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Abstract

Deepfakes (”deep learning” + ”fake”) are videos syn-
thetically generated with AI algorithms. While they could
be entertaining, they could also be misused for falsifying
speeches and spreading misinformation. The process to cre-
ate deepfakes involves both visual and auditory manipula-
tions. Exploration on detecting visual deepfakes has pro-
duced a number of detection methods as well as datasets,
while audio deepfakes (e.g. synthetic speech from text-to-
speech or voice conversion systems) and the relationship
between the video and audio modalities have been relatively
neglected. In this work, we propose a novel visual / audi-
tory deepfake joint detection task and show that exploiting
the intrinsic synchronization between the visual and audi-
tory modalities could benefit deepfake detection. Experi-
ments demonstrate that the proposed joint detection frame-
work outperforms independently trained models, and at the
same time, yields superior generalization capability on un-
seen types of deepfakes.

1. Introduction
A convincing deepfake intentionally designed for deliv-

ering spurious information and fake news, e.g. a politician
giving a speech or making a statement1, usually requires
meticulous manipulations of both the video and audio chan-
nels. In the given example, the video content has been mod-
ified with a technique known as lip sync [44, 43] while the
voice was from an impersonator. With recent advances in
text-to-speech (TTS) and voice conversion (VC) algorithms
[58, 41, 22, 37, 10], synthesizing human speech will be-
come even easier, paving a future where audio will play an
equally important role as video in deepfake detection. Our
work in this paper addresses the interplay between these two
modalities, which can be critical towards detecting audiovi-
sual deepfakes.

Recent work has mostly focus on identifying visual arti-
facts and ‘fingerprints’ from various generative frameworks
[39, 56, 61, 11] or detecting local texture inconsistency
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Figure 1: Examples to show that modified video or audio
might violate the synchronization patterns. (a) The first row
of video frames are unmodified while the second row has
been faceswapped, and the words below are spoken by both
videos. (b) Same as (a) just the bottom row has been lip-
synced instead. Large discrepancies exist between the lip
motions in the forged videos and the pronounced words. (c)
The top row are authentic video frames, uttering the word
“Moment”. The corresponding Mel-spectrograms are in the
second row, a TTS generated “Moment” Mel-spectrograms
are in the third row which sounded more like “wow-mount”.
The audiovisual pair comprising the first and third row
breaks the synchronization patterns maintained by the pair
of the first and second row, which is what we hope to cap-
ture in this work.

caused by face swapping [30, 31]. Another branch of work
utilizes biometric signals such as detecting specific facial
motion patterns inherent in particular individuals [5, 3], but
such ID-specific approach is limited by its ability to gen-
eralize to new identities. To achieve a more generalized
approach, we observe that when humans speak, there is a
strong correlation between the lip motions (viseme) and the
pronounced syllables (phoneme) [32]. The synchronization
breaks at some inconspicuous moments when any one of
the modalities is fake, so for instance, in Fig. 1, the lip mo-
tions did not fit well with the syllables due to the artifacts
introduced by face swapping or lip sync. Moreover, when
the phonemes are created from TTS systems, they are often
times not pronounced clearly to match mouth shapes, which
is a good signal for detecting audiovisual deepfakes.
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Based on this intuition, we present a two-plus-one-
stream model to jointly discriminate video / audio deep-
fakes. Existing multi-modal frameworks take paired inputs
from different modalities (e.g. video frames and optical
flow; or video and sound for Action Recognition task), and
use a shared label on the fused representation, which can
be based on a late fusion of two streams [42, 18, 25] or
lateral connections [17]. For deepfakes, the labels for the
audio and video streams may not necessarily be the same
because it could be that either one of the modalities is mod-
ified. Learning a shared latent representation like this could
thus be sub-optimal.

