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Abstract

Many recent developments in facial landmark detection
have been driven by stacking model parameters or aug-
menting annotations. However, three subsequent challenges
remain, including 1) an increase in computational over-
head, 2) the risk of overfitting caused by increasing model
parameters, and 3) the burden of labor-intensive annota-
tion by humans. We argue that exploring the weaknesses of
the detector so as to remedy them is a promising method
of robust facial landmark detection. To achieve this, we
propose a sample-adaptive adversarial training (SAAT) ap-
proach to interactively optimize an attacker and a detec-
tor, which improves facial landmark detection as a defense
against sample-adaptive black-box attacks. By leveraging
adversarial attacks, the proposed SAAT exploits adversar-
ial perturbations beyond the handcrafted transformations
to improve the detector. Specifically, an attacker gener-
ates adversarial perturbations to reflect the weakness of
the detector. Then, the detector must improve its robust-
ness to adversarial perturbations to defend against adver-
sarial attacks. Moreover, a sample-adaptive weight is de-
signed to balance the risks and benefits of augmenting ad-
versarial examples to train the detector. We also intro-
duce a masked face alignment dataset, Masked-300W, to
evaluate our method. Experiments show that our SAAT
performed comparably to existing state-of-the-art methods.
The dataset and model are publicly available at https:
//github.com/zhuccly/SAAT.

1. Introduction
Recently, facial landmark detection has been signifi-

cantly improved by many works [36, 41, 42, 46, 51]. To
achieve new breakthroughs, researchers proposed multi-
stage stacked networks [3, 12, 25, 10, 24, 28, 40]. Methods
such as [12, 25] use the two-stage architecture to regress
the facial shape in a coarse-to-fine manner. In [35, 28],
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Figure 1. Insight of the proposed SAAT. The attacker generates
adversarial perturbations to fool the detector, and the detector then
learns to defend against attacks.

the multi-stage stacked hourglass networks (SHG) are em-
ployed to predict the landmark heatmaps. In [19, 24, 40],
the additional sub-networks are equipped into the multi-
stage stacked hourglass networks to improve the fitting per-
formance further. Although the increasing number of model
parameters leads to breakthroughs, the redundant parame-
ters may raise the risk of these models overfitting on the
training dataset, especially in small datasets that their data
distributions are usually unbalanced [4, 31]. Even the data
distribution of existing large-scale datasets may be unbal-
anced. For example, 300VW dataset [33] contains 95, 192
training frames. However, these frames are only collected
from 50 videos containing 44 different persons under 34
scenes. Because this dataset is large but not diverse, multi-
stage stacked models can thoroughly memorize the data dis-
tribution of this large-scale dataset, leading to overfitting.
Increasing numbers of model parameters may further ex-
acerbate this problem. Therefore, the degradation of the
generalization performance of facial landmark detectors in
unconstrained environments may not be addressed by sim-
ply increasing human annotations and model parameters.

In recent years, researchers have proposed various data
augmentation methods [8, 10, 12, 30, 49] to achieve robust
facial landmark detection. Wingloss [12] balances the data
distribution with handcrafted transformations (flipping, ro-
tation, scaling etc.). However, these rigid transformations
are not adequate for those detectors facing various attacks
from the real world ( illumination, make-ups, skin color,

11751



etc.). More recently, unsupervised learning is introduced
to improve the generalization of models by automatically
annotating large-scale unlabeled data [10, 48, 49] while it
requires prior knowledge provided by a pre-trained detec-
tor on the existing labeled data. Because the annotated new
samples may heavily overlap with ‘easy’ samples in pre-
training data, unsupervised methods [10, 48, 49] can hardly
maintain accurate detection on ‘hard’ samples. To diversify
face data, a few methods [8, 30] introduce face augmenta-
tion (e.g., style transfer or face generation). Style aggre-
gation [8] augments faces in the aggregated style, which is
a test-time augmentation. This method increases computa-
tional cost at the testing phase, and its style transfer is lim-
ited to three handcrafted styles. AVS [30] augments “new”
faces by leveraging generative adversarial networks (GAN).
However, it may also generate unrealistic faces owing to
the high uncertainty of the GAN models and the complex-
ity of face generation. In addition, the performance gains of
unsupervised learning methods [48, 49] and face augmen-
tation methods [8, 30] are dependent on their pre-training
models, resulting in their generalization performance be-
ing limited by pre-training. Unfortunately, Goodfellow et
al. [14, 20, 29] proved that deep neural networks trained on
even large datasets are vulnerable to human-imperceptive
perturbations.

We propose a sample-adaptive adversarial training
(SAAT) approach to address the challenges mentioned
above, which exploits adversarial attacks to enhance detec-
tors, as shown in Figure 1. In this framework, an attacker
generates adversarial perturbations instead of “new” faces
to fool a facial landmark detector, and the detector learns
to defend against these perturbations. Generally, most ex-
isting attacks [14, 20, 29] generate category-specific adver-
sarial perturbations that are usually human-imperceptible.
They always have full access to a pre-trained model and use
various gradient-based methods to generate adversarial ex-
amples. Unlike these attacks, we design a sample-adaptive
black-box attacker, which does not require any pre-trained
model, but rather crafts adversarial perturbations based on
the real-time performance feedback of the detector running
on current adversarial examples. In addition, we allow the
perturbations to be visible to diversify further adversarial
examples, which helps the detector learn to defend against
visible attacks from the real world ( illumination, make-up,
skin color, etc.). Then the adversarial perturbations must
avoid the generation of false cases (e.g. faces with three
eyes or twisted mouths) and structural inconsistency of face
shapes between the adversarial and corresponding original
faces. To achieve this, the attacker induces adversarial per-
turbations to adapt to different faces. Specifically, the at-
tacker implicitly learns the face structure of the adversarial
examples by leveraging a structure-guided conditional ad-
versarial architecture. Moreover, a semantic reconstruction

