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Abstract

Neuromorphic vision sensor is a new bio-inspired imag-
ing paradigm that emerged in recent years, which continu-
ously sensing luminance intensity and firing asynchronous
spikes (events) with high temporal resolution. Typically,
there are two types of neuromorphic vision sensors, namely
dynamic vision sensor (DVS) and spike camera. From the
perspective of bio-inspired sampling, DVS only perceives
movement by imitating the retinal periphery, while the spike
camera was developed to perceive fine textures by simu-
lating the fovea. It is meaningful to explore how to com-
bine two types of neuromorphic cameras to reconstruct high
quality image like human vision. In this paper, we propose
a NeuSpike-Net to learn both the high dynamic range and
high motion sensitivity of DVS and the full texture sampling
of spike camera to achieve high-speed and high dynamic
image reconstruction. We propose a novel representation
to effectively extract the temporal information of spike and
event data. By introducing the feature fusion module, the
two types of neuromorphic data achieve complementary to
each other. The experimental results on the simulated and
real datasets demonstrate that the proposed approach is ef-
fective to reconstruct high-speed and high dynamic range
images via the combination of spike and event data.

1. Introduction
In recent years, bio-inspired vision sensors have become

very attractive in the field of self-driving cars, unmanned
aerial vehicles, and autonomous mobile robots [23], due to
their significant advantages over conventional frame-based
cameras, such as high dynamic range and high temporal res-
olution [13, 24].

Generally speaking, there are two ways of bio-inspired
visual sampling manner: temporal contrast sampling and
integral sampling. Among them, dynamic vision sensor (D-
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VS) [9, 1], a.k.a. event camera, is the most well-recognized
bio-inspired vision sensor based on temporal contrast sam-
pling, which measures the change of light intensity and out-
puts high dynamic range events. From the biological point
of view, DVS imitates the periphery of the retina [36] which
is sensitive to motion. However, it is very difficult to recon-
struct the texture from DVS. To solve this problem, some
event-based sensors were developed subsequently by com-
bining DVS and a frame-based active-pixel sensor (APS)
such as DAVIS [4], or adding an extra photo-measurement
circuit such as ATIS [30] and CeleX [15]. However, a mis-
match exists due to the difference in the sampling time reso-
lution between two kinds of heterogeneous circuits. Recent-
ly, many algorithms were designed to reconstruct images
using DVS [33, 31, 25, 34, 38, 44, 6]. There are also some
algorithms that combine image and event to reconstruct tex-
ture images [28, 29, 27, 33], which can obtain more texture
information than only using the DVS signal.

Different from DVS, there are a number of spiking image
sensors following the basis of the integrate-and-fire neuron
model [43, 19, 7, 35]. Some variants of spiking image sen-
sors such as asynchronous pixel event tricolor vision sen-
sor [22] and near infrared spiking image sensor [3] were
proposed. Recently, Dong et al. [10, 47] proposed a spike
camera based on fovea-like sampling method, which is with
high spatial (250×400) and temporal resolutions (40,000
Hz). Moreover, there is a portable spike camera, a.k.a. Vi-
dar, with a sampling rate of 20,000 Hz. For the spike cam-
era, the spike firing frequency can be used to estimate light
intensity [47]. Recently, a fovea-like texture reconstruction
framework was proposed to reconstruct images [49]. In ad-
dition, some methods based on the spike camera were de-
veloped for spike coding [11, 48], tone mapping [16] and
motion deblurring [45].

In human vision system [36], peripheral and foveal vi-
sion is not independent, but is directly connected [37]. It is
biologically plausible to the periphery and fovea are com-
plementary. This motivates us to explore a question: how
to combine the two neuromorphic cameras to reconstruct
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Figure 1. The motivation of our approach. Neuromorphic cameras are inspired by the retina. DVS perceives movement by imitating the
retinal periphery, while the spike camera was developed to sense fine textures by simulating the fovea. In this work, we combine the spike
and event data to achieve effective information complementarity and get better reconstruction quality.

high quality visual image like human vision? In fact, DVS
has the ability of high speed and high dynamic range sens-
ing, but it is difficult to perceive the texture information. In
contrast, the spike camera has the ability of full texture sam-
pling like a conventional camera, but its dynamic range is
greatly affected by the noise. Meanwhile, its sampling abil-
ity depends on high light intensity of the scene. In applica-
tion, it is meaningful to combine the high dynamic range of
event data and full texture of spike data to reconstruct high
quality images.

