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Abstract

Automatic report generation on medical radiographs
have recently gained interest. However, identifying diseases
as well as correctly predicting their corresponding sizes,
locations and other medical description patterns, which is
essential for generating high-quality reports, is challeng-
ing. Although previous methods focused on producing read-
able reports, how to accurately detect and describe find-
ings that match with the query X-Ray has not been success-
fully addressed. In this paper, we propose a multi-modality
semantic attention model to integrate visual features, pre-
dicted key finding embeddings, as well as clinical features,
and progressively decode reports with visual-textual seman-
tic consistency. First, multi-modality features are extracted
and attended with the hidden states from the sentence de-
coder, to encode enriched context vectors for better decod-
ing a report. These modalities include regional visual fea-
tures of scans, semantic word embeddings of the top-K find-
ings predicted with high probabilities, and clinical features
of indications. Second, the progressive report decoder con-
sists of a sentence decoder and a word decoder, where we
propose image-sentence matching and description accuracy
losses to constrain the visual-textual semantic consistency.
Extensive experiments on the public MIMIC-CXR and IU
X-Ray datasets show that our model achieves consistent im-
provements over the state-of-the-art methods.

1. Introduction
Chest X-Rays are highly important radiological exam-

inations. However, interpreting chest X-Ray images re-
quires the strong expertise and experience of radiologists
and is prone to mistakes. Therefore, automatic diagnosis
of diseases [41, 35, 19, 21, 31, 7, 51] has been a rising re-
search topic in the medical imaging community. The com-
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Female, 53 years old
Clinical information:
Chest pain, cough.
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Information Encoder

Multi-attentive
Progressive Report 

Decoder

Generated Report:
1. Atelectatic left lung with multi-loculated pleural lesion.
2. Heart is unremarkable.
3. Suspicious rib destruction on left seventh and eighth.
4. Left chest wall mass.
5. Compatible with left lung cancer with pleural and 
chest wall extension.

Key Findings Prediction:
Airspace Opacity 0.9558 / Pleural Effusion 0.9477
/ multiple 0.9386 / Lung Lesion 0.9162 / left 
0.9130 / lower 0.9044 / Atelectasis 0.8644 / 
Fracture 0.8617 / large 0.8062 / Emphysema 
0.8014 / Pleural other 0.7843 / …

Figure 1. Illustration of automatic medical report generation.
Given a chest X-Ray and corresponding clinical information, our
model predicts key findings and generates a diagnostics report.

mon tasks include identification of different chest lesions
[42, 45, 52] and their corresponding positions and sizes, and
generating human-readable reports [26, 24, 20, 53] which
contain detailed descriptions such as lesion shape and type.

The basic framework of medical report generation is
similar to that of image captioning [16]. Currently, most
image captioning models [39, 43, 1, 27, 9] adopt deep
learning due to its recent breakthroughs in many tasks
[15, 14, 37, 40, 50, 11]. However, medical report genera-
tion is more challenging than image captioning for two main
reasons. First, compared to general images, abnormal lesion
appearances in medical images are not always obvious and
sometimes even difficult for radiologists to identify. Pub-
lic benchmarks with paired image-report data are scarce.
However, the objects in a general image and corresponding
relations among them are very clear and easy to describe.
Large-scale matched image-sentence training datasets are
available, such as MS COCO [29] and Visual Genome [23].
Second, the target of image captioning is usually to generate
one sentence for each image or several sentences with sim-
ilar descriptions. For medical reports, multiple sentences
need to be generated to focus on different diseases in vari-
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ous regions. Previous methods [30, 47, 49] presented hier-
archical decoders to generate different topics, but only used
word-level supervision without any constraints on the accu-
racy and suitability of sentence-level (topic-level) topics.

In this paper, as shown in Fig. 1, given a radiograph and
the corresponding clinical information, we propose an au-
tomatic diagnosis method to predict key findings and gener-
ate detailed descriptions. Clinical information is combined
into the inputs of the model because it is closely related
to the disease diagnosis and always available together with
X-Rays in clinical scenarios. The main contributions are
highlighted as follow: (1) A multi-modality semantic at-
tention (MMSA) model is proposed to combine different
modality features into context vectors for the decoder. Be
different from previous attention modules [43, 18], in this
work, the regional visual features are both self-attended and
correlated with the hidden states of the sentence decoder
to obtain semantic attentions at different topic steps. Thus,
the MMSA learns both the image-level and topic-level at-
tentions. Moreover, the clinical features and word embed-
dings of predicted key findings are also integrated for multi-
attention learning. (2) To optimize the sequential sentence
and word decoders, in addition to the word-level supervi-
sion, we introduce two topic-level losses at the top of the
sentence decoder. An image-sentence matching loss is de-
signed to link the paired image features and generated sen-
tence embeddings, while punishing unpaired ones. Besides,
a description accuracy loss is presented to ensure that the
generated global report embedding contains correct seman-
tic information for the predicted key findings. (3) Extensive
experiments are conducted to show the effectiveness of the
proposed multi-attention model, matching and description
accuracy losses. A new metric, normalized Key Term Dis-
tance (nKTD), is also introduced to more reasonably evalu-
ate the medical report generation performance.

