Lossy and Lossless (L2) Post-training Model Size Compression

Yumeng Shi, Shihao Bai, Xiuying Wei, Ruihao Gong, Jianlei Yang; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 17546-17556

Abstract


Deep neural networks have delivered remarkable performance and have been widely used in various visual tasks. However, their huge sizes cause significant inconvenience for transmission and storage. Many previous studies have explored model size compression. However, these studies often approach various lossy and lossless compression methods in isolation, leading to challenges in achieving high compression ratios efficiently. This work proposes a post-training model size compression method that combines lossy and lossless compression in a unified way. We first propose a unified parametric weight transformation, which ensures different lossy compression methods can be performed jointly in a post-training manner. Then, a dedicated differentiable counter is introduced to guide the optimization of lossy compression to arrive at a more suitable point for later lossless compression. Additionally, our method can easily control a desired global compression ratio and allocate adaptive ratios for different layers. Finally, our method can achieve a stable 10 times compression ratio without sacrificing accuracy and a 20 times compression ratio with minor accuracy loss in a short time. Our code is available at https://github.com/ModelTC/L2_Compression.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Shi_2023_ICCV, author = {Shi, Yumeng and Bai, Shihao and Wei, Xiuying and Gong, Ruihao and Yang, Jianlei}, title = {Lossy and Lossless (L2) Post-training Model Size Compression}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2023}, pages = {17546-17556} }