In this paper, we combine the two types of neuromorphic
data to reconstruct high quality texture images, especially in
complex scenes such as high speed and low light. Contribu-
tions of this paper are summarized as follows.

1) We first propose the reconstruction network combin-
ing spike and event cameras (NeuSpike-Net). According
to the characteristics of the neuromorphic data, we explore
the learning-based joint reconstruction strategy, which can
achieve high quality full texture reconstruction in complex
scenes with different light intensities and motion speeds.

2) We propose a neuromorphic data representation to ex-
tract useful temporal information hidden in spike and event
data. With the help of neuromorphic data representation,
the proposed network can effectively learn the features of
spike and event data.

3) We propose to simulate multi-scale spike data, which
considers the various noises existing in spike camera. The
simulated dataset is generated for network training and
testing by simulating different light intensities and motion
speeds. Moreover, we build a hybrid cameras system to col-
lect real world datasets to test the effectiveness of the model.

2. The Motivation of Our Approach

In this section, we analyze the interaction of fovea and
peripheral in retina (Section 2.1), and the sampling prin-
ciple of two types of neuromorphic cameras (Section 2.2).
The relationship between the spike data and event data is
further analyzed (Section 2.3), and the noise distribution of
the spike camera is discussed in Section 2.4.

Figure 2. The sampling mechanism of DVS and spike camera.

2.1. Sampling Mechanisms of Human Retina

In human vision system, the retina is an important part
that receives the light and perceives the scene. The center
of the retina, a.k.a. fovea, is used for scrutinizing highly
detailed objects, and the peripheral vision is optimized for
perceiving coarser motion information [39]. Research in
the last decade has shown that peripheral and foveal vision
is not independent in human vision, but is directly connect-
ed [37]. Humans use peripheral vision to select regions of
interest and foveate them by saccadic eye movements for
further scrutiny [41]. In fact, as stated in [37], peripheral
and foveal inputs interact and influence each other to better
perceive the scene. There is an integration process to com-
bine the foveal and peripheral information, which is benefi-
cial to perception [37]. Recently, researchers in the neuro-
morphic field developed several bio-inspired vision sensors
to simulate the properties of the human retina. In this paper,
motivated by the perception mechanism of the retina, we
explore how to combine two kinds of bio-inspired cameras
(the fovea-like spike camera and the peripheral-like DVS)
to reconstruct high quality images (see Figure 1).

2.2. Bio-inspired Neuromorphic Cameras

For spike camera, each pixel independently accumulates
luminance intensity which inputs from an analog-to-digital
converter (ADC), and generates a spike if the ADC value
exceeds the dispatch threshold φ [47]:∫ T

0

Idt ≥ φ, (1)
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where I refers to the luminance intensity (usually measured
by photocurrent in the circuit). Then the accumulator is re-
set and all the charges on it are drained. At different pixels,
the accumulation speed of the luminance intensity is differ-
ent. As shown in Figure 2, the greater the light intensity, the
more frequent the spikes are emitted. For a spike camera, a
pixel continuously measures the light intensity and emits a
spike train with 40,000 Hz. At a certain sampling time, the
states (“1” or “0”) of all pixels form a spike plane.

