2 can
be considered as the cross-entropy loss function that utilises
the teacher’s prediction as the soft target label.
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Additionally, a pixel-wise contrastive loss is calculated
on the pixel embedding from the projection head. Let fi
denotes the unit-normalized features for pixel i, Pi and Ni

denotes the corresponding positive set and negative set. The
pixel-wise contrastive loss is formed:

Lcontrast = − 1

N

N∑
i=1

1

|Pi|∑
j∈Pi

log
exp

(
fT
i · fj/τ

)
exp

(
fT
i · fj/τ

)
+
∑

k∈Ni
exp

(
fT
i · fk/τ

) ,
(3)

where τ represents the temperature.

3.2. Cross-Set Data Augmentation

Previous semi-supervised methods normally carried data
augmentation within the unlabeled set [2, 13, 59]. But when
there exists distribution mismatching between labeled and
unlabeled set, the feature misalignment would hurt the per-
formance. To reduce this effect and fully enjoy the merit
of consistency learning, we propose (1) conducting region-
level data mixing across data from DU and DL, and (2)
using asymmetric data augmentation for two networks.
Region-level data mixing. Data mixing is the augmenta-
tion technique by combing two images in pixel-level [55,
40] or region level [54], which encourages the network to
attend on less discriminative parts and therefore utilises a
broader variety of features. Previous methods suggested
applying CutMix to unlabeled data [13]. Though it en-
riches the diversity of unlabeled samples, it does not deduce
the feature misalignment between DL and DU . Especially
when there is a large ratio gap between DL and DU , it is
possible to exist a large distribution shift between two sets.
Recently, [50, 41] illustrates the effectiveness of MixUp for
domain mix-up strategy in unsupervised domain adaptation.
Therefore, we propose to conducted cross-set data mixing
by combining BL and BU data together for CutMix. Specif-
ically, given two images xa,xb ∈ B, where B = BU ∪ BL,
the region-level mixing process is:

xmix = m⊙ xa + (1−m)⊙ xb, (4)

where m is a binary mask initialized as one with a random
rectangle of pixels as zero. Lsup and Lcon is applied to the
labeled and unlabeled region of xmix.
Asymmetric data augmentation. In terms of classifica-
tion, previous methods [23, 38, 2] utilised the same weak
augmentation for both the teacher and the student’s inputs.
Recent methods [37, 1] shows better results by applying
substantial augmentation for the student while weak aug-
mentation for the teacher. Here, instead of using the same
intensity of augmentations for both networks [13], we pro-
pose to apply weak augmentation for the teacher to acquire
more precious predictions as supervised signals. Then, the

strong augmentation with proposed region-level data mix-
ing and RandAugment [10] is applied to the input of the
student network.

3.3. Pixel-wise Contrast Learning

Although the consistency regularisation encourages the
invariant predictions given an image with small perturba-
tions, it does not consider the cross-image structure infor-
mation. To further enhance the feature discriminative abil-
ity, we propose to take the merit of contrastive learning
that pulls the pixel-wise features from the same category
and pushes features away from different categories across
images. Specifically, features from the shared encoder are
feed into the projection head and map into the embedding
space. Let fi denotes the i-th pixel’s unit-normalized em-
bedding. Its corresponding positive set Pi is the pixel em-
bedding with the same category, while the negative set Ni

is that with different categories. To reduce the feature mis-
alignment between labeled and unlabeled set, Pi and Ni

are constructed by combining features from two sets in the
same batch together. By learning from comparison, it facili-
tates features to be closer to those that belonged to the same
class and be discrepant to those from different classes.

The proposed pixel-wise contrastive loss requires the
category information to sample positive and negative sets.
To enable the usage of features from unlabeled data, we as-
sume that the teacher’s predictions are correct in most areas
and use its prediction to assign positive and negative pairs.
To reduce the negative effect from noisy predictions, we
propose the dynamic confidence region selection strategy
(Section 3.4) to filter out the uncertain region. Therefore,
Equation 3 can be re-written as:

Lcontrast = − 1

M̂L + M̂U

M̂L+M̂U∑
i=1

1

|Pi|
∑
j∈Pi

log
exp

(
fT
i · f̂j/τ

)
exp

(
fT
i · f̂j/τ

)
+

∑
k∈Ni

exp
(
fT
i · f̂k/τ

) ,
(5)

where f̂j and f̂k are positive and negative embeddings from
the teacher network, M̂L and M̂U denotes the summation
of ML and MU in one batch, respectively. We also utilise
the Segmentation-Aware Hard Anchor Sampling in [46] to
let segmentation results help find informative hard samples.
Specifically, for the data from BL, hard samples are points
from the wrong prediction area, and for the data from BU , it
is defined as the inconsistent outputs between two networks.