loss is employed to explicitly constrain the semantic con-
sistency between adversarial examples and the correspond-
ing original faces. Nevertheless, false samples may still be
generated during end-to-end training, especially before the
convergence of the model, owing to these visible pertur-
bations. To avoid irreversible degradation caused by false
samples, we introduce a sample-adaptive weight, which au-
tomatically adjusts the contribution of different adversarial
examples to the detector in each training step by measuring
the structural similarity of the adversarial examples and the
corresponding original faces. Our main contributions are
summarized as follows:

• The proposed approach performs robust facial land-
mark detection as a defense against attacks from the
real world. It can improve the robustness of facial
landmark detectors without increasing model param-
eters and human annotations.

• Based on facial semantic information, the proposed
sample-adaptive black-box attacker induces visible
perturbations to adapt to different faces by interacting
with the detector. It injects these perturbations into the
training data, complementing existing data augmenta-
tions to reduce the risk of overfitting.

• We introduce a sample-adaptive weight to avoid the
detector’s performance degradation caused by false
samples. This weight allows the attacker and detec-
tor to be interactively optimized in end-to-end training
without any pre-training.

2. Related work

Facial landmark detection, a.k.a. face alignment, aims
to localize the key points in a given face image. There
are a number of classic and effective approaches for this
task [7, 10, 15, 36, 40, 41, 51]. In [5, 37, 41, 51], researchers
addressed face alignment as a cascaded regression process,
which refines the initial shape to the final shape in a coarse-
to-fine manner. After the application of CNNs in this field,
works such as [11, 16, 25, 36, 26, 44] achieved compet-
itive performance, they learn discriminative features from
pixels. With the large pose issues taken into consideration,
3D face fitting has been considered [1, 15, 18, 21], which
aims to fit a 3D morphable model (3DMM) to a 2D image.
Wing loss [12] designs a piece-wise loss function, which
amplifies the impact of the errors from a certain interval
by switching from L1 loss to a modified logarithm func-
tion. To develop the more powerful detector, the heatmap
regression methods [6, 3, 10, 24, 28, 40] are presented.
These methods achieved breakthroughs of facial landmark
detection by stacking model parameters. Look at bound-
ary (LAB) [40] uses stacked hourglass networks to impose
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Figure 2. Illustration of the proposed method. The structure-guided attacker A generates adversarial perturbations that are injected into
the face image I , which synthesizes the adversarial example Iadv . The detector then learns to handle both I and Iadv . We optimize A by
jointly minimizing LF , LA, and LR. LF aims to increase the prediction error of the detector on adversarial example Iadv . LA aims to
implicitly learn an awareness of the face structures contained in the training data. The semantic reconstruction loss LR explicitly maintains
semantic consistency between the adversarial example and the original face. L and L̃ denote the regression losses of the detector running
on the original and adversarial example, respectively. z represents the Gaussian noise, and ⊕ denotes the concatenation operation.

the global geometric constraint over all landmarks by in-
troducing boundary information. However, LAB is compu-
tationally expensive due to the boundary heatmap predic-
tion. SA [24] proposes semantic alignment, which reduces
the ‘semantic ambiguity’ intrinsically and stacks additional
sub-networks and multi-stage hourglass networks to impose
the shape constraint. Although the stacked additional sub-
networks improves the fitting ability, it also raises the risk
of overfitting. To augment the annotations, methods such
as [10, 48, 49] apply self-supervised learning to annotated
large unlabeled video data. SBR [10] employs the Lucas-
Kanade operation that is sensitive to light change and oc-
clusion. STRRN and STKI [49, 48] are heavily dependent
on their pre-training detector, resulting in that their general-
ization performances are also limited by pre-training.

Defense against adversarial attacks: Szegedy [34] first
demonstrated that the perturbed images could fool deep
neural networks into misclassification, and the robustness
of deep neural networks against the adversarial examples
could be improved by adversarial training. Subsequently,
Goodfellow and Bengio et al. [14, 29, 20] shown that deep
neural networks even trained on the large data are vulner-
able to human-imperceptive adversarial perturbations. To
improve the robustness of the neural networks, Virtual Ad-
versarial Training approach et al. [27] applied perturbations
to the word embedding to smooth the output distributions
of the neural networks. A related work [47] also proposed
the ‘stability training’ method to improve the robustness of
neural networks against small distortions to input images.

3. Method
Our framework consists of two competitive-cooperative

parts, a replaceable facial landmark detector and a condi-
tional generator as the attacker A. The attacker produces
adversarial examples by injecting perturbations into inputs
to fool the detector, and then the detector learns to handle
these adversarial examples, see Figure 2.

3.1. Replaceable detector

We use a non-stacked hourglass network (HG*1) as our
detector in this section. Given an image I , let φ represent
the prediction process in which the detector maps I to a
landmark heatmap setH , such thatH = φ(I). We optimize
the detector by minimizing the following L2 loss:

L =
1

N

N∑
n=1

‖Hn −H∗
n‖

2
, (1)

whereN denotes the number of landmark heatmaps andH∗

is the ground-truth heatmap set.