For this reason, we propose to model the video and audio
stream separately with their own labels, as well as tempo-
rally aligning the coarse-to-fine representations from both
streams. We refer to this as sync-stream, which itself is
given a separate label that reflects whether any one of the
modalities has been manipulated. By jointly training as
we proposed, the network not only learns ‘appearance’ or
texture artifacts but also benefits from the sync-steam that
discriminates synchronization patterns of authentic audio-
visual pairs from that of fake pairs. A limiting factor, how-
ever, is the lack of a proper dataset with both visual and au-
ditory manipulations. To overcome this, we utilize existing
video deepfake datasets containing unmodified audio chan-
nels, from which we extract the Mel-spectrograms [51].
By running these spectrograms through different vocoders
[38, 52, 23, 33, 19, 28, 60] that are commonly used in TTS
and VC tasks to mimic synthesized speech, we eventually
curated a dataset similar in size to existing video deepfake
datasets, but with manipulated audio channels.

Our contributions can be summarized as follows:

1. We present a joint audiovisual deepfake detection task
that handles the case that either one (or both) of the
visual or auditory modalities have been manipulated.

2. Further, we propose a sync-stream that models the syn-
chronization patterns of two modalities. We show that
with this additional signal, our model generalizes well
as a result to unseen deepfakes.

3. Finally, we have built a deepfake dataset that contains
both visual and auditory manipulations, with which we
hope to encourage further research in the area of joint
audiovisual deepfake detection.

2. Related Work
Video deepfake detection: [61, 56] demonstrate that there
exists ‘fingerprints’ for different GAN frameworks that can
be used to detected generated images. [39] presents a
forensics dataset of video data manipulated by four exist-
ing methods and a XceptionNet [13] baseline for detecting
deepfakes. [30, 31] propose more general face forgery de-
tection methods, utilizing the discontinuity between modi-

fied and authentic regions. In [11], a patch-based detection
framework is proposed to make local predictions then ag-
gregate. [5, 3] learn personalized facial action patterns and
make use of this biometric signal to detect face swaps. The
approaches in [20, 4] are most relevant to this paper; both
address lip motions while detecting deepfakes. [20] fine-
tunes the model using a pre-trained lipreading network to
learn embeddings that are more sensitive to mouth move-
ments. However, unlike our proposal, there is no audio in-
volved. [4] explicitly extracts phonemes and visemes from
video and audio pairs to detect mis-matches. Our frame-
work additionally exploits synchronization patterns of au-
thentic pairs (versus modified pairs) via learning through an
independent video and audio stream together with a sync-
stream.

Audio deepfake detection: [49] releases a large-scale
spoofed audio dataset comprising synthetic speech gen-
erated with state-of-the-art neural acoustic and waveform
generation models as well as replayed attacking speech.
Many existing spoofed speech detection frameworks [45,
12, 6, 8, 29, 16] rely on extracting acoustic representations
like MFCC [34], STFT and CQCC [48] from raw wave-
form signals and applying classifiers such as SVM, Gaus-
sian Mixture Model (GMM) or CNN to make predictions.
[59] proposes an end to end ResNet-like framework to iden-
tify spoofed audios.

Video and audio cross-modeling: Visual and sound
modalities are often intertwined, [36, 62, 9, 27] make use
of the the concurrent property to provide supervision while
training a network without annotation. Video and audio
could also compliment each other by providing semantics
from different perspectives. To this end, [62, 7, 35, 21] all
train their models jointly with both modalities to learn richer
representations. In this paper, we similarly exploit the con-
currency property between authentic video (mouth move-
ments) and human speech, and attempts to detect when one
or both modalities are modified, causing the concurrency
to be broken. Additionally, unlike prior work, where audio
and video share the same label / latent space, our frame-
work follows a multi-task setting with a separate video and
audio stream that are given their own labels and linked by a
sync-stream.