The Dynamic Visual Sensor (DVS) [9, 1] tracks the
light intensity changes at each pixel, and fires asynchronous
events whenever the log intensity changes over a dispatch
threshold θ (see Figure 2):

| log(It+1)− log(It)| ≥ θ. (2)

Since each pixel individually responds to the light inten-
sity changes, DVS does not have a fixed sampling rate. For
a pixel (x, y), if an event occurs at time t, the event is repre-
sented as a four-dimensional tuple e = (t, x, y, p) where p
denotes the polarity of the event (“+1” for light intensity in-
crease and “-1” for decrease). This representation is called
Address Event Representation (AER), and is the standard
format used by event-based sensors.

Generally speaking, the event camera has high dynamic
sensing ability to moving objects, but it can’t record texture.
Spike camera has the ability of full texture sampling, but its
dynamic range is not as high as that of an event camera.
Therefore, this work explores how to effectively combine
the two cameras to achieve complementarily.

2.3. Relationship between Spike and Event Data

Although the sampling mechanisms are different, spike
and event cameras both record the change of light intensity.
Based on the light intensity information hidden in the data,
the relationship between the spike and the event data is an-
alyzed to guide the development of our model. Considering
that Eq. (1) can be simplified as It ≥ φ, for spike cam-
era, the average intensity of the pixel in this period can be
estimated by

I =
φ

tISI
, (3)

where φ denotes the dispatch threshold, and tISI exactly cor-
responds to the inter-spike interval (ISI).

For the event camera, we first map the event sequence
into a continuous-time function which incorporate the sta-
tistical description. An event sequence with N spike firing
times {ti ∈ T |i = 1, 2, ..., N} can be described by a sum
of Dirac delta functions

e(t) =
∑
i

piδ(t− ti), (4)

where pi refers to the polarity described in Eq. (4). The

Figure 3. The noise analysis of spike camera on bright and dark
scenes. Top: the bright scene. Bottom: the dark scene. From the
ISI distribution, we can see that the bright scene suffer from the
noise type 1 (analyzed in Section 2.4), while the dark scene main
influenced by the fixed pattern noise.

Dirac delta function has the following property δ(t) ={
0, t 6= 0

∞, t = 0
, with

∫
δ(t)dt = 1.

Assuming that the positive (“+1”) and negative (“-1”)
events are triggered according to same threshold θ, and θ
does not change between t and t + 1, according to Eq. (2),
we have the follow expression

log(It+1)− log(It) = θ

∫ t+1

t

e(s)ds. (5)

Considering that the light intensities It+1 and It can be
represented by the ISI of spike train as described in Eq. (3),
the trigger threshold θ is expressed as

θ =
log(tISI1/tISI2)∫ t+1

t
e(s)ds

, (6)

where tISI1 and tISI2 denote the ISI at t and t + 1 in spike
train, respectively. Therefore, in ideal conditions, we can
obtain the dispatch threshold θ according to Eq. (7). For
any time ti > t, the light intensity Lti can be estimated by

Lti = exp(log(It) + θ

∫ ti

t

e(s)ds). (7)

However, there are large temporal noises in both spike
and event cameras, which has a great impact on image re-
construction. We will analyze it in Section 2.4. Despite the
influence of noise, Eq. (7) can help us to better design the
representation of spike data and event data for our network.

2.4. Noise Analysis of Neuromorphic Data

The performance of image reconstruction from the neu-
romorphic cameras is heavily affected by noise. For event
cameras, the image quality is directly affected by the dis-
patch threshold which changes per pixel (due to manufac-
turing mismatch), and also due to dynamic effects (incident
light, time, etc.) [12, 2]. Moreover, the temporal noise be-
comes significant in the conditions of low event threshold,
high bandwidth, and low light intensity [8].
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Figure 4. Spike and event data representations. For spike flow,
we use a temporal ISI map and Nc − 1 spike planes as the input
of the motion path. Meanwhile, the event flow is transformed into
event integration according to the timestamp of the spike plane as
the motion path input (see Eq. (8)). The temporal information can
be effective explored by our spike and event representation.