2. Related Work
Image Captioning. Recent state-of-the-art image cap-

tioning methods are based on generative models [9, 27, 46,
12, 25], which achieve better performance than template-
based [8] and retrieval-based [10] models. A general frame-
work for this category is to first encode the visual con-
tent of an image and then adopt recurrent language de-
coders to generate descriptions [39]. Attention mechanisms
[43, 1, 18] are introduced to select important regions and fo-
cus on the dominating visual objects for better captioning.
Though most image captioning approaches only produce
one sentence, a few of works [22, 2] have introduced para-
graph captioning, which can generate multiple sentences.
Krause et al. [22] first proposed a hierarchical framework
to generate descriptive image paragraphs, which can tell de-
tailed stories. In [2], coherence vectors and inherence am-
biguity of associating paragraphs with images are modeled

through a variational auto-encoder. These methods can bet-
ter fit the medical report generation task, but still do not
address the generation accuracy and diversity well.

Medical Report Generation methods can be catego-
rized into automatic generation models and template-based
retrieval models. TieNet [42] was first proposed to combine
image and text modalities using the CNN-RNN architec-
ture, but mainly focuses on taking both of them as inputs
to improve disease classification accuracy. Jing et al. [20]
presented a basic co-attention model to implement auto-
matic report generation without enough thoughtful design.
Our method enhances this model from many aspects and
largely improves the performance. Li et al. [26] combined
a template-based method with the generation framework in
a reinforcement learning fashion. However, their method
requires careful selection of the templates, so the perfor-
mance varies with different datasets. Finally, knowledge-
driven encoding [24] adds an abnormality graph but lacks
attention learning for the images. Similarly, in [49], a
pre-constructed graph embedding based on multiple disease
terms, is adopted to improve generation of medical reports.

3. Proposed Methods
As illustrated in Fig. 2, the proposed method mainly con-

sists of three parts: feature encoding, mutli-modality se-
mantic attention learning, and progressive report decoding.

3.1. Visual and Clinical Feature Encoding
The visual feature encoding module is based on the back-

bone of DenseNet-201 [17]. The regional feature {rn}Nn=1

(‘region’ denotes each grid in certain feature maps, and N
is the number of regions) is extracted from the last dense
block, on which a self-attention model and a semantic at-
tention model are applied to weight important regions in the
given image. After modeling the long-range dependencies
in the image using the self-attention mechanism [48], the
global visual feature is obtained and supervised by multi-
label classification and global report embedding regression.

To train an image encoder for thorax disease classifica-
tion, conventional methods [41, 13, 42] only adopt disease
labels. In addition to predicting disease categories, we also
introduce another type of labels, called description patterns,
that contain richer information such as the lesion location,
size and shape. The motivation behind this design is that the
combination of disease and description pattern labels can
enrich the detail and accuracy of generated reports. For ex-
ample, a nodular found in a scan can be accurately described
as “Small nodular opacities in left upper lobe.” The two
kinds of labels are extracted in two different ways. The dis-
ease labels extractor is built on an automated rule-based la-
beler [19], with necessary modifications to the pre-negation
uncertainty, negation and post-negation uncertainty accord-
ing to the sentences in the two datasets we use. On the other
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Reports:
Linear fibrotic opacities with volume loss in right upper lobe.
Small nodular opacities in left upper lobe.
Right apical pleural thickening.
Heart and bony thorax are not remarkable. 
Suspected remote pulmonary tuberculosis.
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Figure 2. Pipeline of the proposed method. A multi-modality semantic attention model learns correlations across different modality features
to compute context vectors for different topics, collaborating with a progressive report decoder. The sentence decoder is optimized under
the constraints of matching generated topics with accurate images and report labels, and the word decoder parses each topic into detailed
sentences. Dashed lines denote the supervision components that are only available during training.

side, the description pattern labels are positive if the word
appears in the report, and negative otherwise. The binary
cross-entropy loss is adopted for training. Moreover, the la-
bels predicted for the top-K probabilities are selected and
the corresponding word-level embeddings are extracted us-
ing BioSentVec [3] for further multi-attention learning.

The discrete labels extracted are noisy and thus cannot
preserve all the information from radiology reports, partic-
ularly for those useful words that appear less frequently.
A report embedding, is also extracted using BioSentVec to
train the image encoder, which exploits relationships among
words with more semantic information. BioSentVec [3] is
trained over 30 million scholarly articles from PubMed and
clinical notes from the MIMIC-III database so that the ex-
tracted embeddings can accurately represent medical con-
cepts from the original sentences. Therefore, we adopt re-
port embeddings to co-train the image encoder and learn
more semantic visual features fv . This supervision is only
available in the training phase. Moreover, inspired by real
clinical scenarios, radiologists usually assess an X-Ray im-
age in consideration of its corresponding clinical reason in-
formation, such as “chest pain”, “fever” and “cough”, and
the age and sex information. Thus, we encode the reason
embedding, age and sex vectors, and integrate them into a
clinical feature embedding. The word-level clinical reason
embedding is extracted by BioSentVec. The age is encoded
as a 20-dimensional one-hot vector for ages ranging from
1-100 years old, with each class covering five years. The
sex is encoded as a 2-dimensional vector.