3.2. Sample-adaptive adversarial attacks

We allow the input face I to be modified by generating
visible adversarial perturbations. This will produce an ad-
versarial example Iadv , which we consider as the hard sam-
ple. We design a structure-guided conditional generator as
the attackerA to generate adversarial perturbations to main-
tain a reasonable face structure. Guided by the structure
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map S of face I , attacker A can quickly explore the areas
expected to be attacked, which perturbs the input I to syn-
thesize an adversarial example Iadv:

Iadv = I +A (I, S, z) (2)

where z represents the Gaussian noise, and S is obtained
by mapping all landmark heatmaps to a single map. This
sample aims to reflect the weaknesses of the detector. Based
on the performance feedback of the detector running on the
current adversarial example, A is optimized by minimizing
the following loss:

LF =
1

1
N

∑N
n=1 ‖φ (Iadv)n −H∗

n‖
2
+ λ

, (3)

where λ = 0.1 denotes the relaxation factor. LF encour-
ages the attacker to generate various adversarial perturba-
tions that adapt to different faces according to the feedback
of the current perturbations. Attacker A must produce a
harder sample when the detector is able to handle the adver-
sarial example by learning a defense against attacks. This
competitive game prevents the detector from overfitting but
may also lead to over-attack, generating false samples. λ is
introduced to constrain the change in the loss value within
a reasonable interval, avoiding over-attack.

To avoid generating false samples (three eyes, twisted
mouth, etc.), we force the synthesized face to be real. To
achieve this, we use adversarial supervision to update the
attacker by minimizing the following loss:

LA = EI,S,z [log (1−D (A (I, S, z) + I, S))] . (4)

The discriminator D supervises the attacker to learn an
awareness of the structural consistency between the adver-
sarial example and the structure map. To this end, we max-
imize the following loss to optimize the discriminator:

LD =EI,S [logD (I, S)] +

EI,S,z [log (1−D (A (I, S, z) + I, S))] .
(5)

Adversarial learning implicitly imposes the face structure
constraint into the adversarial example.

To ensure that the annotations of the original data are
available for adversarial examples that are used to train the
detector, the attacker must retain the facial semantic infor-
mation of the adversarial example to be consistent with the
input face. To achieve this, we segment the neighborhoods
of facial landmarks as semantic regions and the remainder
as non-semantic regions. A semantic maskM performs this
segmentation. Specifically, the proposed method maps all
landmark heatmaps to the semantic mask M and reset the
value of M by setting the values of the semantic regions to
1 and the non-semantic regions to 0.1. Thus, the semantic
reconstruction loss is defined as follows:

LR = ‖M ∗ I −M ∗ Iadv‖1 . (6)

The semantic reconstruction loss maintains semantic con-
sistency between the adversarial example and the origi-
nal input. This loss allows the ground-truth heatmaps to
be available for the corresponding adversarial examples.
Therefore, adversarial examples can be used to optimize the
detectors.

Finally, we combine all losses of the attacker as the total
adversarial loss:

LT = LF + LA + LR. (7)

This total loss encourages the attacker to suitably perturb
training data to produce adversarial examples that can im-
prove the robustness of the detector against attacks from the
real world. Note that the parameters of the detector are fixed
when the attacker is updated using LT .

3.3. Sample-adaptive training strategy

We expect the adversarial examples to be sufficiently
credible to train the detector. Nevertheless, because the per-
turbations change the context of the original faces, the at-
tacker may produce false samples before the convergence
to degrade the detector. Most of the existing adversarial at-
tacks address this problem by limiting the values of adver-
sarial perturbations to a small range. However, this restricts
the data diversity of adversarial examples. Because we also
expect the adversarial examples to be diversified, our at-
tacker generates visible perturbations. It is necessary to bal-
ance the benefits and risks of visual perturbations. There-
fore, we design a sample-adaptive loss to efficiently exploit
all credible adversarial examples whose semantic regions
are consistent with the corresponding original faces. We
express the adaptive sample loss as:

L̃ = β ∗ 1

N

N∑
n=1

‖φ(Iadv)n −H∗
n‖

2
, (8)

where N denotes the number of landmarks, and the weight
β aims to balance the risks and benefits of the visible pertur-
bations. Based on the structural similarity [38] between the
adversarial example and the corresponding original face in
semantic regions, this weight evaluates the confidence level
of the adversarial example to adjust L̃. We define β as:

β = max (0, ln (SSIM(M ∗ I,M ∗ Iadv) + 0.5)) , (9)

where SSIM(·) measures the structural similarity [38], M
represents the weight mask of the semantic regions.

In a single training step, we combine the loss L and the
loss L̃ to optimize the detector, and the parameters of the
attacker are fixed when the detector is updated. Moreover,
we also augment the adversarial example with handcrafted
transformation (rotation, scaling, flipping, etc.)
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4. Experiments

4.1. Datasets

Our method is evaluated in three settings, including
intra-dataset evaluation, cross-dataset evaluation and self-
evaluation.

Intra-dataset evaluation setting follows the settings of
most methods [10, 23, 36, 40] on 300W [31], 300VW [33],
and WFLW [40]:

300W [31] contains three training subsets, which are the
training set of LFPW (2, 000 images), the training set of
HELEN (811 images) and AFW (337 images). Following
the widely used evaluation setting, the test sets consist of the
Common set (LFPW and HELEN test sets, 554 images), the
Challenging set (IBUG, 135 images), and the Full set (the
union of the two former, 689 images).