For spike camera, if there is no noise exist, the texture
image can be accurately and quickly reconstructed by us-
ing the TFI method [47]. However, the existence of tempo-
ral noise also has a great impact on image reconstruction,
mainly including the following two types: 1) For the con-
stant light intensity, the ISI may be inconsistent due to the
readout and reset time delay in the circuit. For example, the
accurate ISI of the spike train at a certain time should be
2, but the readout ISI may fluctuate between 1 and 2 due
to noise in the temporal domain. This is especially harm-
ful to image reconstruction under high light intensity (see
Figure 3). 2) Under the low light intensity, the influence of
1) becomes smaller due to the long interval of the emission.
The main noise is the fixed pattern noise (e.g., dark current
noise). At this time, the noise will actively emit the spike
due to the noise, which leads to the mismatch between the
ISI and the real light intensity, and also limits the maximum
ISI range. An analysis of fixed pattern noise can be found
in our supplementary material.

3. Methodology
In this section, we first design neuromorphic data repre-

sentations for spike and event data (Section 3.1). The prin-
ciple is to extract more useful temporal information. The
image reconstruction network is introduced in Section 3.2
and the feature fusion module for spike and event data is
detailed in Section 3.3. Finally, a multi-scale neuromorphic
data simulation method is introduced in Section 3.4.

3.1. Adaptive Neuromorphic Data Representation

Eq. (7) represents the relationship of the two types of
neuromorphic data. The light intensity at the subsequen-
t time can be estimated by the ISI of the initial time and
the integration of the event data. According to the sampling
principle of the spike camera, ISI represents the integration
time for a pixel to reach one emission, which contains tem-
poral information in this period. On the other hand, since
the spike camera outputs in the form of spike planes, the

spikes can naturally be inputted to the network, where each
spike plane is used as a channel. For the representation of
spike data, as shown in Figure 4, we propose to use one
channel of ISI and N -1 channels of spike planes as the in-
put of texture path, with a total of N channels.

The event data is discrete in spatio-temporal domain be-
cause of the asynchronous nature. Eq. (7) can guide us to
design the representation of event data. Based on the times-
tamp of spike planes, the asynchronous events are needed
to be transformed into effective two-dimensional features
suitable for network input. In our work, inspired by the
integrate-and-fire (IF) model [21], we design an event in-
tegration model to extract temporal information from the
event flow and transform it into 2-D feature. The membrane
potential V (t) is defined as

V (t) =

∫ t

0

(e(s) + exp(
−(t− s)

τ
)e(s))ds, (8)

where τ is the time constant to control the decay rate. As
shown in Figure 4, we calculate the accumulation of pos-
itive and negative events respectively, and then add them
together to get the final feature map as the motion path in-
put.

3.2. Network Architecture

Our neural network is a fully convolutional network that
accommodates both event flow and spike flow. Figure 5
clarifies the architecture of the network. The NeuSpike-Net
has two encoders and a decoder, so it is a variant of the U-
shaped model [32]. The event flow and spike flow are first
transformed as the size of Nc ×W × H and followed by
Ne encoder layers, Nr residual blocks, Nd decoder layers,
and a final image prediction layer. The number of channels
is doubled after each encoder layer.

In the encoder, there are two input paths: motion path
and texture path. The two paths have the same encoder
structure, we use skip connections between symmetric en-
coder and decoder layers. The motion path is designed to
extract more useful features from the event data because the
event flow responds to moving objects. The texture path
captures the texture information hidden in the spike flow.
The motion and texture features are fused by a feature fu-
sion module in other encoder layers (see Section 3.3). The
prediction layer performs a depthwise convolution followed
by a sigmoid layer to produce an image prediction. We use
Nc = 32, Ne = Nd = 3 and Nr = 2 in our model.

In our network, the loss function is defined as follows:

Ltotal = Ll2 + λLPL, (9)

where L`2 is the `2 loss 1
T

∑T
i=1 ‖I∗i − I

g
i ‖2, I∗i and Igi

denote the generated texture image and the ground truth im-
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Figure 5. NeuSpike-Net architecture. Our network contains two encoder paths correspond to event and spike flow respectively. The two
paths have the same encoder structure, we use skip connections between symmetric encoder and decoder layers. Besides, FFM are applied
to fuse the features of spike and event flow in each encoder layer. The prediction layer performs a depthwise convolution followed by a
sigmoid layer to produce an image prediction.

