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Abstract

RGB-D based 6D pose estimation has recently achieved
remarkable progress, but still suffers from two major limita-
tions: (1) ineffective representation of depth data and (2) in-
sufficient integration of different modalities. This paper pro-
poses a novel deep learning approach, namely Graph Con-
volutional Network with Point Refinement (PR-GCN), to si-
multaneously address the issues above in a unified way. It
first introduces the Point Refinement Network (PRN) to pol-
ish 3D point clouds, recovering missing parts with noise re-
moved. Subsequently, the Multi-Modal Fusion Graph Con-
volutional Network (MMF-GCN) is presented to strengthen
RGB-D combination, which captures geometry-aware inter-
modality correlation through local information propagation
in the graph convolutional network. Extensive experiments
are conducted on three widely used benchmarks, and state-
of-the-art performance is reached. Besides, it is also shown
that the proposed PRN and MMF-GCN modules are well
generalized to other frameworks.

1. Introduction
6D pose estimation aims to predict the orientation and lo-

cation of an object in the 3D space from a canonical frame.
It has received extensive attention in computer vision, since
it is one of the fundamental steps for a wide range of appli-
cations, such as robotics grasping [6, 35, 47] and augmented
reality [22, 23]. Traditional methods [10, 11] attempt to ac-
complish this task based on RGB images only. They adopt
handcraft features (e.g. SIFT [21] and SURF [1]) to estab-
lish correspondence between input and canonical images.
Inspired by the great success in detection/recognition, deep
neural networks are recently explored to address this issue,
including the single-stage regression methods [15] and key-
point based methods [13, 32, 36, 35, 26, 25, 20]. Despite the
remarkable promotion in accuracy, RGB-based deep mod-

*indicates the corresponding author.
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Figure 1. Example object: (a) / (b) are RGB / depth images; (c)/(d)
are generated incomplete noisy point cloud and ground-truth.

els heavily rely on textures; thus sensitive to illumination
variations, severe occlusions, and cluttered backgrounds.

Along with the emergence and innovation of depth sen-
sors, 6D pose estimation on RGB-D data has become popu-
lar, expecting to deliver performance gain by adding geom-
etry information. Early works [11, 24, 45] estimate object
poses from RGB images and refine them according to depth
maps. Later studies [38, 17] dedicate to integrating RGB
and depth clues in a more sophisticated way. Particularly,
[41, 31, 30, 38, 9] represent depth images as 3D point clouds
and the models are more efficient in computation and stor-
age than those on original depth maps. By jointly making
use of both modalities, RGB-D based solutions report better
scores, with the superiority in the presence of the difficulties
aforementioned as well as the low-texture case.

However, current RGB-D pose estimation suffers from

2793



two major limitations: ineffective representation of depth
data and insufficient combination of two modalities. For
the former, as captured in cluttered scenes, depth informa-
tion is usually noisy and incomplete (see Fig. 1). Inferring
poses from such data, either in 2D depth maps or 3D point
clouds, is not robust, leading to accuracy deterioration. For
the latter, RGB and depth clues are fused by concatenating
separately learned single-modal features [38] or by applying
a simple point-wise encoder [9], where inter-modality cor-
relations are not considered or roughly modeled in a global
manner, leaving much room for improvement.

In this paper, we propose a novel deep learning approach,
namely Graph Convolutional Network with Point Refine-
ment (PR-GCN), to simultaneously address the two limita-
tions in a unified way. As in Fig. 2, given the RGB image
and 3D point cloud (generated from depth map) of an ob-
ject, we first introduce a Point Refinement Network (PRN)
to polish the point cloud. Endowed with an encoder-decoder
structure and trained with a regularized multi-resolution re-
gression loss, PRN recovers the missing parts of the raw in-
put with noise removed. Subsequently, we integrate RGB-D
clues by a Mutli-Modal Fusion Graph Convolutional Net-
work (MMF-GCN). It constructs a k-Nearest Neighbor (k-
NN) graph and extracts geometry-aware inter-modality cor-
relation through local information propagation in the Graph
Convolutional Network (GCN). An additional k-NN graph
and GCN are employed to encode local geometry attributes
of the refined point cloud as a complement to the original
data. The features from the two GCNs are then combined
and fed into several fully-connected layers for final 6D pose
prediction. We extensively evaluate PR-GCN on three pub-
lic benchmarks, Linemod [11], Occlusion Linemod [2], and
YCB-Video [40], and achieve the state-of-the-art perfor-
mance. We also show that the proposed PRN and MMF-
GCN modules are well generalized to other frameworks.

The contributions: 1) We propose the PR-GCN approach
to 6D pose estimation by enhancing depth representation
and multi-modal combination. 2) We present the PRN mod-
ule with a regularized multi-resolution regression loss for
point-cloud refinement. To the best of our knowledge, it is
the first that applies 3D point generation to this task. 3) We
develop the MMF-GCN module to capture local geometry-
aware inter-modality correlation for RGB-D fusion.