300VW [33] contains 114 videos. Following most meth-
ods [22, 35, 40], 50 training videos and training sets of
300W are combined during the training phase. The remain-
der 64 videos are used for testing, which are divided into
three subsets Cate-1, Cate-2 and Cate-3 (challenging set).

WFLW [40] is a new facial dataset based on WIDER
Face [43], which is proposed by LAB [40]. It contains
10, 000 images (7, 500 for training and 2, 500 for testing)
with 98 landmarks.

Cross-dataset evaluation setting aims to demonstrate
the generalization performance of the proposed method. We
only use the train sets of 300W [31] to train our model in
this setting without using any samples from other datasets.
Then the detector is tested on the following datasets:

COFW68 [13] has 507 test images collected from the In-
ternet, which is produced based on The Caltech Occluded
Face in the Wild (COFW) dataset [4]. Since COFW are an-
notated with 29 landmarks, it can not evaluate the detector
trained on 300W with 68 landmarks. In this setting, we con-
duct evaluation experiments on COFW68 re-annotated with
68 landmarks by [13].

Masked 300W is a 300W based dataset focusing on
masked faces. Although COFW68 contains various oc-
cluded faces, it lacks severe occlusions. We synthesize
masked face images to generated the Masked 300W dataset
by following Simulated Masked Face Recognition Dataset
(SMFRD) [39]. More details are illustrated in our supple-
mentary material.

Self-evaluation setting is used in the efficiency evalu-
ation of our SAAT. We report the role of multiple hyper-
parameters and analyze the impact of SAAT on different
baseline and data sizes. We train different sizes of hourglass
networks on HELEN, 300W [31] and a large scale 300W-
LP datasets [3] (61, 225), respectively, where 300W-LP is
usually used to pre-train detectors.

4.2. Implementation details

Model details. We apply three baselines to evaluate our
SAAT, respectively. The cascade regression model MDM1

[36] are used as baseline-1. The non-stacked HG model is
baseline-2 (HG*1), which only equips a non-stacked hour-
glass network with a single hourglass module [28]. It starts
with a 7 ∗ 7 convolution layer with a stride of 2, followed
by a round of residual module and max-pooling to bring the
resolution down from 256 to 64. The two subsequent resid-
ual modules precede the hourglass module, followed by two
deconvolution layers to output a 68 ∗ 256 ∗ 256 feature. The
final two convolution layers with 1 ∗ 1 kernel are equipped
to generate the heatmaps. To further evaluate the proposed
method, we also apply two-stage stacked HG (HG*2) as
baseline-3. The structure-guided conditional GAN follows
pix2pix 2 [17] to be completed.

Implementation details. We use the face bounding
boxes released by organizers to crop the face image of the
samples in 300W. MTCNN [45] is applied to detect the
face bounding boxes for 300VW. All images are cropped
into a size of 256 ∗ 256. Following the existing methods
[12, 36, 40], we augment training data by handcrafted trans-
formation (rotation, flipping, scaling, etc.). Our model is
trained with about 200, 000+ steps in an end-to-end man-
ner on a single GPU with the NVIDIA GTX 1080 Ti. The
following hyper-parameters are set: a initial learning rate of
0.0002 for the detector, a initial learning rate of 0.0001 for
the attacker and discriminator, a decay factor of 0.97 and a
batch size of 8.

Evaluation metric. We use the point-to-point Euclidean
error normalized by the inter-ocular distance [31, 36] to
produce the Normalized Mean Error (NME). We further
leverage the Cumulative Error Distribution (CED) curves of
NMEs to quantitatively evaluate the performance. Although
the averaged NME and CED curves are widely used for
evaluation, they are insensitive to a few false cases. There-
fore, we also provide our evaluation in the form of the visu-
alization of all NMEs.

4.3. Intra-dataset evaluation

For fair comparisons to previous methods, we re-produce
the results with their released codes or present the reported
results from their original papers [2, 9, 10, 23, 25, 40, 41,
50]. For the CED curves, we obtain the results with publicly
released codes [10, 28, 35, 36, 23, 40].

Evaluation on 300W. Table 1 shows that the proposed
SAAT significantly improves all baselines on three sub-sets
and even surpasses the newest methods by a large margin
on the challenging set. Although Chandran et al.[6] is com-
petitive on the common set, it can hardly handle the chal-

1https://github.com/trigeorgis/mdm
2https://github.com/yenchenlin/pix2pix-tensorflow
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Figure 3. The CED curves of our proposed method compared to state-of-the-art methods on three subsets of 300W [31].

Methods Challenging Common Full
CFSS [51] (2015) 9.98 4.73 5.76
SHG [28] (2016) 7.52 3.17 4.01
TSR [25] (2017) 7.56 4.36 4.99
RDN [23] (2018) 7.04 3.31 4.23
SBR [10] (2018) 7.58 3.28 4.10

SHG+Wing [12] (2018) 5.64 3.05 3.56
FHR [35] (2018) 6.28 3.02 3.66
LAB [40](2018) 5.19 2.98 3.49
ODN [50] (2019) 6.67 3.56 4.17