Figure 6. The feature fusion module. For better viewing, the
feature maps are obtained by adding up all channels. The feature
map is based on the driving scene in Fig.10. The motion path
highlights the motion and HDR parts while the texture path pays
more attention to the texture information of the scene.

age, respectively. LPL is the perceptual loss [18]

LPL =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(I∗)x,y − φi,j(Ig)x,y)2, (10)

where φi,j is the feature map obtained by the j-th convolu-
tion (after activation) before the i-th maxpooling layer Wi,j

and Hi,j are the dimensions of the feature maps.

3.3. Feature Fusion Module

Humans use peripheral vision to select regions of inter-
est and foveate them for further scrutiny [41]. In our model,
the motion path (peripheral) captures more high dynamic
range and motion information, and the texture path (fovea)
preserves more detailed texture information. Inspired by the
human vision, we propose an attention-based feature fusion
module (FFM) to extract more useful features of two en-
coder paths. Figure 6 shows the visualized intermediate fea-
ture maps of the FFM. Since each channel of the input spike

and event data represents the temporal information of the
neuromorphic data, the channels of the feature contain the
temporal information to some extent. Thus, the channel at-
tention is applied to texture and motion features to highlight
more useful temporal information of the two paths. Given
the intermediate feature maps of two paths Fm ∈ RC×H×W

and Ft ∈ RC×H×W as input, FFM first infers a 1D channel
attention map Mc ∈ RC×1×1

F
′

m = Mc(Fm)⊗ Fm and F
′

t = Mc(Ft)⊗ Ft, (11)

where ⊗ denotes element-wise multiplication, Mc( · ) de-
notes the channal attention module[42]. By introducing s-
patial attention, the final fused feature is obtained by

Ffuse = Ms((F
′

m ⊕ F
′

t)⊕ Fd)⊗ (F
′

m ⊕ F
′

t), (12)

where⊕ denotes element-wise sum, Ms( · ) denotes the spa-
tial attention module [26], and Fd denotes the feature map
of decoder.

3.4. Multi-scale Training Neuromorphic Data

Our network requires training data including event flow,
spike flow and corresponding ground truth images. How-
ever, the ground truth images are usually difficult to ob-
tain. Thus, we propose to train the network on the simulated
multi-scale neuromorphic data1.
High Frame Rate Video Preparation Inspired by the DVS
simulator V2E [8], the videos are first converted into luma

1Please see our supplementary material for more details about the sim-
ulated data.
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Figure 7. Effect of different input modalities. Column 1: the
input spike and event data. Column 2-4: the reconstructed images
from event data, spike data, and event+spike data, respectively.

frames, then we adopt the Super-SLoMo video interpola-
tion network [17] to increase the frame rate of the video.
We use the videos in Object Tracking Evaluation of KIT-
TI dataset[14] to generate the simulated data. The average
upsampling ratio is 750. The original 30 FPS videos are up-
sampled to about 22,500 FPS, which is similar to the sam-
pling frequency of a spike camera. We use the images in
original videos as the groundtruth to ensure they are clear.
The upsampled video is used to generate spike and event da-
ta according to the timestamps of the groundtruth images.

Table 1. Effect of different event/spike representations.
Representation PSNR SSIM
ES + SR w/o TISI 26.31 0.8134
Voxel + SR w/o TISI 26.74 0.8159
ML + SR w/o TISI 27.86 0.8204
IF + SR w/o TISI 27.65 0.8224
ES + SR 29.35 0.9129
Voxel + SR 29.44 0.9021
ML + SR 30.16 0.9110
IF + SR (Ours) 30.31 0.9234

Table 2. Effect of different input modalities.
Modality PSNR SSIM
Event 12.85 0.5198
Spike 26.84 0.8389
Event + spike (Ours) 27.40 0.8510

Multi-scale Spike and Event Data The way to generate
basic spike data is intuitive: first, we set up an accumulator
for each pixel. Each input image contributes to the accumu-
lator according to the pixel gray value multiplied by a light
intensity scale. If the accumulated value exceeds the emis-
sion threshold, spike “1” is fired, otherwise “0” is output.