2. Related Work
RGB based 6D Pose Estimation. The traditional methods
[11, 7, 16] establish correspondence between object appear-
ances and poses from single RGB images. Linemod [11]
predicts poses by modeling the relationship between texture
gradients and surface normals on 3D templates. [3] exploits
key-points of specific objects for pose estimation by itera-
tively matching them between input and canonical frames.
As in other vision tasks, deep models are also investigated

to build more powerful features for this issue. DeepIM [18]
adopts CNNs to learn reliable representations for template-
matching. BB8 [32] applies CNNs in a multi-stage segmen-
tation scheme to regress key-point coordinates. PVNet [29]
proposes a deep offset prediction model to alleviate nega-
tive impacts of occlusions. CDPN [19] and Pix2pose [28]
map 3D coordinates to 2D pixels and regress pose parame-
ters on 2D images. LatentFusion [27] handles unseen object
poses by reconstructing a latent 3D representation.
RGB-D based 6D Pose Estimation. With geometry infor-
mation, depth maps contribute to pose estimation for vari-
ous lighting conditions and low-textured appearances, com-
plementary to RGB images. MCN [17] employs two CNNs
for representation learning in RGB and depth respectively
and resulting features are then concatenated for pose pre-
diction. PoseCNN [40] and SSD-6D [14] follow the coarse-
to-fine scheme, where poses are initially estimated on RGB
frames and subsequently refined on depth maps. [37] builds
a multi-view model to jointly reconstruct whole scenes and
optimize multi-object poses.

Recently, there has emerged a trend to represent geome-
try clues in 3D point clouds rather than depth mas for higher
efficiency [38, 5, 4, 31, 9]. DenseFusion [38] designs a het-
erogeneous network to integrate texture and shape features
and such representation proves more discriminative than
single-modal ones. CF [5] introduces attention modules to
combine the two modalities for further improvements. G2L
[4] segments point clouds of objects in scenes by frustum
pointnet [31] and regresses pose parameters via extra coor-
dinate constraints. PVN3D [9] incorporates DenseFusion
into 3D key-point detection and instance semantic segmen-
tation, significantly boosting the performance.

Unfortunately, the point clouds generated from the depth
maps are often of a low quality, since the shape informa-
tion is often incomplete and noisy as Fig. 1 shows. Be-
sides, the combination of RGB and depth clues is launched
in a very rough way, e.g., directly concatenating or point-
wise encoding. In contrast, our approach develops the PRN
and MMF-GCN modules to polish depth clues by gener-
ating refined point clouds and enhance integration by cap-
turing local geometry-aware inter-modality correlations re-
spectively, both of which are beneficial to pose estimation.

3. The Proposed Method

3.1. Framework Overview

RGB-D based 6D pose estimation recovers 6D poses of
objects in RGB-D images, where 6D pose is usually repre-
sented by a rotation matrix R ∈ SO(3) and a translation
vector t ∈ R3. For this issue, we propose the PR-GCN ap-
proach. As Fig. 2 depicts, it consists of four steps: object lo-
calization and 3D points generation, 3D points refinement,
GCN-based multi-modal fusion, and 6D pose prediction.
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Figure 2. Illustration of PR-GCN. Given an RGB-D image, it first localizes objects on RGB images and generates their raw 3D point clouds.
Subsequently, PRN generates refined 3D points to polish shape clues and MMF-GCN integrates multi-modal features by propagating local
geometry-aware information and leveraging refined 3D points. 6D pose is finally inferred based on the feature delivered by MMF-GCN.

Object Localization and 3D Points Generation. Given
an RGB-D image I = (Irgb, Id), we firstly locate objects
on Irgb using the off-the-shelf Faster R-CNN [33] detector,
where Irgb and Id denote the RGB and depth channels of I .
According to the detected bounding boxes, we crop the sub-
images {Io} = {(Io,rgb, Io,d)}, each of which contains an
instance o. Io,rgb and Io,d are the RGB and depth channels
of Io. As in PoseCNN [40], we add a segmentation head to
remove background of Io,rgb. With Mo (foreground mask)
and Io,d, raw 3D points Po = [p

(1)
o ; · · · ;p(i)

o ; · · · ;p(N)
o ] ∈

RN×3 are rendered by Point-Cloud Transform (PCT) [8],
where N is the number of points and p

(i)
o ∈ R3 is the 3D

coordinate of the i-th point. It is worth noting that Po could
be severely incomplete and noisy due to external occlusions
and sensor noise (see Fig. 1).

3D Points Refinement. To polish the quality of the gen-
erated raw 3D points Po, we propose the PRN module. As
in Fig. 2, it is composed of an MLP-based encoder and a
multi-resolution decoder to recover the complete and accu-
rate 3D point cloud P̂o = [p̂

(1)
o ; · · · ; p̂(m)

o ; · · · ; p̂(M)
o ] ∈

RM×3, where M is the number of refined points. A regular-
ized multi-resolution regression loss is formulated in train-
ing, enhancing its ability of filtering out noise in Po.

