Reducing Training Time in Cross-Silo Federated Learning Using Multigraph Topology

Tuong Do, Binh X. Nguyen, Vuong Pham, Toan Tran, Erman Tjiputra, Quang D. Tran, Anh Nguyen; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 19409-19419

Abstract


Federated learning is an active research topic since it enables several participants to jointly train a model without sharing local data. Currently, cross-silo federated learning is a popular training setting that utilizes a few hundred reliable data silos with high-speed access links to training a model. While this approach has been widely applied in real-world scenarios, designing a robust topology to reduce the training time remains an open problem. In this paper, we present a new multigraph topology for cross-silo federated learning. We first construct the multigraph using the overlay graph. We then parse this multigraph into different simple graphs with isolated nodes. The existence of isolated nodes allows us to perform model aggregation without waiting for other nodes, hence effectively reducing the training time. Intensive experiments on three public datasets show that our proposed method significantly reduces the training time compared with recent state-of-the-art topologies while maintaining the accuracy of the learned model.

Related Material


[pdf] [supp] [arXiv]
[bibtex]
@InProceedings{Do_2023_ICCV, author = {Do, Tuong and Nguyen, Binh X. and Pham, Vuong and Tran, Toan and Tjiputra, Erman and Tran, Quang D. and Nguyen, Anh}, title = {Reducing Training Time in Cross-Silo Federated Learning Using Multigraph Topology}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2023}, pages = {19409-19419} }