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Abstract

The choice of activation functions is crucial for modern
deep neural networks. Popular hand-designed activation
functions like Rectified Linear Unit(ReLU) and its variants
show promising performance in various tasks and mod-
els. Swish, the automatically discovered activation func-
tion, has been proposed and outperforms ReLU on many
challenging datasets. However, it has two main draw-
backs. First, the tree-based search space is highly dis-
crete and restricted, which is difficult for searching. Sec-
ond, the sample-based searching method is inefficient, mak-
ing it infeasible to find specialized activation functions for
each dataset or neural architecture. To tackle these draw-
backs, we propose a new activation function called Piece-
wise Linear Unit(PWLU), which incorporates a carefully
designed formulation and learning method. It can learn
specialized activation functions and achieves SOTA perfor-
mance on large-scale datasets like ImageNet and COCO.
For example, on ImageNet classification dataset, PWLU im-
proves 0.9%/0.53%/1.0%/1.7%/1.0% top-1 accuracy over
Swish for ResNet-18/ResNet-50/MobileNet-V2/MobileNet-
V3/EfficientNet-B0. PWLU is also easy to implement and
efficient at inference, which can be widely applied in real-
world applications.

1. Introduction
Activation functions are fundamental components for

modern deep neural networks, which affect both the expres-

siveness and the optimization of models. As a crucial design

choice, the combination of Rectified Linear Units(ReLU)[7,

15, 25] with deep neural networks shows six times faster in

convergence compared to tanh nonlinearties[18]. With non-

saturating gradients, ReLU mitigates the vanishing gradi-

ent problem and shows robust performance across different

tasks and neural architectures.

Beyond ReLU, many new activation functions have

been proposed like Leaky ReLU[23], PReLU[10], ELU[4],

SELU[16], etc. These human-designed activation functions

are either fixed or have a few learnable parameters. All
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Figure 1. Comparing improvements over ReLU on ImageNet

dataset. We run experiments on five different architectures for each

activation function and show the improvements over ReLU base-

line. The proposed PWLU consistently outperforms other methods

across architectures.

these variants are similar in shape, and their gains are not

consistent across tasks which limits their applications[26].

Besides human-designed activation functions, automatic

searched activations function, Swish[26], show better per-

formance across tasks. Swish adopts a tree-structured

search space based on unary and binary functions, which

is searched by reinforcement learning. Although showing

improvements over ReLU, Swish also has its limitations.

First, the tree-structured search space is highly discrete and

restricted. A slight change in one composing unit may result

in an entirely different activation function, making it diffi-

cult to search. Second, the sample-based searching method

typically requires evaluating hundreds to thousands of can-

didate activation functions, which is computationally ex-

pensive. It is infeasible to use such an inefficient search-

ing process to find specialized activation functions for each

dataset or architecture. Instead, the searched Swish is used

for most conditions. There are also methods like APL[1]

and PAU[24] that use universal approximators as activation
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functions. Contrary to Swish, they are mostly contiguous

with respect to their parameters and can be directly opti-

mized by gradients. However, these methods suffer from

complicated formulations that may lead to unstable learn-

ing or inefficient inference. Besides, simply using gradients

may not be sufficient to fully optimize these formulations.

To overcome these drawbacks and exploit the full po-

tential of activation functions, we propose a new method

called Piecewise Linear Unit(PWLU). Our method is com-

posed of two parts: the piecewise-linear-based formulation

and the gradient-based learning method. The carefully de-

signed formulation is flexible, easy for learning and effi-

cient for inference. First, it covers a wide range of scalar

functions which raise the potential of finding good activa-

tion functions. Second, it is mostly differentiable with re-

spect to its parameters and can be easily learned by gra-

dients. Third, its computation is very simple at infer-

ence, which is efficient and practical for real-world appli-

cations. To effectively learn activations under this formu-

lation, we identify the input-boundary misalignment prob-

lem and compensate normal gradient-based learning with

statistic-based realignment. Our learning method is both

effective and efficient, making it possible to learn spe-

cialized activation functions for each dataset or architec-

ture. With the formulation and learning method, PWLU

clearly outperforms Swish and other activation functions

on large-scale datasets like ImageNet[28] and COCO[21],

across a wide variety of architectures. An overall com-

parison on ImageNet dataset for different activation func-

tions is shown in Figure 1. Particularly our method outper-

forms Swish for 0.9%/0.53%/1.0%/1.7%/1.0% top-1 accu-

racy for ResNet-18/ResNet-50/MobileNet-V2/MobileNet-

V3/EfficientNet-B0. The learned activation functions show

different preferences across architectures and layers, which

confirms the benefits of learning specialized activation

functions. To summarise, our contributions are as follows:

• We propose a new formulation of activations based on

piecewise linear functions, which is flexible, easy for

learning and efficient for inference.