3.4. Dynamic Confident Region Selection

It is natural for the predicted probability to exist errors.
These noisy soft labels would harm the learning process sig-
nificantly. Therefore, designing a sample selection strategy
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to filter the noisy label is desirable. [37] proposed to ig-
nore the region with the confidence less than the threshold.
[57] and [58] further proposed the class-balanced threshold
that estimates an individual threshold for each class to pre-
vent the class domination in the pseudo label. However, a
fixed threshold is not suitable for the continuously updated
teacher network in our framework. Hence, we proposed to
utilise a dynamic class-balanced threshold for region selec-
tion. Specifically, for each forward pass, we sort the predic-
tions with a reservation ratio s for the c-th class to find the
class-specific threshold δt,c for current batch. Yet DCRS
does not directly use the current threshold to preserve re-
gions. Instead, it uses the overall threshold which is up-
dated online by averaging the consecutive thresholds from
different forward pass via EMA:

δ̂t,c = βδ̂t−1,c + (1− β)δt,c, (6)

where β controls the update ratio, δ̂t,c denotes the final
confidence threshold for the c-th class at t-step, which is
smoother by the past threshold information. After updating
δ̂t,c, it is used to mask the teacher’s predictions in this batch.
Regions with confidence less than the threshold are ignored
in consistency regularisation and contrastive learning.

Our DCRS is similar to the IAS [28], with two differ-
ences: (i) We do not give a tighter sample ratio for the
harder classes and (ii) we utilise DCRS during training in-
stead of IAS during the pseudo-labels generation.

3.5. Overall Loss Function

The proposed semi-supervised semantic segmentation
can be trained in an end-to-end fashion. The total loss is

Ltotal = Lsup + λ1Lconsist + λ2Lcontrast, (7)

where λ1 and λ2 are hyper-parameters to balance each
term’s intensity. Note that the projection head will be re-
moved after training. Therefore, it does not add any com-
putation cost at inference time.

4. Experiments
4.1. Experimental Setup

We conduct experiments and report the mean
intersection-over-union (mIOU) score on two commonly
used dataset, namely Cityscapes and BDD100K.
Cityscapes [9]: This is an autonomous driving dataset cap-
tured from 50 cities in the real world. It contains high-
quality pixel-level annotations for 19 semantic categories
with a fixed resolution of 2048 × 1024. The training and
validation splits contain 2975 and 500, respectively. Fol-
lowing previous works [13, 32, 12], we down-sample the
images to 1024 × 512. We randomly sample 1

30 , 1
8 , and 1

4
of training data as DL, and remain others in DU . Besides,

we also evaluate our framework on the full supervised con-
dition, where both DU and DL contain all samples. Same
as [32, 12], we conduct our method over 3 runs.
BDD100K [52]: This is another large-scale autonomous
driving dataset. For semantic segmentation task, it has the
same label space like that in Cityscapes [9]. The training
and validation splits contain 7000 and 1000 images, respec-
tively. Previously, no semi-supervised semantic segmen-
tation method conducted experiments on this dataset. We
choose to estimate the performance with the same data ratio
as that on Cityscapes ( 1

