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Abstract

Knowledge distillation (KD) transfers the dark knowl-
edge from cumbersome networks (teacher) to lightweight
(student) networks and expects the student to achieve more
promising performance than training without the teacher’s
knowledge. However, a counter-intuitive argument is that
better teachers do not make better students due to the ca-
pacity mismatch. To this end, we present a novel adaptive
knowledge distillation method to complement traditional
approaches. The proposed method, named as Student Cus-
tomized Knowledge Distillation (SCKD), examines the ca-
pacity mismatch between teacher and student from the per-
spective of gradient similarity. We formulate the knowl-
edge distillation as a multi-task learning problem so that
the teacher transfers knowledge to the student only if the
student can benefit from learning such knowledge. We vali-
date our methods on multiple datasets with various teacher-
student configurations on image classification, object detec-
tion, and semantic segmentation.

1. Introduction

Deep neural networks have achieved state-of-the-art re-
sults in a variety of applications such as computer vi-
sion [20], speech recognition [1], and natural language pro-
cessing [6, 30]. Although it is established that introduc-
ing more computational costs often improves the perfor-
mance of the models, big models are computationally too
expensive to be deployed on devices, which only limited
computational resources are available such as mobile de-
vices and embedded devices. Model compression tech-
niques have emerged to address such issues, and knowledge
distillation [12] has proven to be a promising way to obtain
a small model without significant performance loss among
those techniques. It works by encouraging a lightweight
student model to mimic the behavior learns by a cumber-
some teacher model.

For the success of knowledge distillation, some re-

Figure 1: Best view in color. Top: The gradient similar-
ity of knowledge distillation and student loss at different
iterations in the gradient space. Middle: Prior approaches.
The knowledge distillation process between two networks
is stationary in different iterations. Bottom: Our approach
automatically decides to switch on or switch off the knowl-
edge distillation loss based on their corresponding relative
gradient direction to student loss.

searchers have focused on the relation between students
and teachers. These works challenge a common intu-
ition that better teachers make better students. Mirzadeh
et.al. [24] found out that students distilled from a bigger
teacher, one with more parameters and higher accuracy,
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can perform worse than the same students distilled from
a smaller teacher. Cho et.al. [2] also discovered the same
phenomenon, and it is even more severe when training on
a large-scale, challenging dataset such as ImageNet. Both
works conclude that the student and the teacher’s capacity
mismatch is the reason for the negative correlation between
teachers’ accuracy and students’ performance. Meanwhile,
other works also show that the same teacher model [9, 36]
or even teacher with lower performance [34, 25, 35] than the
student model can be used as the teacher model to perform
knowledge distillation, which gives rise to self-distillation
methods [5, 38, 39].

Though the ”better teacher, worse student” contradic-
tion has been discovered, how to resolve this issue is still
rarely explored. TAKD [24] present to use teacher assistant,
which is a smaller teacher, as a media to smooth the knowl-
edge transfer procedure between large teacher and small
student. ESKD [2] propose an early stop strategy during the
knowledge distillation process, which reduces the negative
effect of KD. However, these methods require manual tun-
ing. When the student model changes, these methods need
to carefully choose either a teacher assistant model or an
appropriate early stopping criterion to balance the trade-off
between the positive and negative effects that are brought
by the teacher’s knowledge.

In this paper, we tackle this issue from the perspective of
gradient similarity between the teacher and the student dur-
ing the KD training process. We first analyze that the ca-
pacity mismatch does not continuously happen in the train-
ing stage by checking the network representation similar-
ity. We then formulate the knowledge distillation as multi-
task learning and present an adaptive knowledge distilla-
tion approach that can be adapted based on target student
model, named as Student Customized Knowledge Distil-
lation (SCKD). As a result, the SCKD performs different
knowledge distillation strategies for different student mod-
els and ideally allocates the optimal knowledge transfer pro-
cess. The Figure 1 shows a comparison of SCKD and prior
approaches. Our framework makes no restrictions on the
number of knowledge, knowledge types (i.e., single teacher,
multi-teachers, or self-distillation), and place to perform
distillations (i.e., on intermediate representation or output
space). It can plugin into any existing knowledge distilla-
tion framework and improve the student performance im-
mediately. Additionally, our approach is applicable to a va-
riety of vision tasks, including image recognition, object de-
tection, and semantic segmentation. Our contributions are
summarized as follows:

• We propose an adaptive knowledge distillation,
named as Student Customized Knowledge Distillation
(SCKD) method. The SCKD can automatically ad-
just the KD process based on the target student model,
which is achieved by calculating the gradient similar-

ity between the teacher’s distillation loss and student
loss during training.