GCN-based Multi-Modal Fusion. For more sufficient
RGB-D fusion, we propose the MMF-GCN module. As in
Fig. 2, it extracts texture and geometry features from Io,rgb
and Po, respectively, and a graph is built based on geom-
etry distribution. Accordingly, Io,rgb and Po are initially
integrated by applying a GCN GCNf (·) on the previously
built graph through local information propagation. The ge-
ometry clues from the refined 3D points are encoded by in-

troducing an extra GCN GCNref (·) and then incorporated
into the initially fused features, which are fed into several
stacked fully-connected layers T (·) for further fusion. The
resulting feature Go = [g

(k)
o ]k=1,··· ,K ∈ RK×d is therefore

the multi-modal representation for successive 6D pose esti-
mation, where K and d refer to the number of points and the
feature dimension, respectively. Since MMF-GCN captures
local geometry-aware inter-modality correlation and lever-
ages refined 3D point clouds, it is expected to deliver more
discriminative and robust features.

6D Pose Prediction. [g
(k)
o ]k=1,··· ,K is finally fed into

three regression branches: REGr(·), REGt(·), REGc(·),
for rotations {R̂(k)

o = REGr(g
(k)
o )}, translations {t̂(k)o =

REGt(g
(k)
o )}, confidence scores {s(k)o = REGc(g

(k)
o )},

respectively. Each branch has four fully-connected layers.
Similar to [9, 29, 38], we select the candidate with the high-
est confidence score as the estimated pose, formulated as:

(R̂o, t̂o) = argmax{
(R̂

(k)
o ,t̂

(k)
o )|k=1,··· ,K

} s(k)o . (1)

3.2. Point Refinement Network

Recall that PRN aims to generate the refined 3D point
cloud P̂o from the raw one of a low quality Po. As in Fig. 3,
PRN is endowed with an encoder-decoder architecture. To
deal with the change in point density (resolution), we down-
sample Po with 1/2 and 1/4 scales, resulting in two extra
point clouds: Po,1/2 ∈ RN

2 ×3 and Po,1/4 ∈ RN
4 ×3.

Accordingly, the encoder E(·) has three branches E1(·),
E1/2(·), E1/4(·), whose inputs are Po, Po,1/2, Po,1/4 and
outputs are the three representations v1 = E1(Po), v1/2 =

2795



M
LP
(3
,6
4)

M
LP
(6
4,
64
)

M
LP
(6
4,
12
8)

M
LP
(1
28
,2
56
)

M
LP
(2
56
,5
12
)

M
LP
(5
12
,1
02
4)

Encoder !!(#)
M
LP
(3
,6
4)

M
LP
(6
4,
64

)

M
LP
(6
4,
12

8)

M
LP
(1
28

,2
56

)

M
LP
(2
56

,5
12

)

M
LP
(5
12

,1
02

4)

M
LP
(3
,6
4)

M
LP
(6
4,
64
)

M
LP
(6
4,
12
8)

M
LP
(1
28
,2
56
)

M
LP
(2
56
,5
12
)

M
LP
(5
12
,1
02
4)

Decoder %!&(#)

FC
1

(1
92

0,
10

24
)

M
LP

1,
4

(2
56

,1
28

)

FC
1,

2
(1

02
4,

51
2*

12
8)

M
LP

1,
3

(5
12

,2
56

)

M
LP

2,
2

(1
28

,6
)

FC
2

(1
02

4,
51

2)

FC
2,

1
(5

12
,1

28
*6

4)

FC
4

(2
56

,6
4*

3)

FC
3

(5
12

,2
56

)

Multi-Resolution
Inputs

Encoder !!/#(#)

Encoder !!/$(#) M=512

M=128

M=64

Multi-Resolution 
Outputs

C

M
LP
(3
,1
)

Latent 
Representation

RS
5

(6
4,

 3
,1

)
RS

2,
3 

(6
4,

 3
, 2

)

RS
1,

6 
(1

28
, 3

, 4
)

RS
2,

4 
(1

28
, 3

,1
)

RS
1,

7 
(5

12
, 3

,1
)

M
LP

1,
5

(1
28

,1
2)

Figure 3. Detailed structure of PRN (
⊕

: additive operation).

E1/2(Po,1/2), v1/4 = E1/4(Po,1/4). Each branch is a stack
of six MLP layers. The concatenation of v1, v1/2 and v1/4

followed by an MLP layer forms the intermediate latent rep-
resentation v.

The decoder DEC(·) employs a multi-resolution struc-
ture as [43] does. The first branch with four fully-connected
(FC) layers as well as one reshape (RS) operation is built to
obtain the coarse point cloud of a low-resolution P̂o,1/8 =

RS5(FC4(FC3(FC2(FC1(v))))) ∈ RM
8 ×3 (or RM

8 ×3×1

equivalently). The second branch consists of the first two
shared FC layers, one additional FC layer, one MLP layer
and one RS operation, generating a mediate-resolution point
cloud P̂o,1/4 = RS2,3(MLP2,2(FC2,1(FC2(FC1(v))))).