3. Methodology
Problem Formulation: We denote an input video contain-
ing human talking as x = {a, v}, where a, v are the respec-
tive audio and video channels and are sequences of sampled
waveform digits and video frames. The network that makes
prediction is denoted as F(x), which includes two parts: the
feature extractor Fθ maps input video or audio into a feature
representation in RT×d with T and d respectively being the
length of sequence and feature dimension; the classification
layer Fϕ maps feature representations to labels.
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Figure 2: Overview of proposed frameworks. (a) Independently trained prediction framework. pv and pa are outputs for
video and audio streams, representing the probability of the input being fake. (b) Late-fused joint prediction network with pw

denoting the probability of the whole video being modified and [d] denoting last layers of networks where representations are
spatiotemporally pooled. (c) Two-plus-one joint detection framework. The ‘cnt’ operation is illustrated in (d), where we use
conv and tile to align the shapes of the visual and audio features. (e) shows the inter attention mechanism as an example.
C (channel dim) is weighted-pooled into 1 and H×W is flattened as the feature embedding. The attention is working on the
temporal dimensions and the weight is a T v×T v matrix. The weighted representation will be unpooled / unflattened and
added back to the original feature as a residual.

Let D = {ai, vi, yai , yvi , yi}Ni=1 be our dataset, where
y ∈ {0, 1} is the label indicating whether the input is real
or fake. yvi and yai are labels for the video and audio chan-
nels respectively and are independent of each other. yi is
the label for the whole audiovisual sequence, and is defined
as fake when either of the modalities has been modified.
Deepfake detection is a binary classification task and the
respective loss functions for the video and audio modality
detection are defined as:

Lv
cls =

∑
(v,yv)∈D

C[yv,Fv
ϕ(Fv

θ (v))], (1)

La
cls =

∑
(a,ya)∈D

C[ya,Fa
ϕ(Fa

θ (a))], (2)

where C[.] is the cross-entropy loss. To combine the predic-
tions from the video and audio streams, we apply the ag-
gregation operation ỹ = G(.) to obtain the final prediction.
Various choices of G(.) are considered in this paper, includ-
ing our proposal. We discuss them now in the following
sections.

3.1. Independently trained video and audio streams
As a baseline, we have the video Fv

ϕ(Fv
θ (.)) and audio

Fa
ϕ(Fa

θ (.)) streams trained and making predictions inde-
pendently. Unlike two-stream framework [42] where class
scores from two modalities are fused (averaged) after soft-
max as the final prediction, the label for the whole sequence
is fake if either of the streams are classified as fake, other-
wise it will be classified as real:

ỹ = G((Fv
ϕ(Fv

θ (v)) ≥ 0.5), (Fa
ϕ(Fa

θ (a)) ≥ 0.5)). (3)

We use 0.5 as the threshold and G(.) represents the OR op-
eration here as depicted in Fig. 2(a).

3.2. Late fusion of video and audio streams
Applying late fusion is a straight-forward operation to

jointly learn with multiple modalities [24, 57]. As Fig. 2(b)
shows, we simply extract latest feature representations from
the audio and video streams (right before each classification
head) and we use F (−1)

θ to represent this process. Features
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from the two streams are then fused together before a pre-
diction is made on whether the whole sequence has been
modified. In this case, we have an additional loss for this
prediction:

Lcls =
∑

(v,a,y)∈D

C[y,G(Fv(−1)
θ (v),Fa(−1)

θ (a))]. (4)

Here, G(.) represents an aggregation operation (e.g. addi-
tion) and classification head for the whole sequence. To
jointly train the model, we have the loss:

L = wvLv
cls + waLa

cls + wLcls (5)

where wv , wa and w are the respective weights for each
stream. As shown in the experimental section (Sec. 4.3),
this approach performs worse than independently trained
framework. The reasons can be two folds: 1) Based on
the observation from [57], jointly training a multi-modality
network could cause sub-par results because the different
modalities tend to converge and generalize at different rates;
2) The spatial and temporal information are abstracted into
high-level semantics in late fusion. This suggests that only
fusing highly-abstracted feature representations of the video
and audio networks is not enough to learn the subtleties of
the intrinsic synchronization patterns.

3.3. Two-plus-one streams

Our proposed framework is to apply central connec-
tions to video and audio streams between low-level features,
which encode spatial (for video frames) and temporal infor-
mation, to higher-level semantic representations. Specifi-
cally we build a sync-stream by connecting video and audio
network feature representations as shown in Fig. 2(c).