AVS+SAN [30] (2019) 6.49 3.21 3.86
Chandran et al. [6](2020) 7.04 2.83 4.23

LUVLi [19] (2020) 5.16 2.76 3.23
3FabRec [2] (2020) 5.74 3.36 3.82

SRT [9] (2020) 5.61 2.80 3.39
MDM [36] (baseline-1) 8.87 3.74 4.78

HG*1 (baseline-2) 7.13 3.50 4.21
HG*2 (baseline-3) 6.43 3.11 3.76

MDM+SAAT 6.58 3.35 3.98
HG*1+SAAT 5.10 2.96 3.38
HG*2+SAAT 5.03 2.87 3.29

Table 1. Comparison with the state-of-the-arts on 300W. HG*1
(baseline-2) represents a single hourglass network, and HG*2
(baseline-3) denotes a two-stage stacked hourglass network. Top-2
results are highlighted in bold font.

lenging set. This is because this model relies on the stacked
hourglass networks to crop the different face regions. How-
ever, many hard samples with the large pose in the chal-
lenge set can hardly be cropped well. The newest methods
SRT [9] also achieves outstanding performance on the com-
mon set. However, it does not perform well on the challeng-
ing set. Because SRT automatically annotates large-scale
unlabeled video data by exploiting Lucas Kanade tracking,
which can hardly handle occlusion and illumination, lead-
ing to data imbalance. Although LUVLi [19] is successful
on 300W, it is computationally expensive as it is equipped
with 8 U-nets. Our proposed method achieves the best per-
formance on the challenging set, which shows that the pro-
posed SAAT can significantly improve the robustness of the
detectors on hard samples.

Figure 3 shows the CED curves of HG*1+SAAT com-

Methods Cate-1 Cate-2 Cate-3
Trained on 300W + 300VW

TCDCN [46] 7.66 6.77 14.98
MDM [36] 5.46 4.59 7.42
iCCR [32] 6.71 4.00 12.75
TSTN [22] 5.36 4.51 12.84

FHR+STA [35] 4.42 4.18 5.98
HGs+SA+GHCU [24] 3.85 3.46 7.51

HG*1 (baseline-2) 4.01 4.12 6.67
HG*1+SAAT (ours) 3.46 3.41 5.23

Trained on 300W + Unlabeled data
SBR [10] 7.41 6.18 11.04

STRRN [49] 5.03 4.74 6.63
STKI [48] 4.42 4.57 6.11

Trained on 300W
MDM [36] 6.76 5.69 8.74
SHG [28] 4.68 4.41 8.13

HG*1 (baseline-2) 4.71 4.35 8.37
MDM+SAAT (ours) 5.96 4.95 8.74
HG*1+SAAT (ours) 4.03 3.87 6.12

Table 2. NME comparison of the proposed method and state-of-
the-art methods on the 300VW.

pared with state-of-the-art methods whose mean error val-
ues are presented in Table 1. It is seen that the HG*1+SAAT
significantly surpasses other methods.

Evaluation on 300VW. Comparison results are report in
Table 2. We can see that the proposed method significantly
outperforms other face alignment methods on all sub-sets.
Even on the challenging set Cate-3 with large poses, diverse
expressions and severe occlusions, our method still achieves
outstanding performance.

Evaluation on WFLW. To further evaluate the robust-
ness of our method, we report mean error, failure rate and
AUC (a threshold value of 0.1) on the Testset of WFLW in
Table 3. Compared with the top-1 LUVLi [19], although
our detector uses fewer parameters, it still achieves a com-
pelling performance.
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Methods LAB (HG*4) [40] AS (Res-18) [30] 3FabRec (more data) [2] LUVLi (U-net*8) [19] HG*1+SAAT (ours) HG*2+SAAT (ours)
Mean Error (%) 5.27 5.25 5.62 4.37 5.37 5.11
Failure Rate (%) 7.56 7.44 8.28 3.12 7.31 5.63

AUC 0.5323 0.5034 0.4840 0.5770 0.5201 0.5633

Table 3. Evaluation on Testset of WFLW (98 landmarks).

Method NME Failure Rate (%)
RPP [42] 7.52 9.20

CFAN [44] 8.38 7.14
TCDCN [46] 8.05 6.31
MDM [36] 6.32 4.31

FAN [3] 5.72 2.74
ODN [50] 5.87 2.84
LAB [40] 4.62 2.17

HG*1+SAAT (ours) 4.61 1.58

Table 4. Comparison of NME and the failure rate (threshold at 0.1)
on COFW68 dataset.

4.4. Cross-dataset evaluation

In this evaluation, we only use 300W to train our model.
Evaluation on COFW68. We conduct cross-dataset ex-

periments on COFW68 to evaluate the robustness. Table 4
shows the comparison results on COFW68. The proposed
method outperforms all state-of-the-art methods by a large
margin. This also proves that adversarial examples are help-
ful to promote localization performance.

Evaluation on Masked 300W. Table 5 shows results of
the proposed SAAT compared with existing open-sourced
methods on Masked 300W. For this evaluation, we re-train
these methods without using masked faces from Masked
300W dataset, but using the handcrafted occlusion patch
to randomly augment occluded data. Our SAAT improves
baselines significantly without increasing computational
cost at the testing phase. This shows that our method can
efficiently complement the handcrafted data augmentation.

Methods Challenging Common Full
CFSS [51] 19.98 11.73 13.35
SBR [10] 15.28 9.72 10.65
SHG [28] 13.52 8.17 9.22
FHR [35] 12.38 7.82 8.71
FAN [3] 10.81 7.36 8.02

MDM [36](baseline-1) 11.67 7.66 8.44
HG*1(baseline-2) 16.18 9.19 10.56
HG*2(baseline-3) 14.46 9.03 10.94

MDM+SAAT 10.78 6.93 7.68
HG*1+SAAT 12.58 6.37 7.58
HG*2+SAAT 11.36 5.42 6.58

Table 5. NME comparison on Masked 300W. Note that Masked
300W is only used for testing, not training.