3.2. Multi-Modality Semantic Attention

Traditional visual attention mechanisms usually focus on
finding important regions in an image, with the aim of ad-
dressing recognition tasks in a data-driven manner. This is
helpful but lacks exploration of semantic information. In
the medical report generation task, multiple sentences need
to be generated based on the different regions that the at-
tention model focuses on for various organs and diseases.
In this paper, a multi-modality semantic attention model
is proposed to correlate regional image features, semantic
embeddings of key findings prediction and clinical infor-
mation, with the hidden state at each topic step from the
sentence decoder. Thus, different findings and exclusions
of diseases can be correctly described one by one.

To obtain a concise context vector focusing on one topic
at each time step t, three semantic attentions are computed
to select relevant features for that topic. For each attention,
linear projections are operated over one specific modality
feature and the hidden state embedding ht−1 at step t−1 of
the sentence decoder. h0 is zero initialized. Then, the soft
attention mechanism is adopted as the following functions:

αsemantic
r,n = exp(Wvisual tanh(Wrrn +Wr,hh

t−1)), (1)

αsemantic
c = exp(Wclinical tanh(Wcc+Wc,hh

t−1)), (2)

αsemantic
l,k = exp(Wlabel tanh(Wllk +Wl,hh

t−1)), (3)

where c denotes clinical features and {lk}Kk=1 is
the semantic embedding of the top-K predicted la-
bels. {Wvisual,Wr,Wr,h}, {Wclinical,Wc,Wc,h} and
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{Wlabel,Wl,Wl,h} are trainable parameters for semantic
attention learning on the visual, clinical feature and key la-
bel embedding, respectively. The corresponding biases are
omitted in the equations. Once the attention weights are
obtained, the corresponding context vectors for different
modalities at each time step t are computed as:

rtatt =

N∑
n=1

[
γsemanticαsemantic

r,n rn + γselfαself
r,n rn

]
, (4)

ctatt = αsemantic
c c, (5)

ltatt =

K∑
k=1

αsemantic
l,k lk. (6)

For regional visual features, in addition to the semantic at-
tention, a self attention map αself

r,n is also learned [48] to
better model long-range dependencies for capturing global
lesions. The parameters γsemantic and γself are learned to
automatically balance the two kinds of attention maps.

Finally, the three attended features rtatt, c
t
att and ltatt are

concatenated and one more linear transformation Watt is
used to fuse them as ctxt = Watt

[
rtatt, c

t
att, l

t
att

]
. The di-

mension of the joint context vector is set to 512. A diagram
of the whole multi-attention model is shown in yellow in
Fig. 2. At different topic steps from the decoder, the seman-
tic attention model produces high responses in different re-
gions of the image to generate the corresponding sentences.

3.3. Report Decoding with Semantic Consistency
3.3.1 Sentence Decoder

The sentence decoder plays a crucial role in determining
which part of an image should be described in each sen-
tence. The decoder is based on a two-layer long short-term
memory (LSTM) unit that recurrently decodes multiple sen-
tence embeddings. At each topic step t, the LSTM takes as
input the current context vector ctxt and the hidden states
ht−1 and ht, then models them into two outputs – a pre-
dicted sentence embedding f ts and a continue-stop vector
f tcs – using the following functions:

f ts = ReLU(Wctxctx
t +Ws,th

t), (7)

f tcs = Sigmoid(Wcs,th
t +Wcs,t−1h

t−1), (8)

where {Wctx,Ws,t,Wcs,t,Wcs,t−1} are additional
learnable weights, excluding LSTM weights, in the sen-
tence decoder. The hidden state dimension is set to 512.
To optimize the sentence decoder, four different losses are
carefully designed for its supervision. First, ground-truth
sentence embeddings extracted using BioSentVec are di-
rectly adopted and connected to f ts for mean square error
learning Lsent. Second, the continue-stop vector f tcs is su-
pervised by Lstop using ground-truth {0, 1} where 0 indi-
cates that the current sentence is not the last sentence, and
1 is adopted otherwise. In the testing phase, if the predic-
tion is over a threshold of 0.5, the sentence decoder will

end the unrolling and stop generating sentences. In addi-
tion to these two basic losses, an image-sentence matching
loss and a description loss are proposed to constrain visual-
textual semantic consistency.

3.3.2 Image-Sentence Matching Loss LISM

Given an extracted visual feature fv and the correspond-
ing generated sentence embeddings f ts at topic step t, we
map them into a latent space using a non-linear transforma-
tion (via the fully-connected layer with ReLU activation,
dimension reduced to 128) for feature selection, and create
positive pairs (v, si), i ∈ (1, S), where S is the number of
sentences for the query image. Moreover, we sample two
types of negative pairs (v−, si) and (v, s−j ), j ∈ (1, S). v−

and s−j denote incorrectly matched images and sentences,
respectively. Here, we also sample S negative sentences
from other reports. Then, the image-sentence matching loss
LISM is defined by learning a bi-directional max-margin
ranking [33] as the following function:

LISM =
∑
(v,s)

{
max

[
0,m− 1

S

∑
i

(v · si) +
1

S

∑
i

(v− · si)
]

(9)

+max
[
0,m− 1

S

∑
i

(v · si) +
1

S

∑
j

(v · s−j )
]}

,

where m is the margin constraint. This function aims to
link the query radiograph with matching diagnosis descrip-
tions by optimizing the sentence decoder to generate sen-
tence embeddings that are close to the visual feature of the
input image in the latent space. To compose more effective
negative pairs, we sample abnormal images and their sen-
tences if the given query image is normal, and vice versa.