• The proposed SCKD shows evident advantages over
conventional knowledge distillation approaches on
various visual tasks, and show immediate performance
improvement by inserting into existing knowledge dis-
tillation framework.

2. Related Work

Various knowledge distillation methods [29, 10] were
introduced in recent years, including transferring output
probability distribution (output-based knowledge) [12, 33],
intermediate feature representation (feature-based knowl-
edge) [26], and their variants [32]. These works pay at-
tention to what knowledge to distill. Another line of re-
searches focuses on how to distill the knowledge (i.e., self-
distillation). Mobahi et.al. [25] theoretically prove that un-
der the infinite width setting, the self-distillation amplify
the regularization [15]. Meanwhile, Yuan et.al. [34] em-
pirically show that weak teacher can improve student per-
formance, and its behavior is similar to label smooth. Ji et
al. [17] and Jang et al. [16] argues that fixed linked for in-
termediate feature distillation is suboptimal. They present
an alternative approach, which adopt meta-learning and at-
tention feature to finding the optimal linkage and feature
matching strategy for feature-based knowledge distillation,
respectively. Some works study the knowledge transfer pro-
cess on multi-teacher KD approaches, such as multiple het-
erogeneous teachers [28] or homogeneous teachers [7, 23].

The most correlated works to us are the researches on
discussing the relation between teacher and student. Better
teachers do not make better students is a counter-intuitive
argument, which was first observed by Cho et al. [2] and
Mirzadeh et al. [24], who assume and prove that it hap-
pens because of the mismatched capacity between teachers
and students through a series of empirical analysis. Based
on the assumption, they provide solutions to fix this issue:
Cho et al. [2] argue that the knowledge distillation process
can be trained with an early stopping strategy. Mirzadeh
et al. [24] present a teacher assistant knowledge distillation
(TAKD), which is a smaller vision of the teachers to dis-
till the student. This is inspired by BAN [24] where the
teacher is required to distill knowledge to students progres-
sively through multiple generations. These prior works have
shed light on the teacher-student relation; however, their so-
lutions require manually tuning the teacher assistant model
or early stopping criterion—these settings need to refresh
when the student model changes. Contrary, our approach
can automatically adjust the training strategy regarding dif-
ferent student models.
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Figure 2: Best view in color. The overview of SCKD. At every iteration, the connection for the distillation loss, both feature
distillation loss and logits distillation loss, are determined by the gradient similarly.

3. Method

3.1. Preliminaries

We formally introduce symbols and notations in this sub-
section. We illustrate two types of knowledge distillation
(KD) method: output knowledge KD and feature knowl-
edge KD.

Given a teacher model T and a student model S, we de-
note the output of two networks as pT and pS . Then KD
encourages that the output of the student model mimics the
output of the teacher model by minimizing the following
objectives:

Lout = α0H(pS , pT ) (1)

where p is the output, H(·) is the loss to measure the dis-
crepancy of output distribution between teachers and stu-
dents, a commonly used loss is Kullback–Leibler diver-
gence [12]. The α0 is the hyper-parameter to control the
output KD loss; for symbol consistency, we add a sub-
script here to denote this is the 0-th hyper-parameters in the
knowledge distillation framework.

Other than output knowledge distillation, many ap-
proaches have investigated distill feature knowledge on the
intermediate representations [26]. Let fT and fS denote the
feature maps of the teacher and student model, respectively.
Therefore, the objective of feature knowledge distillation
can be written as:

Lfeat = D(FT , FS) = D(rT (fT ), rS(fS)) (2)

where F is the feature knowledge, rT and rS are the map-
ping functions to align the sizes of feature maps for two
models, fT and fS are the feature maps of the teacher and
student, and D(·) is the distance metric measuring the sim-

ilarity of two learned features. In principle, the mapping
function and the distance metric can be arbitrary.