Then, P̂o,1/8 is integrated into P̂o,1/4 by a broadcasting ad-
ditive operation P̂o,1/4 := P̂o,1/4

⊕
P̂o,1/8, and P̂o,1/4 is

reshaped into P̂o,1/4 := RS2,4(P̂o,1/4) ∈ RM
4 ×3. Simi-

larly, the third branch finally renders a high-resolution point
cloud P̂o ∈ RM×3 by sharing the first FC layer, adding
one FC layer, three MLP layers and one RS operation, and
incorporating the mediate-resolution information as P̂o =
RS1,7(RS1,6(MLP1,5(MLP1,4(MLP1,3(FC1,2(FC1(v)

)))))
⊕

P̂o,1/4).
For training PRN, we develop a multi-resolution regres-

sion loss formulated as follows:

Lmr = dC(P̂o,Po,GT ) +
∑

r∈{ 1
8 ,

1
4}

dC(P̂o,r,Po,GT ) (2)

where Po,GT = [p
(1)
o,GT ; · · · ;p

(H)
o,GT ] ∈ RH×3 is ground-

truth point cloud of object o. dC(·, ·) is the Chamfer dis-
tance defined as dC(P ,Q) = 1

M

∑
i

min
j

∥p(i) − q(j)∥22 +

1
N

∑
j

min
i
∥q(j) − p(i)∥22, given P = [p(m)]m=1,··· ,M ∈

RM×3 and Q = [q(n)]n=1,··· ,N ∈ RN×3.
In Eq. (2), P̂o is forced to fit the ground-truth in low-

to-high resolutions when minimizing Lmr. In other words,
DEC(·) is forced to predict high-quality points in multiple
resolutions by a unified structure, and thus optimized with
more supervision than the single-resolution case. Moreover,
as shown in Fig. 3, the high-resolution output P̂o integrates

multi-resolution information from P̂o,1/4 and P̂o,1/8. As
a consequence, PRN mitigates the incompleteness and de-
creases the noise of the raw 3D points.

Despite the aforementioned advantages of Lmr, it fails to
perceive the global point distribution of Po,GT . We handle
this problem by introducing the adversarial loss:

Ladv =

H∑
h=1

log(D(p
(h)
o,GT )) +

M∑
m=1

log(1−D(p̂(m)
o )), (3)

where D(·) is the discriminator to classify whether a point
belongs to Po,GT (“real”) or not (“fake”). By minimizing
Ladv, PRN is expected to generate P̂o that captures holistic
point distribution of Po,GT , benefiting the quality of Po.

The regularized multi-resolution regression loss is thus
formulated as:

Lprn =
∑
o

(λ · Ladv + β · Lmr) , (4)

where λ and β are the trade-off hyper-parameters.

3.3. Multi-Modal Fusion GCN

As mentioned before, given the RGB (Io,rgb) and point
cloud (Po and P̂o) data of object o, MMF-GCN integrates
multi-modal information into more effective representation
(Go) for accurate 6D pose estimation.

Specifically, MMF-GCN first extracts the geometry fea-
ture f

(i)
o,d from Po and the texture feature f

(i)
o,rgb from Io,rgb

for the i-th point p(i)
o ∈ Po. The normalized coordinate of

p
(i)
o is directly used as the geometry feature, and by map-

ping this coordinate to the pixel on Io,rgb, PSPNet [46] with
the ResNet-18 backbone is adopted to compute pixel-wise
representation as the texture feature.

When {f (i)
o,rgb} and {f (i)

o,d} are ready, a k-Nearest Neigh-
bor (k−NN) graph Gf = (Vf , Ef ) is constructed. Vf =

{p(1)
o , · · · ,p(N)

o } and Ef = {(p(i)
o ,p

(j)
o )|p(j)

o ∈ Nk(p
(i)
o )}

denote the vertices and the edges, and Nk(p
(i)
o ) indicates

the k nearest neighbors of p(i)
o . The edge feature is defined

as e(i,j) = hθ(f
(i)
o − f

(j)
o ,f

(i)
o ) with f

(i)
o = [f

(i)
o,rgb,f

(i)
o,d],

where hθ(·, ·) is a nonlinear function parameterized by θ.
Afterwards, a graph convolution network GCNf (·) is

employed to capture local inter-modality correlations, with
EdgeConv [39] for graph convolutions. The basic updating
scheme is formulated as:

g
(i,l)
o,f = MP

(
hθ(l−1)

(
g
(i,l−1)
o,f − g

(j,l−1)
o,f , g

(i,l−1)
o,f

))
,

where g
(i,l)
o,f denotes the i-th edge feature in the l-th layer,

hθ(l−1)(·, ·) is a nonlinear function in the (l−1)-th layer, and
MP (·) refers to max pooling. The representation Go,f =

[g
(j)
o,f ]j=1,··· ,J ∈ RJ×df is then obtained, where Go,f =
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Table 1. Comparison with the state-of-the-arts in terms of ADD(-S) (%) on Linemod. Symmetric objects are marked in bold. ∗/† indicates
that the method only uses real/synthetic data for training. PF and DF refer to PointFusion [41] and DenseFusion [38], respectively.