To better simulate real-world scenarios, we generalize
the simulated data to a multi-scale form, including different
noises, light conditions, and motion speeds. Different light
conditions are simulated by adjusting the light intensity s-
cale to control the dense of generated spikes. Meanwhile,
different motion speeds are simulated by adjusting the in-
tegral times of each frame. The corresponding event data
is generated by V2E using the same upsampled frames to
simulate different motions. Also, the contrast threshold is
adjusted to simulate different light intensities.

Temporal Noise Simulation We consider simulating the
noise distribution (see Section 2.4) in real spike data. To
simulate the noise under high light intensity, we add a ran-
dom matrix to the initial accumulator. For simulating the
fixed pattern noise in low light conditions, we first gener-
ate a matrix N ∈ Rm×n that follows Gaussian distribution
N (µ, σ2), wherem×n denotes the spatial resolution of the
data. Then the length of the spike interval is constrained by

Tx,y =

{
Yx,y if Yx,y ≤ Nx,y

Nx,y if Yx,y > Nx,y

, (13)

where Yx,y is the original simulated spike interval at pix-
el (x, y), and T(x,y) denotes the constrained spike interval.
According to statistics on real spike data, the mean µ and
standard deviation σ are set to 180 and 50, respectively.

4. Experiment
4.1. Training Details

Our network2 is trained on an NVIDIA 2080 Ti GPU.
We adopt the batch size of 8 and Adam optimizer [20] in the
training process. The network is trained for 60 epochs, with
a learning rate of 10−4. The weight λ of perceptual loss
is set as 0.01. During training, input images are randomly
flipped horizontally and vertically (with 0.5 probability) and
cropped to 400×256. As stated in Section 3.4, the simulat-
ed data (spike data, event data, and groundtruth images) is
with 5 different light scales and 5 different motion speeds.
We use all the origin frames in the video “0000” to gener-
ate training data, and the random frames in videos “0000”-
“0019” to generate test data. In total, we use 1,183 data to
train the network and 745 data to test the performance.

4.2. Effect of Different Neuromorphic Inputs

Different Event/Spike Representations To evaluate the ef-
fect of different event and spike representations, we conduct
experiments on the simulated data. For the event represen-
tation, we test event stacking (ES) [40], voxel grid (Vox-
el) [46], Matrix-LSTM (ML) [5] and the proposed repre-
sentation (Eq. (8)). For the spike data, we compare the
effect of two representations: the proposed spike represen-
tation without temporal ISI (SR w/o TISI) and the spike
flow with temporal ISI (SR). ML is a learn-based represen-
tation for event data, and voxel grid is widely used in DVS
reconstruction. As the quantitative results shown in Table
1, IF + SR performs better than other representations be-
cause it is designed as the sampling mechanism described
in Eq. (7) which is more suitable to our framework. By
introducing the proposed representation, the temporal com-
ponents of event and spike data are effectively explored by
our framework.

2Project page: https://sites.google.com/view/reti
na-recon/
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Figure 8. Quantitative results on the simulated dataset. Top: the results under simulated low light scene. Bottom: the results under
simulated high speed scene. TFP (win=n) means the reconstruction window size is set as n spike planes. Other methods use their default
configurations. The results show that our method can reconstruct the car and person clearly while eliminating the noise completely.

Figure 9. Quantitative results of ultra high speed scenes in real-world dataset. The scene depicts a high speed fan with speeds from
500 to 2600 RPM, we compare our method with four methods: TFP (win=128), SNM, FireNet, and E2VID. The event-based method is
difficult to reconstruct images in this scene because the events are too dense. For spike-based methods, there are artifacts in the results of
SNM and TFP.