30 , 1
8 , and 1

4 ).
Network Structure. Same as previous methods [13, 32],
we utilize DeepLab V2 [5], which contains Atrous Spa-
tial Pyramid Pooling (ASPP) module to extract multi-scale
representations based on ImageNet pre-trained ResNet-
101 [17] in our experiments. Specifically, the ResNet-
101 denotes CNN in Figure 1. ASPP and the following
classifier are considered as the segmentation head (SEG).
The projection head is implemented as a two-layer feed-
forward network with a non-linear function between layers:
Conv-ReLU-Conv, to map the 2048-d features from the
backbone into 256-d embedding space.
Implementation Details. Same data augmentation is used
in experiments on two datasets. Notably, images from
DL are only applied weak augmentation, including ran-
domly horizontal flip and randomly rotation within 10◦.
On the other hand, images from DU are conducted weak
augmentation and strong augmentation for the teacher and
the student. In terms of strong augmentation, it contains
the geometric operation mentioned before, colour jittering
and the colour transformation from RandAugment [10] (de-
tails in the supplementary material). For pixel-wise con-
trastive loss, we select twenty samples per class in each
image to build a positive set and a negative set. Half of
them are chosen from the wrong prediction region, which
is recommended by [46]. The temperature τ is set to 0.15
in all experiments. For Cityscapes, images from DL and
DU are randomly cropped into 256 × 512 as inputs. To
prevent the model from confusing by initial noisy predic-
tions, it conducts purely supervised learning at the first ten
epochs. Then the teacher net is initialised by the weight
from the student network and updated by the exponential
moving average of the weight from the student in each step
with α = 0.99. For Lconsist, a sigmoid ramp-up func-
tion [23] is used to adapt the intensity at the beginning
λ1 = 50e−5(1−curr iter/4000)2 . We use the Adam [22] op-
timization algorithm with a learning rate of 0.00012, and
adopt the polynomial annealing policy [6] to schedule the
learning rate, which is multiplied by

(
1− curr iter

total iter

)0.9
at

each iteration. The network is trained with a batch size of 32
on 4 GPUs for 25000 iterations. We set the ratio of labeled
and unlabeled data in each batch to 1 : 1. For BDD100K,
data is cropped into 512 × 512 as the input. We add ex-
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Labeled samples 1/30 (100) 1/8 (372) 1/4 (744) Full (2975)
Baseline - 55.5 59.9 66.4

Adversarial [20] - 58.8 (+3.3) 62.3 (+2.4) -
Baseline - 56.2 60.2 66.0

s4GAN [30] - 59.3 (+3.1) 61.9 (+1.7) 65.8 (-0.2)
Baseline - 55.96±0.86 60.54±0.85 -
ECS [29] - 60.26±0.84 (+4.30) 63.77±0.65 (+3.23) -
Baseline 44.41±1.11 55.25±0.66 60.57±1.13 67.53±0.35

French et al. [13] 51.20±2.29 (+6.79) 60.34±1.24 (+3.30) 63.87±0.71 (+3.30) 67.68±0.37 (+0.15)
Baseline 45.5 56.7 61.1 66.9

DST-CBC [12] 48.7 (+3.2) 60.5 (+3.8) 64.4 (+3.3) -
Baseline 43.84±0.71 54.84±1.14 60.08±0.62 66.19±0.11

ClassMix [32] 54.07±1.61 (+10.23) 61.35±0.62 (+6.51) 63.63±0.33 (+3.55) -
Baseline 44.83±0.38 55.10±0.66 60.20±0.53 66.87±0.06

Ours (C3-SemiSeg) 55.17±0.86 (+10.88) 63.23±0.45 (+8.13) 65.50±1.08 (+5.30) 69.53±0.21 (+2.06)

Table 1. Performance (mIoU) on Cityscapes validation set under different proportions of labeled samples, presented as mean ± std-dev
computed from 3 runs. Our proposed C3-SemiSeg outperforms other methods at each labeled ratio.

Method 1/30 (233) 1/8 (875) 1/4 (1750)
Baseline 40.4 47.7 52.6

Ours (C3-SemiSeg) 49.1 +8.7 52.2 +4.5 55.2 +2.6

Table 2. Performance (mIoU) on BDD100K validation set.

tra random scaling of 0.75, 1.0, 1.25 into the augmentation
strategy mentioned before. We use a batch size of 16 on 4
GPUs to train the network for 20000 iterations. For other
hyper-parameters, we set s, β, λ2 as 0.8, 0.9, and 0.1 for
both datasets, respectively. All the experiments are con-
ducted on Tesla V100 GPUs.

4.2. Comparison to State-of-the-art Methods

Cityscapes. In Table 1 we present our results of mean In-
tersection over Union (mIoU) on the Cityscapes validation
dataset under different proportions of labeled samples. We
also show the corresponding baseline at the top of each
method, which denotes the purely supervised learning re-
sults trained by the the same labeled data. Note that all the
methods use the DeepLab V2 [5] for a fair comparison.