Generally, the feature knowledge is leveraged in multiple
stages; for example, there can be four intermediate features
in a ResNet [11] and five intermediate features in a Mo-
bileNet [13, 27] to be distilled. Previous studies [17, 16]
have shown that the importance of knowledge on different
stages varies. Therefore we decompose the feature knowl-
edge into more fine-grained stage-wise feature knowledge,
which can be written as:

Lfeat = D(

L∑
l=1

rTl (f
T
l ),

L∑
l=1

rS(fS
l )) (3)

where the L is the total number of stages that are used to
transfer teachers’ knowledge, rTl and rTl are mapping func-
tions at stage l, and fT

l and fS
l are the feature maps of the

teacher and student model at stage l, respectively. We write
the mapping function and feature map in a separate format
to emphasize that the weights of these mapping functions
are not shared most of the time.

Moreover, it is common to have multiple features knowl-
edge that need to be distilled, especially in downstream
tasks [21, 36]. Therefore, we extend the loss function to
multi-feature knowledge optimization objective:

Lfeat =

N∑
n=1

αnDn(F
T
n , FS

n ) (4)

where N is the total number of feature knowledge, αn is
the hyper-parameters to control the contribution of n-th loss
function to the gradient, and Dn is the distance metric for
n−th feature knowledge.
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As a result, the final optimization objective of a whole
knowledge distillation framework can be written as the fol-
lowing:

LKD = Lout + Lfeat + LS

= α0H(pS , pT )

+

N∑
n=1

αnDn(F
T
n , FS

n ) +H(pS , y)

(5)

where LS is the student loss supervised by the ground truth
label y. In the rest of the paper, we consider LS as the stu-
dent’s primary loss. Note that we can make the final objec-
tive contain either output knowledge or feature knowledge
only by setting the corresponding hyper-parameters to 0.

3.2. Rethinking Capacity Mismatch Between Stu-
dent and Teacher

Existing literatures [2, 24] have suggested that better
teachers do not make better student because students are
unable to mimic the teacher, which is caused by the capac-
ity mismatch between teacher and student. We hypothesize
that the capacity mismatch happens intermittently instead
of continuously in the KD training stage. In other words,
at some iterations, the student fails to mimic the teacher
due to the capacity gap. Consequently, it brings neutral
or even negative effects on students. On the other hand,
students do benefit from knowledge distillation most of the
time. We evaluate our hypothesis on CIFAR100. First, we
develop a criterion to measure the ”capacity mismatch.” In
KD, the students are encouraged to mimic the behavior of
the teacher. Therefore, a perfect KD method should pro-
duce the same representation given the same input on both
teacher and student. As a result, the similarity of neural net-
work representation could reflect the level of capacity mis-
match to some extent. We use Center Kernel Alignment
(CKA) [18], a technique that has been shown to be ef-
fective in measuring neural network similarity. We choose
ResNet34 as our pre-trained teacher model and ResNet18
as the student model. We perform standard feature knowl-
edge distillation [26] on stage three and stage four. There
are three layers on stage 4 and six layers on stage three. Fig-
ure 3 shows that the representation similarity in six layers
on the third stage between teacher and student. We choose
to compare the network representation at ten different itera-
tions at epoch eighty. For the CKA score figure, we primar-
ily focus score on the diagonal, which indicate the represen-
tation similarity of convolution layer at the same position in
the network. We observe that the representation of some
pair of convolution layers between teacher and student in
the receive high CKA score, where CKA ≤ 50, while some
pair convolution layers obtain very low CKA score (CKA
≤ 30). This indicates that the capacity mismatch 1) is not
consistent across different layers. At the same iteration, the
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Figure 3: The CKA score for ResNet18 and ResNet34 on
CIFAR100.

CKA score at stage four is higher yet the score is low at
stage three. 2) different at every training iteration. At some
iteration the CKA score are high while some iteration the
CKA score is very low. Therefore, we conclude that it is
important to control the KD process, by determining which
knowledge at what stage is the student can benefit from the
teacher.