• We identify the input-boundary misalignment problem

in gradient-based learning and propose a new learning

method that is both effective and efficient.

• With the proposed formulation and learning method,

we demonstrate the benefits of learning specialized ac-

tivation functions on large-scale datasets and different

architectures.

2. Related Work
2.1. Fixed-shape activation functions

As a powerful replacement for traditional activation

functions like Sigmoid and Tanh, ReLU has been widely

accepted for its effectiveness and simplicity. Many vari-

ants have been proposed to address the drawbacks of

ReLU, such as the dead ReLU problem. Some represen-

tative activation functions include Leaky ReLU, PReLU,

Softplus[25], ELU, SELU, etc. While some of them show

improvements in certain cases, the improvements tend to

be inconsistent across different datasets and architectures.

As one possible reason, all these hand-designed activation

functions are fixed in shape or parameterized by only a sin-

gle parameter. The lack of flexibility makes these activation

functions only suitable for limited scenarios.

2.2. Flexible activation functions

To find novel activation functions, [26] proposes to

search for activation functions using automated search tech-

niques. They design a tree-structured search space that con-

structs activation functions using unary and binary func-

tions. An RNN controller is used to generate candidate acti-

vation functions in this space and updated by reinforcement

learning. Since this sample-based searching process is time-

consuming, they restrict the evaluation of each activation

function only on small datasets like Cifar. But it is still too

expensive to apply this searching process to each dataset or

architecture. As a result, only the searched activation func-

tion called Swish is used, but the searching process has not

been applied to different datasets or architectures up to our

knowledge. Thus Swish is actually a fixed-shape activation

function in most cases.

Except for sample-based method, there are also gradient-

based methods such as APL[1] and PAU[24]. These meth-

ods use formulations with many learnable parameters, cov-

ering a wide range of different activation functions. These

parameters are optimized directly by gradients, which is

more efficient than sampled-based searching. Our method

shares the same spirit, but the designs are substantially dif-

ferent. APL uses a weighted sum of multiple ReLU-like

functions which also results in piecewise-linear. However,

the formulation of our method is entirely different, which

influences the corresponding gradients, learning process,

and results. PAU uses Padé approximant which can also

cover a wide range of activation functions. However, the

formulation is complicated and may introduce instability to

optimization. Both APL and PAU do not consider the align-

ment between input distribution and the parametrized func-

tions, which is explicitly handled in our method. Consider-

ing the computation efficiency, Both APL and PAU require

much more computation than our method, limiting their ap-

plications.

2.3. Contextual-based activation functions

Former discussed activation functions are all scalar(one-

to-one) functions([6, 12, 30, 32, 5]). Recently, some

contextual-based methods have been proposed, which use
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many-to-one functions. For example, Dynamic-ReLU[3]

generates the parameters of activation function based on the

global context. That is, each output element of Dynamic-

ReLU depends on all input elements. Funnel-ReLU[22]

is in the form of y = max(x,T(x)), where T(x) is a

spatial condition. Funnel-ReLU also uses contextual in-

formation, but each output element only depends on a lo-

cal window of x. Both Dynamic-ReLU and Funnel-ReLU

are dynamic to some extent. Dynamic-ReLU has differ-

ent functions for different input samples, while the func-

tions of Funnel-ReLU are different for every single ele-

ment. These dynamic characteristics increase models’ ca-

pacity and greatly improve performance. While we focus

on scalar function methods in this paper, adding dynamic

mechanisms to PWLU is an interesting future direction.