Table 3. Quantitative results on simulated data
Scene Method ∗TFP (128) ∗TFP (256) ∗TFI ∗SNM †FireNet †E2VID ∗†Ours

Normal PSNR 28.08 28.81 27.06 29.60 10.91 12.82 30.31
SSIM 0.7038 0.7887 0.7750 0.8416 0.4640 0.5181 0.9234

Complex PSNR 22.70 22.58 23.38 26.44 11.78 12.85 27.40
SSIM 0.5648 0.6104 0.7063 0.7722 0.5247 0.5198 0.8510

∗ Spike-based methods. † Event-based methods.

Different Input Modalities The valid the effect of two
types of neuromorphic data, we conduct an ablation ex-
periment on the complex scenes in simulated data. We de-
sign a network using the texture path of our framework to
reconstruct images that only uses spike data. Meanwhile,
the event-based approach E2VID is used to test the perfor-
mance of only event input. The results are shown in Table
2 and Figure 7. Moreover, the results on real dataset also
prove the effectiveness of combining spike and event data
(see Figure 10 and Table 5). The event-based methods are
difficult to estimate the texture, while the spike-based meth-
ods are rely on light intensity thus hard to reconstruct the H-
DR details. By combining spike and event data, the texture
and HDR information can be reconstructed effectively.

4.3. Effect of Different Network Structures

Network Structure. We compare different network archi-
tectures for finding the best hyperparameters. Table 4 re-
ports the result of replacing the FFM (our default architec-
ture) by the element-wise sum. Moreover, rows 3-6 demon-
strate that our model performs best with 3 encoders and 2
residual blocks.
Loss functions. We use the Ll2 + LPL loss by default, but
have evaluated many alternative loss functions. As shown

in Table 4 (rows 7-9), Ll1 + LPL has larger SSIM than our
default model, but the PSNR is lower. Other loss functions
do not show advantages in the results.

4.4. Evaluation on the Simulated Dataset

Experiment Settings To evaluate the proposed network,
we conduct experiments on both simulated and real-world
datasets. We compare our method with other eight state-of-
the-art methods, including three spike-based reconstruction
methods (TFP [47], TFI [47] and SNM [49]) and 5 event-
based reconstruction methods (MF [25], HF [33], CF [33],
FireNet [34], E2VID [31]). Among them, FireNet and
E2VID are the learning-based methods, and CF uses both
event and frame to reconstruct image.
Results Figure 8 shows the qualitative results of two typical
scenes including low light and high light scenes. The result-
s show that the proposed model is effective to handle these
scenes. Table 3 shows the quantitative evaluation of our
method on normal scenes and complex scenes (e.g., high
speed and low light), respectively. The results show that
our method is better than other methods, especially SSIM.
In summary, the qualitative and quantitative results demon-
strate that our method can reconstruct high quality images
by fusing spike and event data.
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Figure 10. Quantitative results of the outdoor scenes in real data. The scenes are with different light intensities that can be estimated
by the firing density of the raw spike data. Top: a tank under high light intensity. Middle: a car under medium light intensity. Bottom: a
driving scene under low light intensity. Our method performs better by combining event and spike data.

Table 4. Effect of different network structures and losses.
Condition PSNR SSIM
1. Our default model 30.31 0.9234
2. FFM→ Element-wise sum 29.74 0.9159
3. Encoders: 3→ 2 30.26 0.9104
4. Encoders: 3→ 4 29.59 0.9229
5. Residual blocks: 2→ 1 29.79 0.9243
6. Residual blocks: 2→ 3 29.80 0.9076
7. Loss: Ll2 + LPL→Ll1 29.68 0.9104
8. Loss: Ll2 + LPL→Ll2 29.57 0.9084
9. Loss: Ll2 + LPL→Ll1 + LPL 28.79 0.9297