Central connections. We fuse video and audio streams
into the sync-stream. Before temporal and spatial axes get
pooled, there could be a mismatch between the sizes of the
feature representations of the two modalities, so we apply
conv and tile operations on the audio features. We de-
note the visual feature shape as {T v, Cv, H,W} and the
audio feature as {T a, Ca, 1} (since we process raw wave-
form samples for audio channel, the feature dimension will
be 1). We conduct strided 1D convolution on the audio fea-
tures to pool the temporal length from T a to T v , after which
we tile the features H×W times as Fig. 2(d) shows to align
the temporal and spatial axes. By jointly training, the net-
work will automatically learn the correspondence between
the audio and corresponding visual regions over time. We
show visualization of the learned correspondence in Sec.
4.5. At each layer, the audio and visual representation will
be fused with the current layer of sync-stream and used as
input to the fusion at the next layer.

Denoting the feature representation from the ith layer as

F (i)
θ , prediction of the whole sequence can now be repre-

sented as:

ỹ = G( . . .Fv(i−k)
θ (v) → Fv(i)

θ (v) → Fv(i+k)
θ (v) . . . ,

. . .Fa(i−k)
θ (a) → Fa(i)

θ (a) → Fa(i+k)
θ (a) . . . )

(6)
where G(.) is now the central connections and the classi-
fication head and → indicates network forwarding. Sync-
stream is jointly trained with video and audio streams and
the supervision is done in the same way as the late-fusion
framework.

Since the audio features are largely pooled over time to
fit the length of the video sequence as we have described,
a given audio representation might be better aligned with
multiple video frames or vice versa, and there may be only
specific moments that the network needs to pay attention to.
To associate different positions and learn a better temporal
alignment between the video and audio channels, we further
apply intra (self-attention, [54]) and inter-attention mech-
anisms within and across the video and audio modalities.
We experiment with the following attention mechanisms in
sync-stream:
1) Inter-attention: In inter-attention, the weight is computed
by involving both visual and audio representations.

InterAtt(v) = softmax(
Fa(i)

θ Fv(i)T
θ√
d

)Fv(i)
θ (7)

InterAtt(a) = softmax(
Fv(i)

θ Fa(i)T
θ√
d

)Fa(i)
θ (8)

where T is the transpose operation and d represents visual
and audio feature dimensions.
2) Inter+intra-attention: Besides inter-attention we also ap-
ply self-attention on visual and audio representation respec-
tively. We only show visual intra-attention below, but the
same formulation applies to the audio counterpart.

IntraAtt(v) = softmax(
Fv(i)

θ Fv(i)T
θ√
d

)Fv(i)
θ (9)

3) Joint-attention: Slightly different with inter-attention, in
joint-attention, we apply the same attention weights on vi-
sual and audio representations:

JointAtt(a, v) = softmax(
Fv(i)

θ Fa(i)T
θ√
d

)(Fv(i)
θ +Fa(i)

θ )

(10)
Before the attention operations are conducted, positional
encoding [54] is applied and we add weighted representa-
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tion back to the original feature as a residual (Fig. 2(c)).
During training, the sync-stream plays a role of enrich-

ing the video and audio representation with learned syn-
chronization patterns. During inference, for all practical
purposes, we would utilize the output of the sync-stream
as a preliminary prediction. A positive prediction will be
followed by examining the video and audio branch to de-
termine the final prediction. We provide results supporting
this approach in the supplementary material.

4. Experiments
4.1. Dataset

To the best of our knowledge, no large-scale dataset ex-
ists that provides high-quality visual and auditory deepfakes
(with video and audio channels that are well-aligned and
without clear mis-match that could be perceived by humans
immediately). One straightforward way is to take existing
video deepfake datasets with audio channels, extract the
transcripts from the speech and apply TTS [58, 41] algo-
rithms to convert to synthetic speech. The drawback of this
approach is that it is hard to control the synchronization be-
tween the motion of the lip and the speech without addi-
tional constraints.