3. Methods
3.1. Definition of the Piecewise Linear Unit

x

y

Figure 2. Parameters of Piecewise Linear Unit

We first define the proposed activation function: Piece-

wise Linear Unit. As shown in Figure 2, PWLU is defined

by following parameters:

• Number of intervals N

• Left boundary BL, right boundary BR

• y-axis value of N + 1 demarcation points YP

• Left most slope KL, right most slope KR

The number of intervals N is a hyperparameter, which

influences the fitting ability of PWLU. A larger number of

intervals brings higher degrees of freedom, increasing the

capacity of the model. The left and right boundary BL, BR

defines the effective region where PWLU mainly focuses

on. [BL, BR] is uniformly divided into N intervals, leaving

N + 1 demarcation points. Each demarcation point has a

corresponding y-axis value YP , which determines the shape

of PWLU. Beyond [BL, BR], we use two slopes KL and

KR to control the region out of the boundaries.

Given these parameters, the forward pass of PWLU is

shown in Equation 1:

PWLUN (x,BL, BR, YP ,KL,KR) =⎧⎪⎨
⎪⎩

(x−BL) ∗KL + Y 0
P x < BL

(x−BR) ∗KR + Y N
P x ≥ BR

(x−Bidx) ∗Kidx + Y idx
P BL ≤ x < BR

(1)

where idx indicates the index number of the interval that

x belongs to, while Bidx and Kidx are the corresponding

left boundary and slope of the interval. With d = BR−BL

N
denoting the interval length, these values are computed as

follows:

idx = �x−BL

d
� (2)

Bidx = BL + idx ∗ d (3)

Kidx =
Y idx+1
P − Y idx

P

d
(4)

With this definition, PWLU has several good properties:

• As a universal approximator, PWLU can closely ap-

proximate any contiguous, bounded scalar functions.

• PWLU changes contiguously with its parame-

ters(except for hyperparameter N ), which is friendly

for gradient-based optimization.

• Most of the flexibilities lie in a bounded region, which

can maximize the utilization of learnable parameters.

• Thanks to the uniform division of intervals, PWLU is

efficient in computation, especially for inference. We

will address this point in Sec 4.3.

3.2. Gradients of the Piecewise Linear Unit

As can be seen in the previous section, the forward pass

of PWLU is mostly differentiable, which means it can be

directly optimized by gradients. We derive the gradients in

Table 1.

Note that in the derivation we treat idx as constant

and omit related gradients. For gradients with respect to

YP , we separate it into four parts for clarity. When x ∈
[Bidx, Bidx+1] where 0 ≤ idx ≤ N , the output of PWLU

has gradient with respect to both Y idx
P and Y idx+1

P . When

x ∈ [−∞, BL], the output of PWLU only has gradient with

respect to Y 0
P . When x ∈ [BR,∞], the output of PWLU

only has gradient with respect to Y N
P . As can be seen in

the definition and gradients, the computation of PWLU is

straightforward. We implement the forward and backward

computation in CUDA for efficiency.
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∂PWLUN/ x < BL BL ≤ x < BR x ≥ BR

∂x KL Kidx KR

∂BL −KL Kidx ∗ x−BR

BR−BL
0

∂BR 0 Kidx ∗ BL−x
BR−BL

−KR

∂KL x−BL 0 0

∂KR 0 0 x−BR

∂Y idx
P 0

Bidx+1−x
d 0

∂Y idx+1
P 0 x−Bidx

d 0

∂Y 0
P 1 0 0

∂Y N
P 0 0 1

Table 1. Gradients of Piecewise Linear Unit

3.3. Learning the Piecewise Linear Unit

Given the definition and the gradients of PWLU, we

can learn the parameters of PWLU by gradient descent

directly. Before learning, the parameters of the PWLU

should be properly initialized to stabilize training. One

straightforward way is to initialize PWLU to existing ac-

tivation functions such as ReLU. For example, if N is an

even number, we can initialize BL to any negative value

and set BR = −BL, KL = 0, KR = 1, then set each

Y idx
P = ReLU(Bidx). This initialization offers a good start,

but there is a further problem that needs to be handled dur-

ing training.