Our proposed method not only achieves the highest per-
formance (55.17%, 63.23%, and 65.50%), but also the
largest gains (+10.88%, +8.13%, and +5.30%) for the
case of 1/30, 1/8, and 1/4 labeled data. When the ra-
tio of labeled data becomes higher (e.g., 1/4), the per-
formance improvement brought by other semi-supervised
learning approaches becomes smaller, especially [13], and
[32]. Compared to 3.27% from [32], the gain (5.64%)
from our method is significant larger. Moreover, when we
adapt our approach to the fully supervised setting by as-

Method 1/30 (100) 1/8 (372) 1/4 (744)
Baseline 45.0 55.7 60.8

Ours w/o Lconsist 48.8 +3.8 60.2 +4.5 64.4 +3.6
Ours w/o Lcontrast 54.4 +9.4 63.3 +7.6 65.8 +5.0
Ours (C3-SemiSeg) 55.0 +10.0 63.7 +8.0 66.4 +5.6

Table 3. Performance analysis over different loss components on
Cityscapes validation set.

signing all data, our method can still beat the baseline with
2.06% improvement. The factors that contribute to this in-
clude the gain from contrastive learning, which can also be
proved in Table 3. When only contrastive learning is con-
ducted (row 2), the network gets consistent improvements
in different labeled data ratios. Besides, the self-training
based method [12] has limited performance improvement
on this task. It may because when labeled data is limited,
the noisy pseudo-label confuses the network during the it-
erative learning process.

BDD100K. To further prove the generalization ability of
our method, we conduct experiments on BDD100K, which
contains more complicated scenarios with various weather
conditions. Table 2 shows the experiment results of mean
Intersection over Union (mIoU) on the validation dataset
with different proportions of labeled samples. Compared
with 40.4%, 47.7%, 52.6% mIoU from the supervised base-
line, our method get 8.7%, 4.5% and 2.6% performance
gains on 1/30, 1/8, 1/4 labeled data ratio, respectively.
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4.3. Ablation Studies

Next, we analyse the contribution of each component in
our framework. Without further mentioned, all the exper-
iments are conducted on the Cityscapes dataset using the
same training strategy with the first seed from [13].

D S 1/30 (100) 1/8 (372) 1/4 (744)
N.A. 54.4 63.3 65.7
DL ✓ 53.5 -0.9 61.9 -1.4 65.8 +0.1
DU ✓ 54.6 +0.2 63.5 +0.2 66.4 +0.8

DL +DU 54.6 +0.2 64.2 +0.9 65.8 +0.1
DL +DU ✓ 55.0 +0.6 63.7 +0.4 66.4 +0.8

Table 4. Performance analysis over different contrastive learning
strategy. N.A.: Without Lcontrast, D: Source of features used in
Lcontrast, S: Segmentation-aware sampling.

Table 3 shows the performance analysis over different
loss components. Compared with supervised baseline, ap-
plying contrastive learning improves the performance by
3.8%, 4.5% and 3.6% for 1/30, 1/8, 1/4 proportions of la-
beled data. Meanwhile, adding consistency regularization
results in an improvement of mIoU from 45.0% to 54.4%,
55.7% to 63.3%, and 60.8% to 65.8%. Combining them
leads to the best results, which demonstrates that the com-
plementary information from contrastive learning and con-
sistency regularisation can assist the network to have a bet-
ter discriminative ability of feature representations.
Effectiveness of each component in contrastive learning.

We first select features from different sources (DL and
DU ) to apply the proposed pixel-wise contrastive loss. Ta-
ble 4 shows that applying it only on DL does not give im-
provements (row 2). We believe it is because the network
over-fits to the limited number of annotated samples eas-
ily. On the other hand, adding contrastive learning on DU

shows benefits (row 3) on each labeled data ratio, and apply-
ing it across DU and DL is the best choice (row 6), which
demonstrates the essential to enhance the intra-class feature
compactness and reduce the feature misalignment across la-
beled and unlabeled data.

Furthermore, we evaluate the effectiveness of the sam-
pling strategy. As suggested in [46], we sample twenty
feature points in each class per image. Half of them are
hard samples, while others are randomly sampled. Specifi-
cally, for the data from DL, hard samples are points from the
wrong prediction area, and for the data from DU , the wrong
prediction is defined as the inconsistent outputs between
two networks. Meanwhile, we train another network by
randomly sampling twenty feature points in each class for
comparison. As shown in Table 4 row 5, the segmentation-
aware sampling strategy gives slightly improvements.
Effectiveness of the augmentation strategy for consis-

Teacher Student 1/30 (100) 1/8 (372) 1/4 (744)
Supervised 45.0 55.7 60.8

S+R S+R 43.2 -1.8 54.8 -0.9 57.1 -3.7
W W 50.6 +5.6 59.3 +3.6 62.0 +1.2
W S 53.9 +8.9 63.2 +7.5 64.8 +4.0
W S+R 54.4 +9.4 63.3 +7.6 65.8 +5.0

Table 5. Performance analysis over different augmentation strate-
gies. S: Strong augmentation, W: Weak augmentation, R: Ran-
dAugment [10].