3.3.3 Description Accuracy Loss LDA

As mentioned, the labels for training the image encoder
are extracted from the ground-truth reports. To ensure
that the generated reports provide accurate descriptions, we
constrain the generated sentence embeddings map to cor-
rect disease and description pattern labels. Thus, an ad-
ditional description accuracy net, which consists of three
fully-connected layers (512-512-Num of Labels), is con-
structed for multi-label classification. The input of the gen-
erated report embedding classifier is the averaged represen-
tation of all sentence embeddings in each report. This net is
optimized with the sentence decoder simultaneously.

3.3.4 Word Decoder

Given a sentence embedding f ts of one topic generated by
the sentence decoder, a following word decoder will se-
quentially decode the corresponding words. The word de-
coder is based on a one-layer LSTM with a dimension of
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512, which takes the concatenation of f ts and every word to-
ken as inputs. For each topic, the word decoder works sim-
ilarly to conventional image captioning decoders that only
predict one sentence. The START and END tokens are
used as the first input and the last output of the decoder,
respectively. The output of each step is connected to the
next word token and cross-entropy Lword is adopted. The
overall loss function of the report generation is defined as:

Lreport = λISMLISM + λDALDA + λsentLsent (10)

+ λstopLstop + λwordLword,

where {λISM , λDA, λsent, λstop, λword} are configured as
{10, 10, 1, 100, 1} for balancing losses to the same scale.

3.4. Implementation Details
In the training phase, the visual feature encoding model

is first pre-trained to predict accurate self-attention maps
and labels. Then, we fix the parameters of this component
and start to train the multi-attention and report decoding
models. Otherwise, end-to-end training from the beginning
stage prevents the decoders from converging.

In our implementation, the sentence-level and report-
level embedding dimensions are both 700, extracted by
BioSentVec [3]. The dimension of the word-level embed-
ding for clinical information and top-K label prediction is
200. Moreover, K is set as 20. If the probability of a pre-
dicted label in the top-20 is lower than 0.5, the correspond-
ing semantic embedding will be discarded as zero.

To pre-train the image encoder, the ADAM optimizer is
adopted with an empirical base learning rate of 0.001 and
momentum of 0.5. The mini-batch size is set to 128 for
training over 20 epochs. Then, we configure the base learn-
ing rate to 0.0002 to train the multi-attention model and re-
port decoders with a batch size of 32.

4. Experimental Results
4.1. Datasets and Evaluation Metrics

MIMIC-CXR. MIMIC [21] is the largest public dataset
for chest radiographs, with more than 140k pairs of chest
X-Ray images and reports. The images include anteropos-
terior, posteroanterior and lateral views. The findings sec-
tion in reports is used as the ground-truth sentences. The
indications are used as clinical information. Tokenization is
conducted over the corpus and only words with a frequency
over 5 are kept, resulting in 5,348 unique tokens in total.

IU X-Ray. Indiana University Chest X-ray Collection
[4] is a public dataset containing 7,470 pairs of images
and corresponding diagnostics reports. Each study has one
frontal and one lateral view and is associated with a report
that consists of impression, findings, comparison and indi-
cation sections. We select sentences in the findings section
as ground-truths. Since IU X-ray has incomplete age and
sex information, we only use reason embedding for clinical

feature embedding. Due to the dataset’s small size, we filter
tokens by a minimum frequency of 3, keeping 1,042 tokens.

Following the advice of expert radiologists who were
asked to read the reports from the two datasets, we man-
ually define two categories of image labels. The first cat-
egory has 18 disease labels, such as “No Finding”, “Car-
diomegaly”, “Airspace Opacity” and “Fibrosis”. We care-
fully define the negation and uncertainty language patterns
and adopt the CheXpert Labeler [19] to extract the labels.
The second group has 32 description pattern labels, such as
“Upper/Lower”, “Left/Right”, “Patchy” and “Blur”, which
are annotated as positive if they appear in the report, and
negative otherwise. For both datasets, the data indexed by
patients is randomly split into training, validation and test-
ing sets with a ratio of 7:1:2, followed by [26, 20, 24].
Moreover, we use the MIMIC dataset to pre-train the im-
age encoder in all experiments due to its large scale.