3.3. Knowledge Distillation As Multi-Task Learning

To prevent distilling the teacher’s knowledge to the stu-
dent when their capacity is mismatched, our intuition is that
we can measure the direction of the gradient for each part of
knowledge distillation loss versus the primary supervision
loss LS in Equation 5. Motivated by the success of multi-
task learning (MTL), we formulate the knowledge distilla-
tion framework as an MTL problem with each task corre-
sponding to each distillation loss. Different from the con-
ventional MTL objective where the model is encouraged to
do their best on all types of tasks, in our setting, we only
require the ”main” task, which is LS , to achieve the best
result. Therefore, we can compare the gradient similarity
between the primary loss and other distillation loss and sus-
pend any negative transfer for the student during training.

Concretely, Equation 5 presents a naive approach when
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distilling knowledge from the teacher to student, where the
optimization objective is unchanged during the entire train-
ing process. Contrary to the naive approach, we present the
gradient-based adaptive knowledge distillation based on the
student model. Instead of fixing the KD in the student train-
ing stage, SCKD adaptively changes the KD connection
based on the gradient behavior of student loss and individ-
ual KD loss. As a result, our approach controls the knowl-
edge distillation process during KD, such that any negative
transfer caused by mismatch capacity is prevented.

Suppose the γm is the gate to either switch on or switch
off the target KD loss, regarding the m-th iteration and γm ∈
{0, 1}. At every iteration, a mini-batch is selected to train
the model. Then we can formulate our SCKD loss as the
following:

LSCKDm = γm
outLout + γm

featLfeat + LS

= γm
outα0H(pS , pT )

+

N∑
n=1

γm,n
featαnDn(F

T
n , FS

n )

+H(pS , y)

(6)

where m represents the current training iteration. At ev-
ery iteration, we check if there is a negative transfer be-
tween the teacher’s certain knowledge, either stage-wise
feature-based knowledge or output-based knowledge, to the
student. If the negative transfer is detected, we eliminate
this knowledge at this round; otherwise, we include this
knowledge to contribute to the optimization process. The
overview of SCKD can be found in Figure 2. We note that
our approach encapsulates early stopping [2], that can be
achieved by trivially set all KD gate to 1 at the initial stage
and set all KD gate to 0 at the predefined stop point.

3.4. Adaptive Knowledge Distillation via Gradient
Similarity

In general, one can exploit any algorithm that can reflect
the behavior difference between teacher and student during
the KD training process, to control the knowledge transfer
from teacher to student. Our approach is inspired by [8], we
introduce to use the gradient cosine similarly to measure
the gradient direction between each KD loss and student
primary loss.

Specifically, we calculate the gradient of student pri-
marily supervision ∇θLS , and the gradient of each knowl-
edge distillation loss ∇θLkdi

, either feature-based knowl-
edge or output-based knowledge. The θ is the weights
that are updated through optimization by certain loss func-
tion. We obtain the gradient cosine similarity by calculating
cos(∇θLS ,∇θLkdi). If cos(·) is greater or equal than some
threshold ϕ, we regard such KD loss have negative trans-
fer on student, and thus remove this KD loss at the current

optimization step. Otherwise, we will include this KD loss
similar to the conventional knowledge distillation approach.

Further, we need to study if there is a positive corre-
lation between the cosine similarity and the capacity mis-
match. To verify our assumption, we perform Pearson cor-
relation test on gradient cosine similarity and the CKA score
to check if there is statistically significant linear correlation
between these two factors. We collect the CKA score at
the first layer of stage three between teacher and student,
and record the gradient cosine similarity over the last ten
epochs. Our result shows that Pearson’s R is equal to 0.6,
which indicates that linear correlation between CKA and
gradient cosine similarly statistically significant. This pro-
vides us a good measurement to control the KD process dur-
ing the training stage. It also can be explained intuitively.
Heuristically, when a particular knowledge loss from the
teacher is used in the optimization, the student chooses to
follow the direction of this knowledge since the teacher is
always pretrained on the target dataset, thus ahead of the
student in the gradient space. Nevertheless, the direction
of teachers’ knowledge does not always validate for a cer-
tain student, especially when the student fails to grasp the
teacher’s informative knowledge. As a result, we can ma-
nipulate the KD process from the perspective of gradient
similarity. A Pytorch-style pseudo code is shown in Algo-
rithm 1.

Algorithm 1 Training of Student Customized Knowledge
Distillation
Require: Define Teacher Model T , Student Model S, list
of KD loss [LKD] = [(γ0,Lkd0

), . . . , (γn,Lkdn
)].