Methods Challenging Common Full
HG*1+SAAT (β = 1) 6.36 3.47 4.04

HG*1+SAAT (β = 0.5) 5.78 3.19 3.70
HG*1+SAAT (β = 0.1) 6.91 3.32 4.02
HG*1+SAAT (β = 0) 7.93 3.60 4.45
HG*1+SAAT (λ = 1) 6.13 3.66 4.14

HG*1+SAAT (λ = 0.5) 5.17 3.01 3.43
HG*1+SAAT (λ = 0) 7.06 3.42 4.13

HG*1+SAAT (β = 0, λ = 0) 8.72 4.04 4.95
HG*1+SAAT (Adaptive β, λ = 0.1) 5.10 2.96 3.38

Table 6. Ablation experiment: NME comparison on 300W dataset.

4.5. Self Evaluations

Ablation study. We show averaged errors of various
training strategies with different values of β and λ in Table
6, respectively. We can observe two conclusions from these
results: 1) Adaptive β achieves higher performance since
it efficiently filters the false samples, and 2) λ can avoid
the increase of false samples caused by the over-attack. We
argue that these two parameters cooperatively work to sup-
press false samples.

Table 7 shows the ablation experiments about the struc-
ture map S, the reconstruction loss LR and the discrimina-
tor D. A single hourglass network is applied as the base-
line. More ablation studies about the quality of adversarial
examples are shown in our supplementary material.

300W validation set Challenging Common Full
SAAT ( w/o S) 5.36 3.17 3.78

SAAT ( w/o LR) 6.13 3.32 3.99
SAAT ( w/o D) 5.68 3.01 3.53

SAAT ( w/o D and LR) 7.51 4.09 4.76
SAAT 5.10 2.96 3.38

Table 7. Ablation experiments of the proposed SAAT.

Evaluation on hard samples. Due to the tiny scale of
hard samples in 300W validation sets, the averaged statis-
tical results are unable to clearly reflect the performance of
the detector running on hard samples. We further inves-
tigate the performance of the proposed SAAT in handling
hard samples. Figure 4 shows the errors of the baseline
and baseline+SAAT on all samples of 300W validation sets.
Although the baseline fits most samples, a few hard sam-
ples cannot be fitted by the baseline. The proposed method
addresses this problem. Figure 5 shows the qualitative re-
sults. These results indicate that our SAAT can efficiently
improve the baseline’s robustness.
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Figure 4. Quantitative results of the proposed SAAT compared with the baseline on 300W.

Figure 5. Qualitative results of the proposed SAAT compared with the baseline on hard samples.

Methods LAB [40] SBR [10] SHG+GHCU [24] FAN [3] HG*1+SAAT
Stacks 4 3 4 4 1
FPS 9.63 13.82 8.79 13.2 23.3

Sub-nets X × X × ×

Table 8. Comparison of the number of stacked hourglass modules,
inference speed and sub-networks at the testing phase. FPS de-
notes the number of images processed per second and Sub-nets
denotes extra modules in addition to stacked models.

Model size and computational efficiency. We further
compare our HG*1+SAAT (baseline-2) with the stacked
models on the number of stacked hourglass modules, the in-
ference speed, and extra sub-nets used to the testing phase.
All experiments are conducted on a single NVIDIA GTX
1080 Ti and reported in Table 8. Combining inter-dataset
evaluation (Table 1, 2, 3) and cross-dataset evaluation (Ta-
ble 4, 5), these results shown that the proposed SAAT can
improve the performance of detectors without increasing
model parameters.

Performance across different network and data sizes.
In Table 9, we follow FAN [3] to report the performance
fluctuation of the proposed SAAT with different numbers
of network parameters. Specifically, we train the pro-
posed SAAT using three different data sizes separately, in-
cluding: HELEN (811 images), 300W (3, 148 images),
and 300W+300W-LP [3] (61, 225 images), and test on
COFW68 [13], respectively. The number of stacked hour-
glass modules is varied from 2 to 1. These results are col-
lected after 250, 000 training steps, where the observation
interval was 3000 training steps. The range of NME fluc-
tuation after convergence can measure the model’s general-
ization. The greater fluctuation is usually caused by severer
overfitting. These results show that the proposed SAAT is

Trained on HG*1 HG*2 HG*1+SAAT HG*2+SAAT
HELEN 5.56-6.82 5.52-21.79 5.26-6.77 5.12-9.31
300W 5.13-7.74 4.86-8.33 4.81-6.23 4.71-7.59

300W+300W-LP 4.76-6.01 4.53-6.09 4.69-6.17 4.47-5.73

Table 9. NME fluctuation of different model sizes on the COFW.

better for the limited training data and computational re-
sources.

5. Conclusion

In this paper, we have proposed a sample-adaptive ad-
versarial training (SAAT) approach, which significantly im-
proves the robustness of facial landmark detection. Exten-
sive experimental results confirmed that the proposed SAAT
achieves competitive performance compared with state-of-
the-art methods. The advantages of the proposed method
are as follows: (1) SAAT exploits diverse adversarial ex-
amples to reduces the overfitting risk; (2) With the defense
against visible adversarial attacks, the detector can achieve
robust detection; (3) the proposed sample-adaptive weight
can suppress false samples, which avoids the performance
degeneration. In the future, we will consider promoting
SAAT to related tasks, such as human pose estimation.