Input-boundary misalignment BL, BR are important

parameters of PWLU which define the main region where

the shape can be learned. According to the definition

of PWLU, the degree of freedom mainly lies in the re-

gion [BL, BR]. There are N + 1 parameters(YP ) control-

ling the shape of PWLU in this region, while only two

parameters(KL, KR) for [−∞, BL] and [BR,∞]. Intu-

itively this main region should be aligned with the input dis-

tribution of PWLU, otherwise the effective degrees of free-

dom can reduce. Consider the situation illustrated in Figure

3. The main part of the input distribution shifts to the left,

which only has a little intersection with [BL, BR]. Under

this condition, the parameters out of the input distribution

have little contribution to the network, wasting the flexibil-

ity of PWLU and affecting the final performance. One may

expect that gradients can drive BL, BR to their optimal val-

ues, but unfortunately we find that gradients do not help

either. Gradients with respect to BL and BR only follow

the direction that lowers the task loss, which is not directly

correlated with the alignment between [BL, BR] and the in-

put distribution. During training, this input-boundary mis-
alignment problem will continuously exist and hinder the

learning of PWLU.

x

y input distribution
main part of input

Figure 3. Illustration of the misalignment between [BL, BR] and

the input distribution

Statistic-based realignment To overcome this problem,

we propose a statistic-based method to facilitate the learn-

ing of PWLU. The training process is split into two phases

and the full pipeline is shown in Figure 4.

Trainning
iterations

No update for PWLUs
so they are kept as ReLU

Collect  statistics
,  for PWLUsForward

Ba
ck

wa
rdUpdate

Forward

Ba
ck

wa
rdUpdate

Normal training, update PWLUs by gradients

Init PWLUs to ReLU Reset PWLUs
boundaries

A

B

C

D

Figure 4. Learning PWLU with statistic-based realignment

Phase I Phase I lasts from iteration 0 to T
′ − 1. At

the beginning of phase I, we first initialize all PWLUs to

ReLU(Figure 4 A) and then start the training. In addition to

standard training, we have two modifications(Figure 4 B):

• during each forward procedure, we collect statistics of

input distribution for each PWLU

• during each update procedure, we do not update the pa-

rameters of PWLUs to keep them as initialized ReLU

For collecting statistics we compute the running mean and

running standard deviation of input x for each PWLU, as

formulated in Equation 5. These statistics will be used in

Phase II.
μ = μ ∗ 0.9 + mean(x) ∗ 0.1
σ = σ ∗ 0.9 + std(x) ∗ 0.1 (5)
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Phase II Phase II lasts from iteration T
′

to T . At the be-

ginning of Phase II, we first reset parameters of each PWLU

as following(Figure 4 C):

BL = μ− 3 ∗ σ, BR = μ+ 3 ∗ σ
KL = 0, KR = 1

Y idx
P = ReLU(Bidx) idx ∈ {0, 1, 2, ..., N}

(6)

Here we adopt the 3-sigma rule, which works well in our

experiments. After resetting, the PWLUs are still in ReLU

form as in Phase I (there may be a tiny gap around zero

point whose influence is negligible), but their boundaries

are aligned with the input distribution. Then we start normal

training and update parameters of PWLUs by gradients.

Summary The proposed learning method has many ad-

vantages. First, it is highly efficient. With gradient-based

learning, it is feasible to learn specialized activation func-

tions for each dataset, architecture, layer or even channel,

at the cost of a single training. Second, it is effective and

robust. With special handling of the input-boundary mis-

alignment problem, our method fully exploits the potential

of PWLU. Third, it is simple to implement. Our method

only requires slight changes to normal training procedures,

which are limited to PWLU itself and do not affect any other

components. Our method offers great compatibility with all

kinds of techniques.

4. Experiments
We first show overall results on ImageNet and COCO in

section 4.1 and section 4.2, then ablation studies on several

aspects of PWLU in later sections.

4.1. Experiments on ImageNet

We first evaluate our method on the ImageNet classifi-

cation dataset, which contains 1.28 million training images

and 50k validation images.

General setups All the architectures are trained on 16

Nvidia V100 GPUs with a total batchsize of 1024, SGD

optimizer with momentum 0.9, and the one-cycle cosine

learning rate scheduler. Weight decay is set to 0.0001

for ResNet-18 and ResNet-50[11], 0.00004 for MobileNet-

V2[29] and MobileNet-V3[13], 0.00001 for EfficientNet-

B0[31]. We use the standard random crop + flip aug-

mentation for ResNets and MobileNets, and AutoAugment

for EfficientNet, following their original implementations.

We train ResNets for 100 epochs, MobileNet-V2 for 200

epochs, MobileNet-V3 and EfficientNet-B0 for 350 epochs.

PWLU setups When applying PWLU to an architecture,

we replace all activation layers except those that have tiny

input feature maps, such as activations in SE-block[14].