The common image captioning evaluation metrics, in-
cluding BLEU [34], CIDEr [38], ROUGE [28] and ME-
TEOR [5], only focus on word-level fluency or recall, which
are insufficient to evaluate generated medical reports. Thus,
we propose a new metric called normalized Key Term Dis-
tance (nKTD). The aim is to judge whether or not the gen-
erated sentences contain all the observed diseases and their
detailed descriptive information. We extract all the labels
using the CheXpert Labeler [19] both from generated re-
ports and ground-truths, as bge and bgt, and compute the
Hamming distance which is defined as:

SnKTD =
dhamming(bge,bgt)

N
, (11)

where N denotes the number of labels. The smaller the
score is, the more accurate the key findings contained in the
generated reports.

4.2. Ablation Studies
4.2.1 Ablation Studies on Report Generation

To evaluate the proposed report generation model, five
baselines are compared for analysis. Effectiveness of
Multi-Modality Semantic Attention (Ours-wo-MMSA):
MMSA is able to combine regional visual features with
predicted key finding embeddings and clinical features to
model correlations among them and extract high-level se-
mantic context information. By detaching the MMSA, the
global visual feature fv is simply concatenated with the
clinical feature. A fully-connected layer is configured to
map the combined vector to a context vector for decoding.
Effectiveness of Description Pattern Labels (Ours-wo-
DPL): Previous methods only adopt disease labels to train
the image encoder. To evaluate whether or not the addi-
tional description pattern labels can contribute to the accu-
racy of generated sentences, with more details on the de-
tected diseases, we drop them and only adopt the disease
labels in this baseline. Effectiveness of Matching and De-
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Table 1. Quantative evaluation of automatic report generation. “wo” is the abbreviation of without. The best result of our model is shown
in red, while the result of the best state-of-the-art method is shown in blue.

Dataset Conference Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE METEOR nKTD
M

IM
IC

-C
X

R

CVPR 2015 [39] CNN-RNN 0.303 0.198 0.135 0.090 0.879 0.296 0.149 0.256
CVPR 2015 [6] LRCN 0.316 0.207 0.137 0.091 0.861 0.295 0.146 0.238
CVPR 2017 [32] AdaAtt 0.306 0.202 0.137 0.089 0.883 0.298 0.150 0.246
CVPR 2017 [36] Att2in 0.309 0.204 0.136 0.090 0.885 0.299 0.149 0.232
CVPR 2018 [42] TieNet 0.329 0.215 0.138 0.093 0.993 0.294 0.153 0.217
ACL 2018 [20] Co-Attention 0.346 0.226 0.152 0.112 0.859 0.324 0.179 0.185

NeurIPS 2018 [26] HRGR-Agent 0.342 0.224 0.155 0.111 0.934 0.311 0.170 0.193
IPMI 2019 [44] IDCTF 0.347 0.229 0.156 0.115 0.916 0.320 0.176 0.179
AAAI 2019 [24] KERP 0.352 0.225 0.154 0.109 0.894 0.307 0.168 0.162

MICCAI 2019 [47] MvH+AttL+MC 0.355 0.228 0.157 0.113 0.907 0.321 0.174 0.154

Ours

Ours-wo-MMSA 0.353 0.224 0.156 0.111 0.909 0.315 0.171 0.158
Ours-wo-DPL 0.361 0.232 0.161 0.115 1.032 0.323 0.177 0.170
Ours-wo-CF 0.373 0.239 0.168 0.121 1.125 0.319 0.175 0.117

Ours-wo-LISM 0.351 0.223 0.158 0.113 0.954 0.320 0.173 0.155
Ours-wo-LDA 0.364 0.233 0.162 0.115 1.029 0.325 0.179 0.132

Ours 0.372 0.241 0.168 0.123 1.121 0.335 0.190 0.106

IU
X

-R
ay

CVPR 2015 [39] CNN-RNN 0.309 0.208 0.137 0.090 0.115 0.274 0.157 0.233
CVPR 2015 [6] LRCN 0.358 0.214 0.142 0.096 0.198 0.283 0.151 0.219
CVPR 2017 [32] AdaAtt 0.313 0.210 0.138 0.092 0.113 0.273 0.159 0.225
CVPR 2017 [36] Att2in 0.316 0.211 0.139 0.092 0.114 0.274 0.158 0.216
CVPR 2018 [42] TieNet 0.389 0.252 0.195 0.147 0.324 0.319 0.180 0.198
ACL 2018 [20] Co-Attention 0.502 0.363 0.285 0.231 0.313 0.425 0.213 0.169

NeurIPS 2018 [26] HRGR-Agent 0.483 0.359 0.287 0.232 0.319 0.394 0.204 0.175
IPMI 2019 [44] IDCTF 0.498 0.362 0.289 0.234 0.317 0.413 0.209 0.157
AAAI 2019 [24] KERP 0.511 0.368 0.293 0.237 0.312 0.356 0.195 0.145

MICCAI 2019 [47] MvH+AttL+MC 0.518 0.374 0.296 0.240 0.315 0.411 0.198 0.137

Ours

Ours-wo-MMSA 0.515 0.371 0.290 0.238 0.320 0.394 0.196 0.142
Ours-wo-DPL 0.524 0.379 0.301 0.244 0.327 0.423 0.210 0.145
Ours-wo-CF 0.533 0.392 0.312 0.250 0.337 0.412 0.205 0.104