Initialize all γ = 1, γ ∈ (γ1, . . . , γn).
Initialize δ of T and Pretrain T , fix δ after pretrain.
Initialize θ of S and all distillation modules.
for t = 1, . . . , T do

Get data x and target y of current mini-batch.
Clear gradients for all parameters, optimizer.zero grad()
Compute ∇θLS .
Ltotal = LS .
for γi,Lkdi

in [LKD] do
Compute ∇θLkdi

if cos(∇θLS , ∇θLkdi
) ≥ ϕ then

γi = 0
end
Ltotal += γi Lkdi

end
Compute gradients, Ltotal.backward()
Update weights, optimizer.step().

end

where ∇θLkdi
is the gradient of i−th KD loss. In all our

experiments, we trivially set the ϕ = 0 unless otherwise
indicated. When ϕ is set to 0, any KD loss that is orthogonal
to or deviates from the student loss will be removed from the
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Model Method Top-1 Acc (%)

ResNet18

NOKD 69.56
BLKD 71.02
TAKD 71.10
ESKD 71.21
SCKD 71.73

ResNet50

NOKD 72.79
BLKD 74.95
TAKD 75.25
ESKD 75.09
SCKD 75.64

Table 1: Comparison of model performance on CIFAR100
with various knowledge distillation frameworks to mini-
mize capacity gap between teacher and student.

optimization for the current mini-batch.

4. Experiments
In this section, we evaluate our proposed method on three
visual tasks: image recognition, object detection, and se-
mantic segmentation.

4.1. Experiments on Image Recognition

4.1.1 Output-Based Knowledge

The experiments of image classification are conducted with
three kinds of convolutional neural networks, including
ResNet [11], MobileNetV2[27], ShuffleNetV2[22] on CI-
FAR100 [19] and ImageNet [4]. In CIFAR experiment,
each model is trained with 300 epochs by SGD opti-
mizer and the batch size is 128. In ImageNet experi-
ments, each model is trained with 90 epochs by SGD op-
timizer and the batch size is 256. We investigate sev-
eral teacher-student configurations, including the same net-
work architecture (ResNet101-ResNet18) and different net-
work architecture (ResNet101-MobileNetV2, ResNet101-
ShuffleNetV2). Moreover, for the same teacher-student
pair, we also conduct experiment on different student ca-
pacity (ResNet101-ResNet50, ResNet101-ResNet18). The
temperature for all experiments are set to 1 follows Hinton
et.al. [12]. We set the hyper-parameters for 0.9 for all ex-
periments in this section.

Since our method is designed to resolve the capacity gap
between teacher and student, we compare our method to
1) NOKD, which denotes no knowledge distillation and is
trained from scratch. 2) BLKD, which denotes the baseline
knowledge distillation. It is naively trained with a knowl-
edge distillation method based on Hinton et al. [12]. 3)
TAKD [24] utilized teacher assistant to ease the learning
curve of the student and enable the student to achieve bet-
ter performance than naively training by KD. 4) ESKD [2],

Model Method Top-1 Acc (%)

ResNet18

NOKD 70.3
BLKD 70.7
TAKD 70.9
ESKD 70.7
SCKD 71.3

MobileNetV2

NOKD 70.9
BLKD 71.8
TAKD 71.9
ESKD 72.0
SCKD 72.4

ShuffleNetV2

NOKD 69.4
BLKD 70.2
TAKD 70.4
ESKD 70.5
SCKD 71.3

Table 2: Comparison of model performance on ImageNet.

represent early stopping knowledge distillation. From the
results on CIFAR100 in Table 1, we can observe that our
method outperforms the baseline KD. Additionally, our
method consistently achieves superior performance than
TAKD and ESKD on two kinds of teacher-student configu-
rations. Our method seems to enjoy the large capacity gap
between teacher and student.

We further conduct experiments on the large-scale
dataset ImageNet. Table 2 shows the experimental results
on ImageNet are consistent as on CIFAR100, where our
method outperforms all three methods on various teacher-
student configurations. Besides, the performance gap be-
tween our method and baseline is even bigger on the same
network architecture (ResNet101-ResNet18), which indi-
cates the robustness of our proposed method. We assume
that our performance gain comes from choosing to transfer
knowledge smartly instead of brutally stop all the knowl-
edge transfer given a stopping point (e.g., ESKD). We also
think building an intermediate network with a smaller size
is a compromise, which didn’t solve the root’s capacity gap.