RGB based methods RGB-D based methods
Object PoseCNN* PVNet CDPN DPOD DPVL PF* SSD6D† DF* PVN3D G2L* Ours* Ours

[40, 18] [29] [19] [44] [42] [41] [14] [38] [9] [4]
ape 77.0 43.6 64.4 87.7 69.1 70.4 65.0 92.3 97.3 96.8 97.6 99.2
benchvise 97.5 99.9 97.8 98.5 100.0 80.7 80.0 93.2 99.7 96.1 99.2 99.8
camera 93.5 86.9 91.7 96.1 94.1 60.8 78.0 94.4 99.6 98.2 99.4 100.0
can 96.5 95.5 95.9 99.7 98.5 61.1 86.0 93.1 99.5 98.0 98.4 99.4
cat 82.1 79.3 83.8 94.7 83.1 79.1 70.0 96.5 99.8 99.2 98.7 99.8
driller 95.0 96.4 96.2 98.8 99.0 47.3 73.0 87.0 99.3 99.8 98.8 99.8
duck 77.7 52.6 66.8 86.3 63.5 63.0 66.0 92.3 98.2 97.7 98.9 98.7
eggbox 97.1 99.2 99.7 99.9 100.0 99.9 100.0 99.8 99.8 100.0 99.9 99.6
glue 99.4 95.7 99.6 96.8 98.0 99.3 100.0 100.0 100.0 100.0 100.0 100.0
holepuncher 52.8 82.0 85.8 86.9 88.2 71.8 49.0 92.1 99.9 99.0 99.4 99.8
iron 98.3 98.9 97.9 100.0 99.9 83.2 78.0 97.0 99.7 99.3 98.5 99.5
lamp 97.5 99.3 97.9 96.8 99.8 62.3 73.0 95.3 99.8 99.5 99.2 100.0
phone 87.7 92.4 90.8 94.7 96.4 78.8 79.0 92.8 99.5 98.9 98.4 99.7
MEAN 88.6 86.3 89.9 95.2 91.5 73.7 79.0 94.3 99.4 98.7 98.9 99.6

GCNf ({f (i)
o,rgb,f

(i)
o,d}); J and df are the point number and

the feature dimension, respectively.
As Po is usually incomplete and noisy, MMF-GCN en-

codes the geometry attribute of P̂o and incorporates it into
Go,f as a complement. Concretely, similar to Gf , another
k-NN graph Gref is built based on P̂o, and an extra GCN
GCNref (·) is employed. The refined geometry feature is
calculated using EdgeConv: Go,ref = [g

(j)
o,ref ]k=1,··· ,J ∈

RJ×dref , where Go,ref = GCNref (P̂o) and dref is the
feature dimension. Go,ref is subsequently combined with
Go,f through simple concatenation, which is further inte-
grated by a few stacked FC layers T (·). At last, multi-modal
representation is formed as Go = T ([Go,r,Go,ref ]) for 6D
pose estimation.

3.4. Training Objectives

The objective function for training PR-GCN consists of
two parts: the pose estimation loss Lpose and the regularized
multi-resolution regression loss Lprn as depicted in Eq. (4).

Given the ground-truth 6D pose (Ro, to) and the predic-
tions {(R̂(k)

o , t̂
(k)
o , s

(k)
o )} at K points {x(k)

o }, the pose esti-
mation error of the i-th prediction (R̂

(i)
o , t̂

(i)
o ) is defined as

e
(i)
o = 1

K

∑K
j=1 mink ∥(Rox

(j)
o +to)−(R̂

(i)
o x

(k)
o + t̂

(i)
o )∥22.

Based on e
(i)
o , we adopt an extra regularization term on the

prediction scores {s(i)o } as in [38] and formulate the pose
estimation loss as:

Lpose =
1

K

∑
o

∑
i

e(i)o ·
(
s(i)o − log(s(i)o )

)
. (5)

By combining Eq. (5) and Eq. (4), the overall training

objective function is written as:

L = Lpose + µ · Lprn, (6)

where µ is the trade-off hyper-parameter.

4. Experiments

4.1. Datasets and Metrics

Extensive evaluation is made on three datasets: Linemod
[11], Occlusion Linemod [2] and YCB-Video [40].

Linemod [11] is composed of 15 RGB-D videos of 15
low-textured objects. Following [32], 13 objects are consid-
ered and the standard training/testing split is adopted as in
[38, 40]. Occlusion Linemod is collected by annotating a
subset of Linemod (8 out of 15 objects), where each image
has multiple occluded objects, making it more challenging.
YCB-Video [40] includes 21 objects with various textures
and sizes. It provides RGB-D images and detailed pose an-
notations. There are 130K real images from 92 videos and
80K synthetically rendered ones, and 16,189 real and all the
synthesized images are used in training, according to [38].