Ours-wo-LISM 0.512 0.372 0.293 0.236 0.324 0.416 0.198 0.130
Ours-wo-LDA 0.521 0.380 0.305 0.248 0.328 0.431 0.215 0.116

Ours 0.536 0.391 0.314 0.252 0.339 0.448 0.228 0.097

scription Loss (Ours-wo-LISM and wo-LDA): Both the
image-sentence matching loss and description accuracy loss
are designed to push the generated sentences to match the
query X-Ray image and contain correct key findings. We
set two baselines by dropping the bi-directional max-margin
ranking module and the generated report embedding clas-
sifier to evaluate the two designs, respectively. Effective-
ness of Clinical Features (Ours-wo-CF): Clinical features
contain some basic indications of relevant diseases, and are
usually considered by radiologists for preliminary diagno-
sis. We also want to explore how much these can benefit
our model. In this baseline, we detach the clinical feature
input in the multi-attention model.

The bottom rows of each dataset in Table 1 show the
comparison results. On the MIMIC dataset, without the
multi-modality semantic attention design, the performance
is largely decreased over all the evaluation metrics. To com-
pute the nKTD for Ours-wo-DPL, we drop the description
pattern labels in the training phase but still extract them in
the testing phase for fair comparison. On average, com-
pared to Ours, 3.2 more labels are wrongly predicted in to-
tal by Ours-wo-DPL, where 2.7 out of 3.2 are description
pattern labels. Clinical features can moderately increase the
results, particularly in terms of ROUGE and METEROR,
which focus more on the recall of key findings. Both the bi-

directional max-margin ranking module and the generated
report embedding classifier can enhance the model, though
the former is more effective.

For the ablation studies on the IU X-Ray dataset, the
effectiveness of each designed module has been validated
with similar result comparisons of the MIMIC datasets. De-
taching either the multi-modality semantic attention module
or topic-level image-sentence matching losses, largely re-
duces the performance. Training the image encoder with
the extra description pattern labels under the constraint of
the generated report embedding classifier, can also moder-
ately contribute to the final generated reports. Besides, as
evaluated by our proposed metric nKTD, only 4.85 out of
50 labels (key terms) are wrongly described in reports gen-
erated by our method, on average. Therefore, our model
achieves consistent improvements on both the datasets.

4.2.2 Ablation Studies on Disease Prediction

The performance of report generation moderately depends
on the accuracy of the intermediate key finding predictions
in our model. Thus, we explore several specific designs
to train the image encoder for better multi-label classifi-
cation results. Three baselines are compared for this task.
Effectiveness of Self-Attention (Ours-wo-SA): To better
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Table 2. Evaluation of disease prediction on
MIMIC. The best result is shown in red.

Disease Ours
Ours-

wo-SA
Ours-

wo-RE
Ours-
w-CF

Enlarged Cardiom. 0.766 0.753 0.748 0.765
Cardiomegaly 0.856 0.839 0.841 0.852
Lung Lesion 0.773 0.782 0.761 0.785

Airspace Opacity 0.845 0.841 0.836 0.852
Edema 0.943 0.926 0.935 0.958

Consolidation 0.909 0.912 0.915 0.923
Pneumonia 0.894 0.857 0.880 0.908
Atelectasis 0.889 0.876 0.868 0.895

Pneumothorax 0.799 0.808 0.804 0.806
Pleural Effusion 0.958 0.936 0.951 0.966

Pleural Other 0.848 0.855 0.831 0.853
Fracture 0.837 0.821 0.812 0.830

Emphysema 0.846 0.837 0.848 0.851
Hernia 0.754 0.756 0.752 0.753

Fibrosis 0.955 0.931 0.940 0.948
Spine Degen. Cha. 0.778 0.763 0.776 0.773
Support Devices 0.823 0.829 0.817 0.819

No Finding 0.805 0.818 0.782 0.793
mean 0.849 0.841 0.838 0.852

Table 3. Evaluation of description pattern labels prediction on the MIMIC dataset. The
best result is shown in red.

Description
Pattern Ours

Ours-
wo-SA

Ours-
wo-RE

Ours-
w-CF

Description
Pattern Ours

Ours
-wo-SA

Ours-
wo-RE

Ours
-w-CF

upper 0.788 0.767 0.763 0.784 esophagus 0.776 0.773 0.771 0.779
lower 0.817 0.803 0.798 0.812 stomach 0.814 0.806 0.809 0.816
left 0.859 0.842 0.836 0.850 aorta 0.821 0.815 0.808 0.825

right 0.816 0.803 0.801 0.814 tortuous 0.791 0.782 0.774 0.787
patchy 0.881 0.876 0.879 0.878 diaphragm 0.754 0.761 0.750 0.742

bilateral 0.756 0.739 0.732 0.759 elevated 0.871 0.874 0.871 0.867
lateral 0.749 0.751 0.746 0.752 mitral 0.728 0.713 0.715 0.720
volume 0.837 0.835 0.838 0.830 multiple 0.784 0.785 0.777 0.782
small 0.810 0.802 0.797 0.808 solitary - - - -