Tiny input feature maps are not suitable for learning pa-

rameters of PWLU, so we let these activations unchanged

as in their original implementation. T
′

is set to 5 epochs as

it works well across our experiments. We use the channel-

wise setting for PWLU. N is set to 16.

Other activation functions We choose three types of ac-

tivation functions for comparison.

• The first type of activation function includes ReLU,

PReLU and Swish, which have fixed(or nearly fixed)

shape. They are simple in formulation and widely used

in different tasks.

• The sencond type of activation function inlcludes

Adaptive Piecewise Linear(APL) activation and Padé

Activation Units(PAU). We choose them for they share

the same spirit of using a flexible parametric formula-

tion. For APL, we find that the default setting of hy-

perparameter S = 5 is unstable on ImageNet. So we

set S = 3, which is the best value that can be success-

fully trained. For PAU we follow the original setting

where m = 5, n = 4.

• For the third type of activation function we choose

Funnel-ReLU, which is a many-to-one function.

While PWLU is a scalar function, we choose Funnel-

ReLU as a representative for another line of works.

Architectures To compare the general performance of

different activation functions, we conduct experiments on 5

widely used architectures including ResNet-18, ResNet-50,

MobileNet-V2, MobileNet-V3 and EfficientNet-B0. They

cover a wide range of computational complexity and num-

ber of parameters that can be applied to different cases.

Figure 5. Improvements in Top-1 accuracy over ReLU

Results The top-1 accuracies are shown in Table 2. Our

method outperforms ReLU and Swish in all experiments.

12099



ResNet-18 ResNet-50 MobileNet-V2 MobileNet-V3 EfficientNet-B0

FLOPs 1.8G 4.1G 300M 56M 384M

#Params 11.69M 25.5M 3.5M 2.6M 5.3M

ReLU 71.34 76.90 72.84 67.74 76.45

Swish 71.61 77.25 73.68 67.93 77.05

PReLU 71.30 77.09 73.69 67.81 77.10

APL 71.03 76.43 73.89 67.68 77.28

PAU 71.80 76.58 74.56 68.55 78.08

F-ReLU 71.82 77.49 74.85 68.48 77.28

PWLU 72.57 77.78 74.69 69.65 78.22

Table 2. Top-1 accuracies on ImageNet for different activation functions and architectures. For each architecture the top-2 results are shown

in bold.

To show differences more clearly, we also plot the im-

provements of top-1 accuracy over ReLU in Figure 5. Al-

though these activation functions are better than ReLU in

most cases, an interesting pattern is worth noting: the im-

provements are highly inconsistent across architectures, ex-

cept for PWLU. For example, Swish is claimed to perform

well especially for mobile-sized models, however it is true

only for MobileNet-V2 in our experiments while the im-

provements for ResNet-18 and MobileNet-V3 are marginal.

PReLU and APL have a similar trend with Swish but are

more unstable. PAU and Funnel-ReLU generally perform

better than Swish, but still have large differences between

architectures. On the other hand, PWLU achieves the best

results and performs consistently across architectures.

4.2. Experiments on COCO

To further demonstrate the generalization ability of our

method, we apply PWLU to the COCO object detection

dataset. We use the train2017 split(118k images) for train-

ing and the val2017 split(5k images) for testing. We use

two popular detection framework: Mask R-CNN[9] and

RetinaNet[20]. We mainly follow the settings in [8] which

do not use ImageNet pre-train models but train the model

from scratch. The detailed settings are as follows.

Architecture We use ResNet-50 plus Feature Pyramid

Network(FPN)[19] as backbone for both Mask R-CNN

and RetinaNet . SyncBN is used to facilitate the from-

scratch training. For Mask R-CNN the Region Proposal

Networks(RPN)[27] is trained jointly with Mask-RCNN.

Learning rate scheduling Both Mask R-CNN and Reti-

naNet are trained for 270k iterations(namely, ‘3× sched-

ule’). The learning rate is reduced by 10× in the last 60k

and the last 20k iterations.

Hyper-parameters The initial learning rate is 0.02,

weight decay is 0.0001 and momentum is 0.9. All mod-

els are trained with 8 Nvidia V100 GPUs with two images

per GPU. The image scale is 800 pixels for the shorter side.

For PWLU we use the same setting as in ImageNet.