As in the literature, two main metrics are employed for
evaluation, i.e., Average Distance (ADD) [40] and ADD-
Symmetric (ADD-S) [40], designed for general objects and
symmetric objects, respectively. DenseFusion [38] gives
the ADD-S smaller than 2 centimeters (ADD-S<2cm) for
real applications e.g. robotic manipulation, and PoseCNN
[40] and DenseFusion [38] report the Area Under the ADD-
S Curve (AUC) with the maximum threshold at 0.1m. We
also show them for comparison.
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Table 2. Comparison of ADD(-S) AUC (%) on Occlusion Linemod. Symmetric objects are marked in bold.
Object PoseCNN [40] DeepHeat [26] SS [12] Pix2pose [28] PVNet [29] HybridPose [34] PVN3D [9] Ours
Ape 9.6 12.1 17.6 22.0 15.8 20.9 33.9 40.2
Can 45.2 39.9 53.9 44.7 63.3 75.3 88.6 76.2
Cat 0.9 8.2 3.3 22.7 16.7 24.9 39.1 57.0
Driller 41.4 45.2 62.4 44.7 65.7 70.2 78.4 82.3
Duck 19.6 17.2 19.2 15.0 25.2 27.9 41.9 30.0
Eggbox 22.0 22.1 25.9 25.2 50.2 52.4 80.9 68.2
Glue 38.5 35.8 39.6 32.4 49.6 53.8 68.1 67.0
Holepuncher 22.1 36.0 21.3 49.5 39.7 54.2 74.7 97.2
MEAN 24.9 27.0 27.0 32.0 40.8 47.5 63.2 65.0

Table 3. Comparison of AUC (%) and ADD-S < 2cm (%) (“<2cm” for short) on YCB-Video. Symmetric objects are highlighted in bold.
PoseCNN+ICP [40] DenseFusion [38] PVN3D [9] CF [5] G2L [4] Ours
AUC <2cm AUC <2cm AUC <2cm AUC <2cm AUC AUC <2cm

002 master chef can 95.8 100.0 96.4 100.0 96.0 100.0 92.5 98.7 94.0 97.1 100.0
003 cracker box 92.7 91.6 95.5 99.5 96.1 100.0 95.4 98.6 88.7 97.6 100.0
004 sugar box 98.2 100.0 97.5 100.0 97.4 100.0 96.7 99.9 96.0 98.3 100.0
005 tomato soup can 94.5 96.9 94.6 96.9 96.2 98.1 92.0 95.8 86.4 95.3 97.6
006 mustard bottle 98.6 100.0 97.2 100.0 97.5 100.0 94.8 97.5 95.9 97.9 100.0
007 tuna fish can 97.1 100.0 96.6 100.0 96.0 100.0 88.8 84.1 84.1 97.6 100.0
008 pudding box 97.9 100.0 96.5 100.0 97.1 100.0 93.2 98.6 93.5 98.4 100.0
009 gelatin box 98.8 100.0 98.1 100.0 97.7 100.0 95.7 100.0 96.8 96.2 94.4
010 potted meat can 92.7 93.6 91.3 93.1 93.3 94.6 86.2 83.9 86.2 96.6 99.1
011 banana 97.1 99.7 96.6 100.0 96.6 100.0 92.6 98.9 96.3 98.5 100.0
019 pitcher base 97.8 100.0 97.1 100.0 97.4 100.0 95.4 98.4 91.8 98.1 100.0
021 bleach cleanser 96.9 99.4 95.8 100.0 96.0 100.0 89.0 86.2 92.0 97.9 100.0
024 bowl 81.0 54.9 88.2 98.8 90.2 80.5 86.1 94.3 86.7 90.3 96.6
025 mug 95.0 99.8 97.1 100.0 97.6 100.0 93.5 94.8 95.4 98.1 100.0
035 power drill 98.2 99.6 96.0 98.7 96.7 100.0 82.9 84.8 95.2 98.1 100.0
036 wood block 87.6 80.2 89.7 94.6 90.4 93.8 92.3 99.6 86.2 96.0 100.0
037 scissors 91.7 95.6 95.2 100.0 96.7 100.0 90.1 89.5 83.8 96.7 100.0
040 large marker 97.2 99.7 97.5 100.0 96.7 99.8 93.9 99.8 96.8 97.9 100.0
051 large clamp 75.2 74.9 72.9 79.2 93.6 93.6 70.3 76.7 94.4 87.5 93.3
052 extra large clamp 64.4 48.8 69.8 76.3 88.4 83.6 69.5 74.5 92.3 79.7 84.6
061 foam brick 97.2 100.0 92.5 100.0 96.8 100.0 94.6 100.0 94.7 97.8 100.0
MEAN 93.0 93.2 93.1 96.8 95.5 97.6 89.8 93.1 92.4 95.8 98.5