interstitial 0.903 0.895 0.898 0.899 hypertension 0.837 0.845 0.832 0.846
basal 0.951 0.953 0.948 0.946 large 0.815 0.798 0.785 0.803
blur 0.618 0.625 0.612 0.605 diffuse 0.904 0.886 0.889 0.907

linear 0.778 0.774 0.781 0.775 central 0.825 0.808 0.804 0.812
peribronchial 0.860 0.858 0.852 0.863 coronary 0.884 0.877 0.879 0.882

density 0.821 0.827 0.819 0.820 calcification 0.760 0.762 0.757 0.755
enlarged 0.854 0.853 0.845 0.858 reticular 0.943 0.931 0.933 0.928

mean 0.819 0.813 0.809 0.816

compute the visual attention in the multi-attention module,
in addition to the semantic attention, we also build a self-
attention purely based on the regional visual features. We
evaluate how much this self-attention module improves the
multi-label classification results, compared to the baseline
without it. Effectiveness of Report Embedding Supervi-
sion (Ours-wo-RE): Since the labels are not annotated by
domain experts but automatically extracted by the CheX-
pert labeler, they are not absolutely correct, nor keep all the
important information from the original reports. The report
embedding can compensate this drawback to some extent
and is adopted to in addition to discrete labels to train the
image encoder. Its effectiveness is also evaluated. Effec-
tiveness of Clinical Feature (Ours-w-CF): The motivation
behind exploiting clinical features to help report generation
is our observation that it can benefit thorax disease classi-
fication. To validate this point, the encoded clinical fea-
ture is directly concatenated with the global visual feature,
and then connected to the report embedding and multi-label
classification supervision. Thus, improvement on disease
prediction can also be achieved.

Following [41, 19], we adopt the area-under-the-curve
(AUC) of the Receiver Operator Characteristic (ROC) to
evaluate performance of identification over 18 disease la-
bels, on the MIMIC dataset, in Table 2. The experiment
is conducted on the MIMIC dataset due to its large size,
which is more convincing. The slightly decreased average
result obtained by Ours-wo-SA illustrates that most lesions
can benefit from the self-attention design. Minor lung le-
sions, pneumothoraxes and normal findings are exceptions
since abnormal visual patterns are not clear for these dis-
ease labels. The report embedding supervision facilitates
the image encoder training over all the labels except pneu-
mothorax, with a mean AUC increase of 1.1%. Moreover,
the clinical features moderately enhance the performance,
particularly for lesions in the lung area, since most clinical
indications are related to lung lesions.

The results of description pattern labels prediction are
also shown in Table. 3. (Please note ‘solitary’ is not avail-
able in the MIMIC dataset.) Compared with the mean AUC
performance of key findings, the results of description pat-
tern labels are 3.0% lower. The main reason is that defini-
tions of those labels are usually ambiguous and noisy such
as “basal”, “blur”, “multiple”, and “diffuse”. Moreover, our
fully-functioned final model achieves the best results com-
pared to all three baselines. Therefore, the improvements on
the key label predictions inspired us to enhance our report
generation model by such designs.

4.3. Comparison with State-of-the-arts
To further validate our method, we compare it with four

state-of-the-art image captioning models and six medical
report generation models, which are listed in the upper part
of each dataset in Table 1. All the models adopt DenseNet-
201 as the backbone for the visual feature encoder. For the
reinforcement learning-based methods HRGR-Agent [26]
and KERP [24], which require a template data pool to
be built, sentences from the training set of each dataset
that occur with high frequency are selected by a thresh-
old as template candidates. Then, the candidates with sim-
ilar meanings but various linguistic descriptions are further
grouped into the same template. Thus, 132 and 29 sen-
tence templates are selected for MIMIC-CXR and IU X-
Ray, respectively. Moreover, we use the same 50 labels
which are defined in our models for the medical concepts in
MvH+AttL+MC [47]. As shown in Table 1, reinforcement
learning does not demonstrated clear superiority over pure
cross-entropy optimization. Our final model achieves con-
sistent improvements over all the evaluation metrics. For
the reports generated on MIMIC-CXR, our method makes
2.4 less wrong label predictions, on average, compared
to the best performing prior work MvH+AttL+MC, which
demonstrates that descriptions of key findings by our model
are more complete and precise.
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Ours: a large right pleural effusion is
noted and the right lung cannot be
assessed for consolidation. patchy
opacity at the left base and in the left
lower lobe may reflect atelectasis. right-
sided atelectasis is present. the heart
size is normal. no acute osseous
abnormality is detected. there is
moderate to large right pleural effusion.

Clinical: dyspnea, 
history of hydrothorax

Clinical: fever, chills, 
not feeling well

Ground Truth: pa and lateral
views of the chest provided.
there is a large right pleural
effusion new from prior exam
with associated compressive
atelectasis in the right middle
lower lung. the left lung is clear
aside from mild left lower lung
atelectasis. heart size difficult
to assess given effacement of
the right heart border. bony
structures are intact. large right
pleural effusion with
compressive atelectasis in the
right middle lower lung.