4.5. Evaluation on the Real World Dataset

Experiment Settings Inspired by [16], we build a hybrid
camera system (see Figure 11) consisting of a spike camera
(Vidar), an event camera (DAVIS 346) and a beam splitter.
Two cameras can record the same scene through the beam
splitter. The detail of this system can be found in our sup-
plementary material. We construct a real dataset including
15 sequences with different light conditions, which consists
of 5 outdoor scenes and 10 ultra high speed fan scenes (the
fan with speeds from 500 RPM to 2600 RPM).
Results Figure 9 shows the results of ultra high speed
scenes. In this scenario, due to the event data are too dense,
the event-based methods are difficult to reconstruct satis-
factory results. With the help of spike data, our method
can reconstruct clear letters under different light intensities
and motion speeds Figure 10 shows the results on outdoor
scenes with different light conditions. Compared with SN-
M (spike-based) and CF (event+frame), our method can re-
construct HDR scenes clearly with less noise, which shows
the advantages of the combination of event and spike. In
“Tank”, the noise analyzed in Section 2.4 can be eliminat-
ed completely. For the medium and low light scenes “Car”
and “Driving”, our method can take advantage of the com-
bination of two types of data to reconstruct more HDR de-
tails. The quantitative evaluation are shown in Table 5. We
use APS images as the groundtruth image to evaluate MSE
and SSIM. Moreover, since APS cannot record high-speed
scenes, we introduce a non-reference metric 2D-entropy to
evaluate all real-world data. Note that CF uses the AP-
S frames as the initial state, thus it performs better MSE

Table 5. Quantitative results on real world data.
Method MSE SSIM 2D-entropy

Outdoor Outdoor High speed Outdoor
TFI (spike) 0.0842 0.3396 8.8037 7.4797
SNM (spike) 0.0785 0.4362 8.8594 8.5884
E2VID (event) 0.1014 0.4167 8.4820 8.9180
MF (event) 0.1281 0.4062 8.8895 5.5215
HF (event) 0.1347 0.3845 8.9459 7.5335
CF (event + frame) 0.0526 0.4787 9.7556 10.5473
Ours (spike) 0.0810 0.4682 9.4246 10.1517
Ours (spike+event) 0.0741 0.5046 9.8747 10.4897

Figure 11. The hybrid neuromorphic cameras system.

and 2D-entropy on outdoor scenes. Our method perform-
s well in all quantitative results (the introduction of events
has greatly improved SSIM). For more experimental results,
please refer to our supplementary materials.

5. Conclusion
In this work, we propose to combine the high dynamic

range of event data and the full texture sampling of spike
data to reconstruct high quality visual images, especially in
high speed and different light intensities scenes. To this end,
the NeuSpike-Net is proposed to handle these two types of
neuromorphic data. An effective representation of spike and
event data is proposed to extract temporal information. Fur-
thermore, a feature fusion module is designed to effectively
fuse the two types of neuromorphic data. Our network is
trained by a multi-scale simulated neuromorphic dataset. To
test the performance, we also build a hybrid neuromorphic
cameras system to record the real-world dataset. Extensive
evaluations on simulated and real datasets show that the pro-
posed approach achieves superior performance than various
existing spike-based and event-based methods.
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Schütz. A review of interactions between peripheral and
foveal vision. Journal of Vision, 20(12):2–2, 2020. 1, 2

[38] Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuz-
za, Tom Drummond, Nick Barnes, Lindsay Kleeman, and
Robert Mahony. Reducing the sim-to-real gap for event cam-
eras. In European Conference on Computer Vision (ECCV),
pages 534–549. Springer, 2020. 1

[39] Matteo Toscani, Karl R Gegenfurtner, and Matteo Valsec-
chi. Foveal to peripheral extrapolation of brightness within
objects. Journal of vision, 17(9):14–14, 2017. 2

[40] Lin Wang, Yo-Sung Ho, Kuk-Jin Yoon, et al. Event-based
high dynamic range image and very high frame rate video
generation using conditional generative adversarial network-
s. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10081–10090, 2019. 6

[41] Christian Wolf and Alexander C Schütz. Trans-saccadic inte-
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