Results We show results for Mask R-CNN and RetinaNet

with different activations in Table 3. As Swish outper-

forms ReLU for 1%/0.8% AP, our PWLU further improves

0.4%/0.5% AP over Swish, which is on par with F-ReLU.

Note that F-ReLU utilizes contextual information which is

likely beneficial for detection tasks, while PWLU does not

access this extra information.

Mask R-CNN RetinaNet

APbbox APmask APbbox

ReLU 39.06 35.3 37.06

Swish 40.05 36.1 37.82

F-ReLU 40.25 36.90 38.35

PWLU 40.48 37.13 38.31

Table 3. Results for different activations on COCO dataset

4.3. Efficient inference for PWLU

As noted in section 3.1, we show how to optimize effi-

ciency for PWLU at inference. Re-write the main compu-

tation as x ∗ Kidx + (Y idx
P − Bidx ∗ Kidx), where Kidx

and Y idx
P − Bidx ∗ Kidx can be calculated in advance.
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Then the main computation becomes a single Multiply-

Add: x∗Sidx+Oidx. The comparings in Equation 1 can be

eliminated as well. The first two conditions can be merged

into the third by extending idx. The original idx belongs to

{0, 1, · · · , N − 1}, now we extend it to {−1, 0, · · · , N} by

idx
′
= clip(�x−BL

d �,−1, N). idx
′
= −1 corresponds to

x < BL while idx
′
= N corresponds to x ≥ BR. Then we

set S−1 = KL, SN = KR, O−1 = Y 0
P − BL ∗KL, ON =

Y N
P −BR ∗KR. After this, the overall inference computa-

tion is simplified as: calculate idx
′

then x ∗ Sidx′ + Oidx′ .

We implement it in CUDA and test the inference time as

shown in Table 4. As expected, PWLU is very efficient at

inference, close to ReLU and Swish. As for training, PWLU

is around 20% slower compared to ReLU due to more gra-

dient terms.

Model ReLU Swish PWLU FReLU APL PAU

ResNet-18 17.1 18.8 19.9 23.3 40.7 64.2

MobileNetV3 15.4 15.7 16.2 18.1 31.7 38.6

Table 4. Inference time(ms) measured on an NVIDIA V100 GPU

with input size of 64× 3× 224× 224, averaged for 500 times.

4.4. Ablation on input-boundary misalignment

We further study the influences of the input-boundary

misalignment problem introduced in Section 3.3. Accord-

ing to our analysis, the [BL, BR] and input distribution of

PWLU can be misaligned during normal training, wasting

the flexibility of PWLU and affecting the final performance.

The statistic-based realignment is designed to address this

problem,so we compare these two methods:

• fix-init-x: intialize [BL, BR] to a hand-picked [−x, x]
then do normal training

• stat-realign: train with statistic-based realignment ac-

cording to Figure 4

We run experiments on ResNet-18 and MobileNet-V3 for

both layer-wise and channel-wise PWLU. We choose N =
16 for PWLU in all experiments.

Method layer-wise channel-wise

ResNet-18 baseline 71.34

+ PWLU-fix-init-3 71.57 72.27

+ PWLU-fix-init-6 71.70 71.86

+ PWLU-fix-init-10 71.84 72.19

+ PWLU-stat-realign 72.22 72.57

Table 5. Top-1 accuracies on ImageNet for ResNet-18

Method layer-wise channel-wise

MobileNet-V3 baseline 67.74

+ PWLU-fix-init-3 68.54 68.98

+ PWLU-fix-init-6 68.48 68.88

+ PWLU-fix-init-10 68.42 68.20

+ PWLU-stat-realign 69.30 69.65

Table 6. Top-1 accuracies on ImageNet for MobileNet-V3

As shown in Table 5 and Table 6, layer-wise PWLU with

fix-init shows slightly improvements over baselines. When

using stat-realign, the performance further boosts by a clear

margin. Note that channel-wise PWLU is more sensitive to

different initial values of fix-init, while stat-realign consis-

tently achieves better results.