While the visual artifacts are easily ‘borrowed’ from ex-
isting high quality video deepfake datasets, a high qual-
ity audiovisual deepfake dataset would need to have syn-
thesis artifacts in the audio channels without sacrificing
the synchronization between the video and audio chan-
nels. To achieve this, we extract Mel-spectrogram from
the audio channel of video deepfakes and apply various
vocoders, which are commonly used by TTS and VC al-
gorithms, including Griffin-Lim [19], WORLD [33] and
CNN-based methods: WaveNet [52], WaveRNN [23],
Parallel-WaveGan [60], WaveGlow [38] and MelGAN
[28]. Extracting the Mel-spectrogram and converting it
to a signal that human can perceive in this way preserves
the synchronization, yet introduce the artifacts that comes
from using the vocoders. We also noticed that TTS gener-
ates speech that tends to lack ’sharpness’ (sometimes words
are not clear). To mimic this, we apply random blurri-
ness on the Mel-spectrograms. To prove the effectiveness
of our audio synthesis, we train an audio deepfake classi-
fier with the converted data to detect in-the-wild synthetic
speeches2 generated by unknown TTS algorithms. The
model achieved an accuracy of 81.96% (89.55 AUC). More
details are available in the supplementary materials.

The final dataset is curated from two video deepfake
datasets in which audio channels are available.

FF [39]: Faceforensics++ is a deepfake benchmark dataset
comprising 5000 video sequences with audio channels,
where the video channel is manipulated with 4 methods:

2youtu.be/SK4vGKxm1PY

Vid Aud Sync

Stem k=
[

1×7×7
3×1×1

]
, c=64 - -

Layer1 k=
[

1×3×3
3×1×1

]
×4, c=64

[k=80, c=128, s=4]
maxpool[k=4, s=4]

k=
[

1×3×3
3×1×1

]
×2, c=64

att[d=56×56, h=4]

Layer2 k=
[

1×3×3
3×1×1

]
×4, c=128

[k=3, c=128, s=1]
maxpool[k=4, s=4]

k=
[

1×3×3
3×1×1

]
×2, c=128

attd[d=28×28, h=1]

Layer3 k=
[

1×3×3
3×1×1

]
×4, c=256

[k=3, c=256, s=1]
maxpool[k=4, s=4]

k=
[

1×3×3
3×1×1

]
×2, c=256

att[d=14×14, h=1]

Layer4 k=
[

1×3×3
3×1×1

]
×4, c=512

[k=3, c=512, s=1]
maxpool[4, 4]

k=
[

1×3×3
3×1×1

]
×2, c=512

att[d=7×7, h=1]

FC
AdaAvgPool3D

fc 512×2
AdaAvgPool1D

fc 512×2
AdaAvgPool3D

fc 512×2

Table 1: Network architecture. Notations: k is kernal size;
c is number of channels; s is stride; d represents embed-
ding size and h is number of heads. For layers in bold,
Vid and Aud are central connected with sync-stream. In FC
layer, AdaAvgPool applies adaptive average spatiotempo-
ral pooling that generates a 512-dimensional feature vector.

Deepfakes [1], Face2Face [47], FaceSwap [2] and Neural-
Texture [46]. Interestingly, while the majority of the speech
in FF is non-English, our experiments show that the per-
formance did not degrade, highlighting that our approach is
actually language-agnostic.

DFDC [15]: The DeepFake Detection Challenge Dataset is
currently the largest video deepfake dataset with more than
100,000 video and audio (in English) sequences. We re-
move those where the sound is from the cameraman instead
of the actor(s) in order to ensure audiovisual synchroniza-
tion.

We follow the splits for train / val / test from the original
datasets, and randomly swap authentic audio with synthe-
sized audio from one of the conversion methods mentioned.
For testing, we keep the number of ’real-fake’ (video is real
and audio is fake), ’fake-real’, ’real-real’ and ’fake-fake’
balanced.

