-
[pdf]
[supp]
[bibtex]@InProceedings{Yang_2023_ICCV, author = {Yang, Yibo and Mandt, Stephan}, title = {Computationally-Efficient Neural Image Compression with Shallow Decoders}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2023}, pages = {530-540} }
Computationally-Efficient Neural Image Compression with Shallow Decoders
Abstract
Neural image compression methods have seen increasingly strong performance in recent years. However, they suffer orders of magnitude higher computational complexity compared to traditional codecs, which hinders their real-world deployment. This paper takes a step forward in closing this gap in decoding complexity by adopting shallow or even linear decoding transforms. To compensate for the resulting drop in compression performance, we exploit the often asymmetrical computation budget between encoding and decoding, by adopting more powerful encoder networks and iterative encoding. We theoretically formalize the intuition behind, and our experimental results establish a new frontier in the trade-off between rate-distortion and decoding complexity for neural image compression. Specifically, we achieve rate-distortion performance competitive with the established mean-scale hyperprior architecture of Minnen et al. (2018) at less than 50K decoding FLOPs/pixel, reducing the baseline's overall decoding complexity by 80%, or over 90% for the synthesis transform alone.
Our code can be found at https://github.com/mandt-lab/shallow-ntc.
Related Material