To further verify our analysis, we quantitatively show

the alignment between [BL, BR] and the input distribution

of PWLU. At the end of training, we collect input x of

each single channel of all PWLUs, then compute IOU for

[BL, BR] and [xp0.05, xp0.95]:

IOU =
[BL, BR] ∩ [xp0.05, xp0.95]

[BL, BR] ∪ [xp0.05, xp0.95]
(7)

This IOU can be regarded as a quantitative measure of

alignment at each channel. We choose two experiments in

Table 6: PWLU-fix-init-10 and PWLU-stat-realign under

channel-wise setting, compute IOUs for each experiment

and show their distributions in Figure 6. It clearly shows

that stat-realign has much higher IOUs compared to fix-
init, successfully addressing the input-boundary misalign-

ment problem. Based on the above results, we can conclude

that the input-boundary misalignment problem indeed af-

fects the learning of PWLU, and it can be addressed by our

statistic-based realignment method.

Figure 6. Distribution of IOUs computed for PWLU-fix-init-10

and PWLU-stat-realign
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4.5. Ablation on interval numbers

As described in Section 3.1, the number of intervals N
is a hyperparameter. A larger number of intervals brings

higher degrees of freedom, increasing the capacity of mod-

els. Here we show the influence of N , to facilitate the

choice of this hyperparameter.

We run experiments for N ∈ {4, 8, 12, 16, 20}, for three

architectures with channel-wise PWLU. As shown in Table

7, more intervals generally bring greater improvements es-

pecially for small models. For example, PWLU with N = 8
shows 0.8% improvements over N = 4 for MobileNet-

V3. One interesting observation is that for all three models,

N = 20 shows slightly worse results. A possible explana-

tion is that each Y idx
P only influences the computation of

adjacent two intervals. When N grows larger, each interval

gets a fewer number of input data points, which will reduce

the number of corresponding gradients received by Y idx
P .

This may result in higher variances of aggregated gradients

and influence the training. Generally, N ∈ [8, 16] gives

good results, which is the recommended range for N .

N ResNet-18 MobileNet-V3 EfficientNet-B0

4 72.24 68.70 77.90

8 72.39 69.55 78.09

12 72.45 69.20 77.96

16 72.57 69.65 78.22

20 72.43 69.37 77.86

Table 7. Top-1 accuracies on ImageNet for different number of

intervals.

4.6. Comparing to APL and PAU

Both APL and PAU use parameterized formulations cov-

ering a wide range of scalar functions, similar to PWLU.

However, they may have large differences in optimization.

For example, APL is a weighted sum of many basis func-

tions: APL(x) = max(0, x)+
∑S

i=1 aimax(0,−x+bi). One

can clearly see that ai and bi only receive gradients when

x < bi. Thus the gradients with respect to ai and bi can be

highly unbalanced depending on the value of bi. A larger

value of bi enables more gradients and vice versa. This un-

balance makes the optimization of APL difficult, and we

indeed find it unstable in our experiments. PAU uses a more

sophisticated formulation based on Padé approximant. It

works well sometimes but improvements are not as consis-

tent as PWLU. One possible explanation is that PAU de-

fines a global function for R but the actual input distribu-

tion only lies in a bounded region. This gap may reduce

the expressiveness of PAU and weakens the improvements.

Comparing to APL and PAU, our PWLU has balanced gra-

dients, focuses on bounded regions and carefully handles

the input-boundary misalignment problem. These designs

make PWLU consistently outperforms APL and PAU across

different architectures.

4.7. Visualization for learned PWLUs

Figure 7. Learned PWLUs for different layers and architectures.

Only five functions are sampled for clarity. Boundaries are shown

by markers with each function.

We visualize learned PWLUs for different layers and

architectures in Figure 7. It clearly shows that learned

activation functions are substantially different from hand-

designed ones. V-shaped functions frequently appear,

which are rarely seen in common activation functions. Also,

activations for the first layer are close to linear functions.

While sharing some common patterns, the learned functions

are clearly different across architectures, which is consistent

with our motivation of learning specialized activation func-

tions for different architectures.

5. Conclusion
In this paper, we propose a new activation function called

PWLU, which is designed to learn specialized activation

functions for each dataset and architecture. To achieve this

goal, we carefully design the formulation and the learning

method. The piecewise-linear-based formulation is flexible

and can be easily learned by gradients, while the statistic-

based realignment makes the learning more effective and

robust. On large-scale datasets like ImageNet and COCO,

PWLU consistently outperforms other activation functions

across multiple architectures, which demonstrates the bene-

fits of learning specialized activation functions. PWLU is

both simple in implementation and efficient at inference,

which has great potential in real-world applications.
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