4.2. Implementation Details

We fix the size of RGB images as 480×640. The num-
bers of raw/refined 3D points, i.e., N /M , are set to 100/512
and 100/1,024 on Linemod (Occlusion Linemod) and YCB-
Video, respectively. In MMF-GCN, refined point clouds are
down-sampled to 100 points by FPS. When building the
graphs Gf and Gref , we utilize 30 nearest neighbors, i.e.,
k = 30. In PRN, the hyper-parameters λ, β and µ in the
overall training loss L are set to 0.05, 0.95 and 1.0. To
train PR-GCN in a more stable way, PRN and MMF-GCN
are progressively optimized. For instance, on YCB-Video,
PRN and MMF-GCN are first alternatively trained for 15
epochs and then jointly optimized for 30 epochs.

In PRN training, we adopt the ADAM optimizer with
the learning rate of 0.0001 and the batch size of 48. The
rest parts of PR-GCN are trained for 40, 20 and 60 epochs
on Linemod, Occlusion Linemod and YCB-Video, respec-
tively, where the learning rate is initially set to 0.0001 and
decayed by a factor of 0.3 after half of the maximal epochs.

4.3. Comparison with the State-of-the-art Methods

Results on Linemod. We first compare PR-GCN to the
state-of-the-art methods on Linemod, including the RGB
based models: PoseCNN (+DeepIM) [40, 18], PVNet [29],
CDPN [19], DPOD [44] and DPVL [42] and the RGB-D
based ones: Point Fusion [41], SSD6D (+ICP) [14], Dense
Fusion [38], PVN3D [9] and G2L[4]. Several approaches,
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Figure 4. Qualitative analysis. (a) Visualization results on YCB-
Video. From left to right: provided by DenseFusion (with 2 iter-
ations), PVN3D, PR-GCN (ours) and ground-truth (GT). Orange
bounding boxes highlight inaccurate estimation. (b) Failure cases.
Left: heavy occlusion (‘Holepuncher’ from Occlusion Linemod)
and right: symmetry object (‘Bowl’ from YCB-Video).

denoted by ‘∗’ or ‘†’ in Table 1, only adopt real or synthetic
training data, whist the others use both. In our work, we
mainly consider the setting with the two types of training
data, and also report the performance with real data only.

Table 1 summarizes the ADD(-S) of different methods
on Linemod, and we can see that the RGB-D based deep
models (e.g., PVN3D and G2L) remarkably outperform the
RGB based ones by a large margin due to additional geom-
etry information given by the depth channel. Regarding the
RGB-D counterparts, the proposed PR-GCN achieves bet-
ter performance, which improves PointFusion and Dense-
Fusion by 25.2% and 4.6%, respectively. Our approach also
boosts the performance of keypoint-based methods, includ-
ing PVN3D and G2L. It is worth noting that the second best
method, i.e. PVN3D, uses 70,000 synthetic training data,
and needs to train different models for distinct object cat-
egories. In contrast, our method trains a universal model
for all object categories, and merely utilizes 3,500 synthetic
training data, which is much more efficient than PVN3D.

Results on Occlusion Linemod. To evaluate the robust-

Table 4. Inference time of Segmentation (Seg), Point Refinement
(PR), Pose Estimation (PE) and full PR-GCN (Full) on Linemod.

Component Seg PR PE Full
Time (s) 0.030 0.008 0.030 0.068

Table 5. Ablation study of PR-GCN in ADD(-S) (%) on Linemod.
Method PRN MMF-GCN MEAN
Baseline (with DGCNN) × × 94.8
Baseline+PRN

√
× 96.8

Baseline+MMF-GCN ×
√

96.9
Full model

√ √
98.9

Table 6. Generalization of PRN and MMF-GCN to other frame-
works in terms of ADD-S (%) and <2cm (%) on YCB-Video.

Method PVN3D DenseFusion
Metric ADD-S <2cm ADD-S <2cm

Original model 95.5 97.6 93.1 96.8
w/ PRN - - 94.1 97.2

w/ MMF-GCN 96.2 98.4 93.5 97.2
w/ both - - 94.9 98.1

ness of PR-GCN to inter-object occlusions, we display de-
tailed results on Occlusion Linemod, in comparison with
PoseCNN [40], DeepHeat [26], SS [12], Pix2Pose [28],
PVNet [29], HybridPose [34] and PVN3D [9]. As shown in
Table 2, our method consistently reaches the top ADD(-S)
AUC and achieves the best mean ADD(-S) AUC, highlight-
ing its superiority in the presence of heavy occlusions.

Results on YCB-Video. We then extend our analysis on
this database and compare PR-GCN with PoseCNN (+ICP)
[40], DenseFusion [38], PVN3D [9], CF [5] and G2L [4].
Table 3 shows the AUC and ADD-S<2cm for various meth-
ods. It can be observed that our method achieves the highest
performance on both the metrics. For instance, compared
to PVN3D and DenseFusion, PR-GCN improves the ADD-
S<2cm by 0.9% and 1.7%, respectively.