4.2. Implementation

The backbone architecture for the video stream is a
R(2+1)D-18 [50] network. For the audio stream, we utilize
a simple 1D convolutional network to process 1D raw wave-
form signals. Even though the structures of the two streams
are very different, we show in the following sections that
our sync-stream is able to boost performance effectively. In
the sync-stream, 4 layers of feature representations are ex-
tracted from both streams and linked through central con-
nections. We apply the same (2+1)D conv between layers
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Att type Vid Aud Whole

Indp - 98.41 93.06 95.83 (-)
Late-fuse - 99.21 92.26 94.25 (99.08)

+Fix-indp-audvid - - - 94.84 (98.44)
{2+1}-streams - 98.81 96.23 97.02 (99.41)

+Fix-indp-audvid - - - 96.23 (99.29)
{2+1}-streams Inter+intra 99.21 94.25 97.22 (99.29)

+Fix-indp-audvid Inter+intra - - 96.03 (98.74)
{2+1}-streams Joint 99.21 94.64 96.23 (99.25)

+Fix-indp-audvid Joint - - 96.03 (99.18)
{2+1}-streams Inter 98.81 96.03 97.62 (99.65)

+Fix-indp-audvid Inter - - 96.63 (99.32)

Vid Aud Whole

Indp 79.90 98.28 89.36 (-)
Late-fuse 80.65 98.07 89.15 (93.70)

+Fix-indp-audvid - - 89.81 (95.12)
{2+1}-streams 82.18 98.36 91.01 (96.29)

+Fix-indp-audvid - - 90.33 (96.32)
{2+1}-streams+att 82.39 98.95 90.84 (95.98)
+Fix-indp-audvid - - 90.40 (96.29)

Table 2: Numerical evaluation on FF (left) and DFDC (right). We show classification accuracy (%) for video, audio streams
as well as whole videos, and the numbers in parentheses are AUCs. Indp represents independently trained framework;
Late-fuse is late-fused architecture; and {2+1}-stream represents joint detection network with sync-stream (with/without
attention mechanisms). +Fix-indp-audvid share the same architectures with the above method while weights of video and
audio streams are from Indp and fixed during training.

of sync-stream like visual stack, and use addition as the fu-
sion and aggregation operations. We show the network ar-
chitecture including attention parameters in Table. 1.

The sampling rate is 10 FPS for the video sequence and
22.05 KHz for the audio sequence. The inputs to the net-
works are 3s long, which equals 30 video frames and 66150
audio samples. For sequences that are shorter than 3s, we
pad them with empty frames / digits (0s). In the following
experiments, we use the first 3s for video level classifica-
tion. Our framework could also handle arbitrary lengths by
running a sliding window then aggregating the probabilities,
which might achieve more stable video-level predictions but
the inference would be slower. We employ the face detec-
tor in [63] to detect, crop and align faces over time. During
training, we utilize the Adam Stochastic Optimization [26]
with a learning rate of 0.0002 and a minibatch size of 64
for all models. The weights in Eqn. 5 are set equally to
wv = wa = w = 1

3 .

4.3. Numerical evaluation
In this section, we show quantitative results on the FF

and DFDC datasets, following the original training, valida-
tion and testing splits. Referring to Table 2 (left), we show
video-level classification accuracy on FF of (1) a model
with independently trained video and audio streams (Indp);
(2) a model jointly trained on the two modalities with late
fusion (Late-fuse); and (3) our proposed model with sync-
stream ({2+1}-streams). We also compare sync-streams
with various types of attention. Further, in order to show the
contribution of sync-stream in predicting manipulation of
whole sequence, we initialize the video and audio streams
in Late-fuse and {2+1}-streams with weights from inde-
pendently trained models and fix the weights during train-
ing. We denote this experiment as Fix-indp-audvid.
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Figure 3: Sync-stream accuracy (%) of whole sequences for
various architectures on FF and DFDC datasets.

Based on the results, we observe that {2+1}-streams
consistently outperforms Indp and Late-fuse on the whole
sequence detection (whether one or both modalities are
modified) as well as single tasks of video and audio deep-
fake detection. We compare the results between differ-
ent types of attention mechanisms and find that Inter+intra
and Joint-attention perform worse than Inter-attention, es-
pecially on the whole sequence and audio stream pre-
diction. This indicates that cross-modality attention con-
tributes more towards the learning of the synchronization
patterns than self-attention does. We will apply Inter-
attention on the top of sync-stream for the rest of the ex-
periments. In Table. 2 (right), we conduct experiments
on DFDC dataset and similarly observe that sync-stream
boosts the performance of whole / video / audio deepfake
detections.
Ablation: To understand how different levels of spatiotem-
poral abstraction contribute to the performance of sync-
stream, we compare frameworks with various sync-stream
architectures. We use cnt-1234 to denote centrally con-
nected audio / visual features from layer 1 to 4 (Table. 1),
and late-fuse to denote that only features after spatiotempo-
ral pooling are connected. We can observe from Fig. 3 that
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Deepfakes+Griffin-Lim FaceSwap+WaveRNN Face2Face+WORLD NeuralTextures+WaveNet