6. Acknowledgements

This work is supported in part by Shanghai science
and technology committee under grant No.21511100600.
We appreciate the High Performance Computing Cen-
ter of Shanghai University, and Shanghai Engineer-
ing Research Center of Intelligent Computing System
(No.19DZ2252600) for providing the computing resources
and technical support.

11758



References
[1] Volker Blanz and Thomas Vetter. Face recognition based

on fitting a 3d morphable model. TPAMI, 25(9):1063–1074,
2003. 2

[2] Bjorn Browatzki and Christian Wallraven. 3fabrec: Fast few-
shot face alignment by reconstruction. In CVPR, June 2020.
5, 6, 7

[3] Adrian Bulat and Georgios Tzimiropoulos. How far are we
from solving the 2d & 3d face alignment problem?(and a
dataset of 230,000 3d facial landmarks). In ICCV, pages
1021–1030, 2017. 1, 2, 5, 7, 8

[4] Xavier P. Burgos-Artizzu, Pietro Perona, and Piotr Dollar.
Robust face landmark estimation under occlusion. In ICCV,
December 2013. 1, 5

[5] Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun. Face
alignment by explicit shape regression. IJCV, 107(2):177–
190, 2014. 2

[6] Prashanth Chandran, Derek Bradley, Markus Gross, and
Thabo Beeler. Attention-driven cropping for very high res-
olution facial landmark detection. In CVPR, pages 5861–
5870, 2020. 2, 5, 6

[7] Timothy F. Cootes, Gareth J. Edwards, and Christopher J.
Taylor. Active appearance models. TPAMI, 23(6):681–685,
2001. 2

[8] Xuanyi Dong, Yan Yan, Wanli Ouyang, and Yi Yang. Style
aggregated network for facial landmark detection. In CVPR,
pages 379–388, 2018. 1, 2

[9] X. Dong, Y. Yang, S. Wei, X. Weng, Y. Sheikh, and S. Yu.
Supervision by registration and triangulation for landmark
detection. TPAMI, pages 1–1, 2020. 5, 6

[10] Xuanyi Dong, Shoou-I Yu, Xinshuo Weng, Shih-En Wei, Yi
Yang, and Yaser Sheikh. Supervision-by-registration: An un-
supervised approach to improve the precision of facial land-
mark detectors. In CVPR, pages 360–368, 2018. 1, 2, 3, 5,
6, 7, 8

[11] Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi
Zhou. Joint 3d face reconstruction and dense alignment with
position map regression network. arXiv:1803.07835, 2018.
2

[12] Zhen-Hua Feng, Josef Kittler, Muhammad Awais, Patrik Hu-
ber, and Xiao-Jun Wu. Wing loss for robust facial landmark
localisation with convolutional neural networks. In CVPR,
pages 2235–2245, 2018. 1, 2, 5, 6

[13] Golnaz Ghiasi and Charless C. Fowlkes. Occlusion co-
herence: Detecting and localizing occluded faces. CoRR,
abs/1506.08347, 2015. 5, 8

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 2, 3

[15] Shi HL et al. Face alignment across large poses: A 3d solu-
tion. In CVPR, pages 146–155, 2016. 2

[16] Zhibin Hong, Xue Mei, Danil Prokhorov, and Dacheng Tao.
Tracking via robust multi-task multi-view joint sparse repre-
sentation. In ICCV, pages 649–656, 2013. 2

[17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, pages 1125–1134, 2017. 5

[18] Amin Jourabloo and Xiaoming Liu. Pose-invariant face
alignment via cnn-based dense 3d model fitting. IJCV,
124(2):187–203, 2017. 2

[19] Abhinav Kumar, Tim K Marks, Wenxuan Mou, Ye Wang,
Michael Jones, Anoop Cherian, Toshiaki Koike-Akino, Xi-
aoming Liu, and Chen Feng. Luvli face alignment: Esti-
mating landmarks’ location, uncertainty, and visibility like-
lihood. In CVPR, pages 8236–8246, 2020. 1, 6, 7

[20] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Ad-
versarial examples in the physical world. 2, 3

[21] Feng Liu, Dan Zeng, Qijun Zhao, and Xiaoming Liu. Joint
face alignment and 3d face reconstruction. In ECCV, pages
545–560. Springer, 2016. 2

[22] Hao Liu, Jiwen Lu, Jianjiang Feng, and Jie Zhou. Two-
stream transformer networks for video-based face alignment.
TPAMI, 40(11):2546–2554, 2018. 5, 6

[23] Hao Liu, Jiwen Lu, Minghao Guo, Suping Wu, and Jie Zhou.
Learning reasoning-decision networks for robust face align-
ment. TPAMI, 2018. 5, 6

[24] Zhiwei Liu, Xiangyu Zhu, Guosheng Hu, Haiyun Guo, Ming
Tang, Zhen Lei, Neil M Robertson, and Jinqiao Wang. Se-
mantic alignment: Finding semantically consistent ground-
truth for facial landmark detection. In CVPR, pages 3467–
3476, 2019. 1, 2, 3, 6, 8

[25] Jiangjing Lv, Xiaohu Shao, Junliang Xing, Cheng Cheng,
and Xi Zhou. A deep regression architecture with two-stage
re-initialization for high performance facial landmark detec-
tion. In CVPR, pages 3317–3326, 2017. 1, 2, 5, 6

