Multi-View Active Fine-Grained Visual Recognition

Ruoyi Du, Wenqing Yu, Heqing Wang, Ting-En Lin, Dongliang Chang, Zhanyu Ma; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 1568-1578

Abstract


Despite the remarkable progress of Fine-grained visual classification (FGVC) with years of history, it is still limited to recognizing 2 images. Recognizing objects in the physical world (i.e., 3D environment) poses a unique challenge -- discriminative information is not only present in visible local regions but also in other unseen views. Therefore, in addition to finding the distinguishable part from the current view, efficient and accurate recognition requires inferring the critical perspective with minimal glances. E.g., a person might recognize a "Ford sedan" with a glance at its side and then know that looking at the front can help tell which model it is. In this paper, towards FGVC in the real physical world, we put forward the problem of multi-view active fine-grained visual recognition (MAFR) and complete this study in three steps: (i) a multi-view, fine-grained vehicle dataset is collected as the testbed, (ii) a pilot experiment is designed to validate the need and research value of MAFR, (iii) a policy-gradient-based framework along with a dynamic exiting strategy is proposed to achieve efficient recognition with active view selection. Our comprehensive experiments demonstrate that the proposed method outperforms previous multi-view recognition works and can extend existing state-of-the-art FGVC methods and advanced neural networks to become FGVC experts in the 3D environment.

Related Material


[pdf]
[bibtex]
@InProceedings{Du_2023_ICCV, author = {Du, Ruoyi and Yu, Wenqing and Wang, Heqing and Lin, Ting-En and Chang, Dongliang and Ma, Zhanyu}, title = {Multi-View Active Fine-Grained Visual Recognition}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2023}, pages = {1568-1578} }