Ground Truth: frontal and lateral
views of the chest were obtained.
there is a small right pleural
effusion with some fluid seen
tracking in the minor fissure and
which may be partially loculated.
scattered patchy opacities
projecting predominantly over the
right lung raises concern for an
infection less likely asymmetric
edema. there is left basilar
atelectasis. the lungs are relatively
hyperinflated with flattening of
the diaphragms suggesting
chronic obstructive pulmonary
disease. the cardiac and
mediastinal silhouettes are
relatively stable.

Ours-wo-VSMA: there is a right
pleural effusion. the cardiac and
mediastinal silhouettes are
normal. no acute
cardiopulmonary abnormalities.
there is no focal infiltrate or
effusion. the endotracheal tube
is in appropriate positions. no
pneumonia or pneumothorax.

Ours-wo-DPL: cadiomediastinal
silhouette is stable and within
normal limits. atelectasis
opacities without focal
consolidation pneumothorax.
there is right pleural effusion. the
heart size is normal. no acute
cardiopulmonary abnormality. no
acute bony abnormality.

Ours-wo- ℒ𝑰𝑺𝑴&ℒ𝑫𝑨 : there is a
moderate to large right pleural
effusion. moderate to severe
pulmonary edema and moderate
pleural effusion both on the right.
there is mild cardiomegaly. left
lung is clear without focal
consolidation. no overt pulmonary
edema is seen. small hiatal hernia.

Ours: bilateral small to moderate pleural
effusions are presented. minimal patchy
opacity in the right lung base is noted
possibly an area of pulmonary edema.
there is hyperexpansion of the lungs raising
the possibility of some underlying chronic
pulmonary diseases. linear atelectasis in
the left lower lobe. heart size is likely
normal. no pneumothorax is present.

Ours-wo-VSMA: there is no evidence
of pneumothorax or right pleural
effusion. patchy bibasilar airspace
opacities may reflect atelectasis. no
definite focal consolidation. no acute
cardiopulmonary process.
cardiomediastinal silhouette is
within normal limits. no acute
osseous abnormalities.

Ours-wo-DPL: lungs are mildly
hyperinflated. bilateral pleural
effusions are trace. no focal
airspace consolidation or
pneumothorax. possible
atelectasis is present. the heart
size is normal. the hilar and
mediastinal contours are normal.
there is no pneumothorax.

Ours-wo- ℒ𝑰𝑺𝑴&ℒ𝑫𝑨 : no pleural
effusion or pneumothorax is seen.
no acute intrathoracic abnormality.
no focal consolidations concerning
for infection are identified. the
heart size is stable. a large
retrocardiac hiatal hernia is again
seen. bony structures are intact.
normal chest radiographs.

Figure 3. Illustration of generated sentences by our method and comparisons with baselines. For reports by Ours, the key findings correctly
mentioned in the report are highlighted by green, and those wrongly described are in red. The blue texts are input clinical information.

Overall, we obtain the following observations and
analysis. Conventional image captioning models CNN-
RNN, LRCN, AdaAtt, and Att2in, get much lower re-
sults over all the metrics than the medical generation meth-
ods TieNet, Co-Attention, HRGR-Agent, IDCTF, KERP,
and MvH+AttL+MC. This is because the report genera-
tors for medical images are proposed for predicting multi-
ple sentences describing separate and different topics. The
reinforcement learning-based methods HRGR-Agent and
KERP use selected templates for a retrieval manner. How-
ever, the ROUGE results are not satisfactory compared to
others due to the low recall of key medical terms. Although
MvH+AttL+MC achieves the best performance among all
the previous works since it combines the multi-view image
features, attention learning and medical concepts, it doesn’t
consider matching generated sentences with the query X-
Ray image for better description accuracy.

4.4. Qualitative Results

To better demonstrate the model performance, the re-
ports generated by Ours are compared with ground-truths
and some baselines in Fig. 3 (More results are shown in the
supplementary file). Semantic attention maps at different
topic steps of the sentence decoder are visualized as well.
Compared with the ground-truths, the thorax diseases and
their corresponding description patterns can usually be de-
tected and correctly mentioned in our reports. For exam-

ple, in the first case, pleural effusion is found in the scan,
and it is also accurately described as “large” and “right”.
Atelectasis is also mentioned with its position “left lower
lobe”. However, inappropriate descriptions, such as “patchy
opacity”, sometimes occur, which are not observed in the
scan. Moreover, examples of generated sentences by some
baselines are also compared. Ours-wo-MMSA can detect
very obvious abnormal regions but fails to detect unclear
diseases. Most identified lesions are written in the reports
by Ours-wo-DPL but they are not as correctly or fully de-
scribed in detail as by Ours. To illustrate the effectiveness
of the loss constraints on the sentence decoder, we drop
the LISM and LDA together for much clearer comparison.
We find that Ours-wo-LISM&LDA sometimes wrongly de-
scribes the findings and tends to generate normal descrip-
tions even when lesions are clearly present.

5. Conclusion

In this paper, we proposed a medical report genera-
tion method with a multi-modality semantic attention mod-
ule and progressive decoder, optimized by image-sentence
matching and description accuracy constraints. Extensive
experiments showed that our method achieves significant
improvements compared to the state-of-the-art methods.
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