Xception[39] 93.90 51.20 86.80 79.70
CNN-aug[56] 87.50 56.30 80.10 67.80

Patch-based[11] 94.00 60.50 87.30 84.80
Face X-ray[30] 99.50 93.20 94.50 92.50
CNN-GRU[40] 97.60 47.60 85.80 86.60

LipForensics[20] 99.70 90.10 99.70 99.10
ResCNN+GRU[59] 80.93 83.51 87.21 89.37

Indp 98.78 / 67.07 / 83.94 55.69 / 90.65 / 73.37 95.93 / 78.46 / 86.99 80.89 / 92.68 / 86.58
(99.92 / 80.06 / -) (73.06 / 96.37 / -) (99.53 / 86.81 / -) (96.40 / 96.81 / -)

{2+1}-streams+att 99.19 / 77.85 / 87.40 77.24 / 86.79 / 85.16 96.75 / 81.91 / 87.80 82.92 / 92.28 / 88.01
(99.99 / 84.66 / 94.36) (90.48 / 96.01 / 89.39) (99.79 / 89.25 / 93.71) (98.32 / 97.92 / 95.04 )

Table 3: Unseen category evaluation on FF. Each column represents the video and audio deepfake category that was left out
for testing. For the last two rows, we show accuracy (%) on video/audio/whole stacks and corresponding AUC below in
parenthesis. AUCs for video and audio deepfake detection are shown in pink and green respectively.

the accuracy of predicting on the whole sequence improves
as we utilize more lower-level information, highlighting the
importance of both low-level as well as highly-abstracted
spatiotemporal information when learning the synchroniza-
tion patterns between the video and audio streams.

4.4. Generalization on unseen categories

We expect sync-stream to provide better generalization
by learning synchronization patterns that are agnostic to the
type of manipulation, resulting in more robust audiovisual
representations. In Table 3, we conduct experiments on un-
seen video and audio deepfake categories on FF. Specifi-
cally, we leave out one type of video deepfake as well as
one type of vocoder for testing and use the remaining cat-
egories for training. We utilize two vocoders that applies
hand-crafted features, Griffin-Lim and WORLD, and two
deep neural network based methods, WaveNet and Wav-
eRNN. Experiments show that our {2+1}-stream network
is more robust on unseen data compared with independently
trained models. We also compare with state of the art de-
tection methods that work on video streams only (no audio
involved). These are: (1) Xception [39], which proposes a
frame-based deepfake detection framework; (2) CNN-aug
[56], which applies pre- and post-processing and data aug-
mentation to increase the robustness; (3) Face X-ray [30],
which makes use of discontinuity between local regions;
(4) Patch-based [11], which makes local predictions with
small receptive fields; (5) CNN-GRU [40], which utilizes
a video-based detection framework based on recurrent ar-
chitectures; and (6) LipForensics [20], which fine-tunes on
a lip reading network. We follow the same experimental
settings as [20] and use the statistics reported in the paper.
Our method shows competitive results with [20] and out-
performs other methods, some of which are designed for
generalizing on unseen data. [20] applies a pre-trained lip
reading network as a strong prior, while we demonstrate that

the synchronization could be automatically learned with au-
dio involved. For audio only detection, we implement an
end-to-end framework [59] for audio spoofing detection,
which consists of a GRU [14] on the top of a residual CNN
(ResCNN+GRU) with magnitude spectrogram as the input.
We can see from Table. 3 that the audio stack of {2+1}-
stream network is superior in terms of generalizing to un-
seen audio categories, even though it uses a simpler archi-
tecture. Please note that our joint detection framework sup-
ports any video and audio backbones, so it’s performance
could be further improved with deeper networks.