Mixing 1/30 (100) 1/8 (372) 1/4 (744)
N.A. 51.1 60.7 63.3

Intra-set 53.3 +2.2 62.4 +1.7 65.2 +1.9
Cross-set 54.4 +3.3 63.3 +2.6 65.8 +2.5

Table 6. Performance analysis over different data mixing strat-
egy. Intra-set: Perform independent data mixing over DU and DL,
Cross-set: Perform data mixing across DU and DL.

tency regularization. Consistency regularisation aims to
encourage the consistent prediction of the given image with
small perturbations. Therefore, it is crucial to design the
augmentation strategy carefully. We first conduct experi-
ments of adding the different intensity of augmentation to
the teacher and the student. Details for the definition of
augmentation can be seen in Supplementary Material.

As can be seen in Table 5, directly applying strong aug-
mentation with RandAugment [10] to both networks leads
to the performance drop. It may cause by the significantly
increasing of wrong predictions from the teacher network,
misleading the network’s optimisation direction. When the
weak augmentation is added on both networks, it brings
5.6%, 3.6% and 1.2% improvements under 1/30, 1/8, 1/4
proportions of labeled data. Nevertheless, it does not fully
take the potential benefits from consistency regularisation
compared with networks equipped with proposed asymme-
try data augmentation, which yields 8.9%, 7.5% and 4.0%
gains. Furthermore, adding RandAugment [10] let it get ex-
tra 0.5%, 0.1% and 1.0% improvements.

We also evaluate the effectiveness of cross-set region-
level data mixing. Table 6 shows that applying intra-
set region-level data mixing has 2.2%, 1.7% and 1.9%
performance gains. In addition, extend the data mixing
across both labeled and unlabeled data further improves
1.1%, 0.9% and 0.6%, which illustrates the proposed cross-
set data mixing is a more powerful tool to enhance features
alignment for dense prediction tasks.
Effectiveness of the Dynamic Confident Region Selec-
tion. To narrow the negative effect brought by the teacher’s
wrong predictions, we present the DCRS module added af-
ter the teacher output. One important hyper-parameter for
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Figure 2. Qualitative results of our method and baseline method on different proportions of labeled images on Cityscapes validation dataset.
(a) target images and corresponding ground truth (GT), (b)-(e) segmentation results of different proportions of labeled images.

the success of the DCRS is s, which controls the ratio of
preserved region to calculate the loss functions.

Table 7 shows the network performance of mIoU on
Cityscapes validation set using 1/8 proportion of labeled
data, in the case of different s. Note that s = 1.0 means
all the samples are preserved, or in other words, DCRS is
removed from the framework. As we can see, setting s too

s 0.4 0.6 0.8 0.9 1.0
mIoU 61.9 62.9 63.3 63.1 62.8

Table 7. Performance analysis over different s in DCRS. Calcu-
lated on 1/8 proportion of labeled data (372).

small brings negative effects to the network. This might be-
cause it only preserves easy samples with high confidence,
which leads to the lost of informative regions. When we in-
crease s to 0.8 to include more regions for loss calculation,
the network reaches the highest mIoU of 63.3%. Further-
more, assigning s too large is also problematic and leads to
the performance decrease since the wrong prediction always
comes from the low confidence region.
Quantitative Evaluation. In Figure 2, we further display
some qualitative segmentation results of our method and
baseline method on various proportions of labeled images.

Overall, our method achieves more complete segmentation
results than the baseline model in the same split of labeled
images, especially for the region with complexity texture
and that needs long range feature consistency.

5. Conclusion
We propose a novel end-to-end learning framework for

semi-supervised semantic segmentation. The asymmetric
data augmentation with cross-set data mixing strategy to en-
joys the merit of consistency regularisation. Furthermore,
to extend the intra-class feature compactness and the inter-
class discriminative ability across all images, we introduce
the pixel-wise contrastive learning. DCRS is added to elim-
inate the negative effects from noisy predictions during loss
calculation. Our experiments on two commonly use au-
tonomous driving datasets demonstrate that the proposed
framework can fully take advantage of labeled and unla-
beled data and achieve superior performance.
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