[26] Daniel Merget, Matthias Rock, and Gerhard Rigoll. Robust
facial landmark detection via a fully-convolutional local-
global context network. In CVPR, pages 781–790, 2018. 2

[27] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Ad-
versarial training methods for semi-supervised text classifi-
cation. ICLR, 2017. 3

[28] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In ECCV, pages
483–499. Springer, 2016. 1, 2, 5, 6, 7

[29] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In Eu-
ropean symposium on security and privacy, pages 372–387.
IEEE, 2016. 2, 3

[30] Shengju Qian, Keqiang Sun, Wayne Wu, Chen Qian, and Ji-
aya Jia. Aggregation via separation: Boosting facial land-
mark detector with semi-supervised style translation. In
CVPR, pages 10153–10163, 2019. 1, 2, 6, 7

[31] Christos Sagonas, Georgios Tzimiropoulos, Stefanos
Zafeiriou, and Maja Pantic. 300 faces in-the-wild challenge:
The first facial landmark localization challenge. In ICCVW,
pages 397–403, 2013. 1, 5, 6

[32] Enrique Sánchez-Lozano, Brais Martı́nez, Georgios Tz-
imiropoulos, and Michel F. Valstar. Cascaded continuous
regression for real-time incremental face tracking. In ECCV,
pages 645–661, 2016. 6

[33] Jie Shen, Stefanos Zafeiriou, Grigoris G. Chrysos, Jean Kos-
saifi, Georgios Tzimiropoulos, and Maja Pantic. The first
facial landmark tracking in-the-wild challenge: Benchmark
and results. In ICCVW, pages 1003–1011, 2015. 1, 5

11759



[34] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 3

[35] Ying Tai, Yicong Liang, Xiaoming Liu, Lei Duan, Jilin Li,
Chengjie Wang, Feiyue Huang, and Yu Chen. Towards
highly accurate and stable face alignment for high-resolution
videos. In AAAI, volume 33, pages 8893–8900, 2019. 1, 5,
6, 7

[36] George Trigeorgis, Patrick Snape, Mihalis A Nico-
laou, Epameinondas Antonakos, and Stefanos Zafeiriou.
Mnemonic descent method: A recurrent process applied for
end-to-end face alignment. In CVPR, pages 4177–4187,
2016. 1, 2, 5, 6, 7

[37] Georgios Tzimiropoulos. Project-out cascaded regression
with an application to face alignment. In CVPR, pages 3659–
3667, 2015. 2

[38] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. TIP, 13(4):600–612, 2004. 4

[39] Zhongyuan Wang, Guangcheng Wang, Baojin Huang,
Zhangyang Xiong, Qi Hong, Hao Wu, Peng Yi, Kui Jiang,
Nanxi Wang, Yingjiao Pei, et al. Masked face recognition
dataset and application. arXiv preprint arXiv:2003.09093,
2020. 5

[40] Wayne Wu, Chen Qian, Shuo Yang, Quan Wang, Yici Cai,
and Qiang Zhou. Look at boundary: A boundary-aware face
alignment algorithm. In CVPR, pages 2129–2138, 2018. 1,
2, 5, 6, 7, 8

[41] Xuehan Xiong and Fernando De la Torre. Supervised descent
method and its applications to face alignment. In CVPR,
pages 532–539, 2013. 1, 2, 5

[42] Heng Yang, Xuming He, Xuhui Jia, and Ioannis Patras. Ro-
bust face alignment under occlusion via regional predictive
power estimation. TIP, 24(8):2393–2403, 2015. 1, 7

[43] Shuo Yang, Ping Luo, Chen-Change Loy, and Xiaoou Tang.
Wider face: A face detection benchmark. In CVPR, pages
5525–5533, 2016. 5

[44] Jie Zhang, Shiguang Shan, Meina Kan, and Xilin Chen.
Coarse-to-fine auto-encoder networks (cfan) for real-time
face alignment. In ECCV, pages 1–16, 2014. 2, 7

[45] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao.
Joint face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Letters,
23(10):1499–1503, 2016. 5

[46] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou
Tang. Learning deep representation for face alignment with
auxiliary attributes. TPAMI, 38(5):918–930, 2016. 1, 6, 7

[47] Stephan Zheng, Yang Song, Thomas Leung, and Ian Good-
fellow. Improving the robustness of deep neural networks
via stability training. In CVPR, pages 4480–4488, 2016. 3

[48] Congcong Zhu, Xiaoqiang Li, Jide Li, Guangtai Ding, and
Weiqin Tong. Spatial-temporal knowledge integration: Ro-
bust self-supervised facial landmark tracking. In ACM Inter-
national Conference on Multimedia, page 4135–4143. Asso-
ciation for Computing Machinery, 2020. 2, 3, 6

[49] Congcong Zhu, Hao Liu, Zhenhua Yu, and Xuehong Sun.
Towards omni-supervised face alignment for large scale un-
labeled videos. In AAAI, pages 13090–13097, 2020. 1, 2, 3,
6

[50] Meilu Zhu, Daming Shi, Mingjie Zheng, and Muhammad
Sadiq. Robust facial landmark detection via occlusion-
adaptive deep networks. In CVPR, pages 3486–3496, 2019.
5, 6, 7

[51] Shizhan Zhu, Cheng Li, Chen Change Loy, and Xiaoou
Tang. Face alignment by coarse-to-fine shape searching. In
CVPR, pages 4998–5006, 2015. 1, 2, 6, 7

11760