4.5. Analysis

Visualization: We visualize which regions the network
focus on to make decisions with/without jointly training
with audio modality. To do so, we apply ScoreCAM [55]
on the last convolutional layer (best compromise between
high-level semantics and spatialtemporal information) of
the video stream. For each input video frame, a heat map is
generated that shows the regions in the frame that are key to
the final predictions. In Fig. 4, we show results from inde-
pendently trained video deepfake detector as well as from
the visual stack of the {2+1}-stream+att network. For
independently trained networks, the model tends to focus
on large areas of faces, eyes and mouth tips where artifacts
might appear. This is consistent with the observation from
[11]. For our joint detection framework, the majority of the
attention falls on the mouth regions indicating that the net-
work has indeed learned the synchronization between the
visual and auditory signals.

Audio channel shuffling: We further demonstrate the im-
portance of learning synchronization patterns between the
video and audio channels. We randomly swap audio chan-
nels of different videos while training the same {2+1}-
stream architecture on FF, meaning that the video and
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(𝑎) (𝑏) (𝑐)

Figure 4: Visualization on where the network focus on while making predictions. (a) Frames from DFDC. (b) Frames from
FF (blurred for identity protection). For each set of results, the top row is from independently trained network and the bottom
row is from joint detection framwork with sync-stream. (c) Visualization from the shuffling experiments.

Vid Aud Whole

Indp 98.41 93.06 95.83 (-)
{2+1}-streams+att 98.81 96.03 97.62 (99.65)

{2+1}-shuffle
98.02

0.39 | 0.79
91.07

1.99 | 4.96
95.44 (98.65)

0.39 | 2.18

{2+1}-att-shuffle
98.21

0.20 | 0.60
92.46

0.60 | 3.57
95.44 (98.90)

0.39 | 2.18

Table 4: Experiments for shuffling audio channels to train
joint-detection network with unpaired video and audio.
Numbers in parenthesis are AUCs. Numbers in red are per-
formance drop in accuracy (%) compared with first and sec-
ond rows.

audio are not paired anymore. We present the results of
such a shuffled framework in Table. 4. Compared with
jointly trained models with paired data or even indepen-
dently trained networks, we observe a performance drop
as there is no concurrent patterns between viseme and
phoneme anymore. We also visualize where the shuffled
framework pays attention to for making predictions in Fig.
4(c), and we can see that they are mostly random regions
like noses or even flickering backgrounds.

Feature representations: To understand the efficacy of the
aggregated representations (Indp, Late-fuse and {2+1}-
stream+att), we employ t-SNE [53] to visualize the cluster-
ing of 4 different groups, namely, ’real+fake’ (video is real
and audio is fake), ’fake+real’, ’fake+fake’ and ’real+real’.
Specifically, we aggregate the last layer of the video and au-
dio streams with addition operations. As Fig. 5 shows, ag-
gregated representations produced by sync-stream are more
discriminating than Late-fuse and Indp.

real-real
real-fake
fake-real
fake-fake

(a) Indp

real-real
real-fake
fake-real
fake-fake

(b) Late-fuse
real-real
real-fake
fake-real
fake-fake

(c) {2+1}-stream

real-real
real-fake
fake-real
fake-fake

(d) {2+1}-stream+att

Figure 5: t-SNE visualization on feature space of aggre-
gated visual and audio representations.

5. Conclusion

In this paper, we propose a novel task on detecting deep-
fakes by jointly modeling video and audio modalities. This
task is important because in practice, we do not have any
prior knowledge about whether it’s the video or the audio
that have been manipulated. We show that utilizing learned
intrinsic synchronization between video and audio boosted
the performance of both video and audio based deepfake de-
tection as well as whole sequence prediction. The learned
synchronization patterns further help the model generalize
to unseen deepfake categories. Finally, we provide a way to
generate high-qualtiy audiovisual deepfake data that will be
useful for future research in this direction.
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