4.1.2 Feature-Based Knowledge

As the above experiments are conducted on a simple knowl-
edge distillation scenario, where only output distillation
is involved, we further validate our method on a more
complex and state-of-the-art knowledge distillation frame-
work. Since our method does not present any new distil-
lation loss, and it is easy to insert into any existing frame-
work, we choose TOFD [37] as our KD framework and ap-
ply our method based on TOFD. TOFD is a task-oriented
knowledge distillation method, which is a state-of-the-art
KD method that is composed of three knowledge distilla-
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Model Backbone Method FPS mAP AP50 AP75 APS APM APL

Faster RCNN ResNet18
Baseline 30.57 34.6 55.0 37.1 19.3 36.9 45.9
FBOD 30.57 37.0 57.2 39.7 19.9 39.7 50.3
SCKD 30.57 37.5 57.6 40.2 20.9 42.6 50.8

RetinaNet ResNet18
Baseline 23.30 33.4 51.8 35.1 16.9 35.6 44.9
FBOD 23.30 35.9 54.4 38.0 17.9 39.1 49.4
SCKD 23.30 36.5 56.1 38.9 18.2 39.6 49.8

Table 3: Comparison of model performance on MS COCO object detection. We evaluate on both two-stage detector (Faster
RCNN) and one-stage detector (RetinaNet) based on FBOD framework.

Model Baseline KD FitNet DML SD TOFD SCKD

ResNet18 77.09 78.34 78.57 78.72 78.72 82.92 84.16
SENet18 77.27 78.43 78.82 79.72 78.58 84.44 85.49
ShuffleNetV2 72.38 72.86 74.36 72.66 72.72 76.68 77.58

Table 4: Comparison of model performance on CIFAR100 with different knowledge distillation frameworks.

tion losses and an orthogonal loss which is applied on the
feature resizing layer to prevent information loss resizing.
The TOFD contains both output distillation loss and multi-
ple feature distillation loss, and we adopt SCKD based on
TOFD’s framework. We follow the experimental setting in
TOFD for fair comparisons, and we evaluate our method
on CIFAR100 with multiple student network architectures
(ResNet, SENet [14], and ShuffleNetV2).

Table 4 shows the experiment results of TOFD on Ima-
geNet. We observe that our method consistently improves
the TOFD framework. For example, with ResNet18 we im-
prove the TOFD by 1.24%, with ShuffleNetV2 we boost
TOFD’s performance by 0.90%, and with SENet18 we in-
crease the Top-1 accuracy by 1.05%. The improvement is
significant. As a result, SCKD outperforms all state-of-the-
art KD methods, which indicates the superiority of our pro-
posed method.

4.2. Experiments on Object Detection

Our previous study shows that SCKD works on the image
classification task. We further study the effectiveness of
SCKD on downstream tasks. We evaluate SCKD on MS
COCO object detection. We conduct experiments based
on the Feature-Based Object Detector (FBOD) [36]. The
FBOD is a state-of-the-art knowledge distillation method
for object detection. It comprises three types of teacher
feature knowledge modules: attention transfer module, at-
tention mask module, non-local module. We follow the
same experimental setting as in FBOD [36] and perform
SCKD training algorithm based on FBOD’s framework. In
Table 3, we present the experimental results on RetinaNet-
ResNet18 and Faster RCNN-ResNet18. As we can see, for
both one-stage detector and two-stage detector, SCKD out-
performs the FBOD, with over 0.5% AP on Faster RCNN

and 0.6% AP on RetinaNet. Note that in the paper of
FBOD, the author has empirically back up the argument
of ”better teacher makes better student” by experiments.
However, our method still improves the performance over
FBOD, which indicates the effectiveness of the proposed
gradient similarity-based adaptive knowledge distillation.