Qualitative results. We additionally provide qualitative
results in Fig. 4(a), comparing to DenseFusion and PVN3D.
Due to cluttered backgrounds and severe occlusions, Dense-
Fusion and PVN3D predict inaccurate poses in many cases,
while our PR-GCN performs more robustly with much bet-
ter results. We also demonstrate failure cases in Fig. 4(b),
revealing that PR-GCN fails when dealing with extremely
occluded objects and some symmetric ones.

Inference efficiency. Besides the accuracy, we evaluate
the efficiency of our method on Linemod. As shown in Ta-
ble 4, each key component infers fast, and the full pipeline
takes 68ms on an Nvidia 1080Ti GPU, which is acceptable
in downstream tasks such as robotic grasping.

4.4. Ablation Study

We comprehensively validate individual components of
PR-GCN in the following.

2799



Table 7. The influence of segmentation on different frameworks on YCB-Video in terms of AUC (%) and <2cm (%) (‘-’ indicates that the
result is not reported).

PoseCNN segmentation PVN3D segmentation GT segmentation
PoseCNN DenseFusion Ours DenseFusion PVN3D Ours Densefusion PVN3D Ours

AUC 93.0 93.1 95.0 91.8 95.5 95.8 94.5 96.4 96.9
<2cm 93.2 96.8 97.6 92.8 97.6 98.5 98.1 - 99.9

Table 8. Ablation study of the multi-resolution loss on YCB-Video
in terms of ADD-S (%) and <2cm (%) .

WO-PRN PRN-SR PRN-MR
ADD-S 94.0 94.6 95.8
< 2cm 97.1 96.6 98.5

The impact of PRN and MMF-GCN. The baseline
method removes PRN and replaces MMF-GCN by DGCNN
[39] which adopts the same basic point cloud aggregator as
our PR-GCN. As Table 5 displays, PRN boosts the base-
line by 2.0%, indicating that refined point clouds contribute
to pose estimation, while MMF-GCN achieves an improve-
ment of 2.1%, demonstrating its advantage in integrating
multi-modal features. The combination of PRN and MMF-
GCN further enhances the performance.

The generalizability of PRN and MMF-GCN. We gen-
eralize the PRN and MMF-GCN modules to two state-of-
the-art frameworks including PVN3D [9] and DenseFusion
[38], and evaluate their performance on YCB-Video. Note
that PVN3D cannot utilize PRN directly, since segmenta-
tion is required on the whole scene while PRN focuses on
specific objects. We thus only evaluate the effect of MMF-
GCN on PVN3D. As shown in Table 6, PRN promotes the
ADD-S of DenseFusion by 1%, and a similar improvement
can be observed when applying MMF-GCN. The results in-
dicate that PRN and MMF-GCN benefit other frameworks
for 6D pose estimation.

The influence of segmentation. As in Fig. 2, our frame-
work introduces RGB-based segmentation to extract fore-
ground objects, while PoseCNN [40], DenseFusion [38]
and PVN3D [9] adopt different instance segmentation mod-
els. To validate the effect of segmentation, we replace the
segmentation model in our framework by the counterparts
used in PoseCNN and PVN3D as well as the ground-truth,
and report their AUC and ADD-S<2cm metrics on YCB-
Video. Similarly, we evaluate this factor on other frame-
works, including PoseCNN, DenseFusion and PVN3D. As
reported in Table 7, all these frameworks achieve the highest
AUC and ADD-S<2cm using ground-truth, indicating that
better segmentation boosts the estimation accuracy. Mean-
while, with segmentation alternatives, our framework con-
sistently outperforms the others, showing that PR-GCN is
superior, regardless of which segmentation model is used.

The effect of the multi-resolution regression loss on
PRN. We finally validate the credit of the regularized multi-
resolution regression loss Lprn. For comparison, we ap-
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Figure 5. Visualization of the refined 3D points generated by PRN
with/without the multi-resolution regression loss.

ply Lprn on P̂o only, denoted by PRN-SR, while the multi-
resolution case is denoted by PRN-MR. We also report the
result without using PRN (WO-PRN). As summarized in
Table 8, adopting the single-resolution loss promotes the
performance of our method. When the multi-resolution loss
is added, ADD-S is further boosted to 95.8%, demonstrat-
ing its effectiveness. Moreover, we visualize the generated
refined 3D points in Fig. 5, and the results clearly show the
advantage of PRN in dealing with the incompleteness and
noise, after adding the loss Lprn.

5. Conclusion

In this paper, we propose a novel approach, namely deep
Graph Convolutional Networks with Point Refinement (PR-
GCN), to RGB-D based 6D pose estimation. We develop a
Point Refinement Network (PRN) to improve the quality of
depth representation, together with a Multi-Modal Fusion
Graph Convolution Network (MMF-GCN) to fully explore
local geometry-aware inter-modality correlations for suffi-
cient combination. Extensive experiments validate its supe-
riority and the PRN and MMF-GCN modules.
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