4.3. Experiments on Semantic Segmentation

Besides applying SCKD to image classification and object
detection, we also perform experiments on semantic seg-
mentation, a challenging dense prediction vision task. Our
model was built based on IFVD [31], which is a state-of-
the-art KD method for semantic segmentation that consists
of three knowledge distillation losses. The details can be
found in the original paper [31]. Our experiments is conduct
on CityScapes [3], a popular semantic segmentation bench-
mark. We test on various teacher-student configurations via
same decoder architecture PSPNet, including ResNet101-
ResNet18 (full width), ResNet101-ResNet18 (0.5 width),
and ResNet101-EfficientNetB0. The training scheme fol-
lows the official implementation of IFVD, and we do not
alter any hyper-parameters for fair comparisons. Table 5
summarizes the performance of the SCKD on CityScapes.
For comparison, we report both validation mIoU and test
mIoU. Our method had better performance in all settings
than baseline methods and IFVD. This is expected as the
task is more challenging than image classification. We also
found that the SCKD performs better on teacher-student,
which has a large model capacity gap, such as ResNet101-
ResNet18(0.5). We assume that SCKD exhausts the IFVD
framework’s potential, where its performance was lower as
it should be due to the capacity mismatch.
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Method val mIoU (%) test mIoU (%) Params (M) FLOPs (G)

PSPNet-ResNet18‡(1.0) 57.50 56.00

13.07 125.8SKD [21] 63.20 62.10
IFVD [31] 66.63 65.72
Ours 67.25 66.30

PSPNet-ResNet18‡(0.5) 55.40 54.10

3.27 31.53SKD [21] 61.60 60.50
IFVD [31] 63.35 63.68
Ours 65.10 64.92

PSPNet-EfficientNetB0 58.37 58.06

4.19 7.97SKD [21] 62.90 61.80
IFVD [31] 64.73 62.52
Ours 65.17 63.08

Table 5: the performance on Cityscapes. The † indicates pretrained with ImageNet. The ‡ indicates train from scratch.
(0.5) indicates half channel number compares to (1.0) which denotes the full channel numbers. The results in DeepLabV3-
ResNet18 are re-implemented use the official codes release by the authors. The teacher network is PSPNet-ResNet101, and
our method is built based on IFVD.

4.4. Ablation Study and Sensitivity Study

Better teacher makes better student Although, we have
seen performance enhancement of SCKD on the existing
knowledge distillation framework, a further analysis on the
argument ”better teacher makes better student” is desired.
We train a plain CNN with batch normalization, skip con-
nection and ReLU activation as the student. It is distilled
by large teachers of 4, 6, 8, and 10 layers on both CIFAR10
and CIFAR100. As expected and illustrated in Figure 4, by
increase student number of layers, the student performance
gain is initially increase and then decrease due to the capac-
ity mismatch by conventional KD. On the other hand, the
student performance gain is positive correlated to the stu-
dent size by applying SCKD. This indicates that our method
indeed make large model to be better teacher.

Figure 4: Best view in color. Ablation study on better
teacher makes better student. With the teacher size increase
(and accuracy increase correspondingly), convention KD
makes worst student and SCKD makes better student.

Sensitivity Study on Cosine Similarity Threshold ϕ. The

Threshold ϕ 1.2 1.1 1.0 0.9 0.8

Top-1 Acc (%) 75.2 75.1 75.4 75.0 74.9

Table 6: Comparison of model performance on CIFAR100
with different knowledge distillation frameworks.

cosine similarity threshold ϕ determine when to eliminate
the KD loss in the current iteration. Intuitively, any KD
loss that have inverse (when ϕ > 0) or orthogonal gradient
direction (when ϕ = 0) can be considered as a ”bad” knowl-
edge, thus cast during the training stage. We study a sensi-
tivity study on this hyper-parameter. The results are shown
in Table 6. We conclude that our method do sensitive to the
hyper-parameters ϕ if it is set to the other value. Therefore
we can heuristically set ϕ to zero and achieve satisfactory
performance. Note that the accuracy of worst ϕ is still com-
parable to the baseline method as we shown in Table 1, we
think this shows the necessity of controlling knowledge dis-
tillation process on-the-fly.

5. Conclusion
In this paper, we present a adaptive knowledge distilla-

tion method to bridging the capacity gap between student
and teacher. We examine the capacity mismatch from the
perspective of gradient similarity between student loss and
distillation loss. We then formulate knowledge distillation
as multi-task learning problem. As such, our method can
automatically find KD training strategy based on the target
student model. We validate the effectiveness of our method
on three visual tasks.
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