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Abstract

Understanding the visual world from human perspec-
tives has been a long-standing challenge in computer vi-
sion. Egocentric videos exhibit high scene complexity
and irregular motion flows compared to typical video un-
derstanding tasks. With the egocentric domain in mind,
we address the problem of self-supervised, class-agnostic
object detection, aiming to locate all objects in a given
view, without any annotations or pre-trained weights. Our
method, self-supervised object detection from egocentric
videos (DEVI), generalizes appearance-based methods to
learn features end-to-end that are category-specific and in-
variant to viewing angle and illumination. Our approach
leverages natural human behavior in egocentric percep-
tion to sample diverse views of objects for our multi-view
and scale-regression losses, and our cluster residual mod-
ule learns multi-category patches for complex scene under-
standing. DEVI results in gains up to 4.11% AP50, 0.11%
AR1, 1.32% AR10, and 5.03% AR100 on recent egocen-
tric datasets, while significantly reducing model complexity.
We also demonstrate competitive performance on out-of-
domain datasets without additional training or fine-tuning.

1. Introduction
The ability to detect objects in complex scenes is essen-

tial in smart applications and systems, such as autonomous
vehicles [31], precision agriculture [3], 3D reconstruction
and mapping [58], episodic memory [36], and remote sens-
ing [4]. Broadly stated, the best performing object detec-
tion methods require large amounts of densely annotated
data, providing bounding boxes for all or most objects in
the scene [27, 54, 88]. Such annotations are costly, time
consuming to produce, and difficult to scale over large or
complex datasets [8]. Recent methods address the costly
procedure by using either weak annotations [2, 44, 70, 71],
or general self-supervision pre-training [12, 41]. However,
such methods lack generalizability to complex scenes, of-
ten depending on image-wise features which lack feature
granularity, leading to poor object localization and atten-
tion coverage. In this work, we aim to both maximize ap-

Figure 1. Image-cluster map pairs. DEVI learns category-
specific, dense features end-to-end from egocentric videos with-
out using any annotations. Our method is able to distinguish
different-category objects, while also remaining consistent for
same-category objects. Best viewed in color; colors are random.

plicable scene complexity and minimize annotation costs by
learning a class-agnostic object detector from highly diverse
videos without using any annotations.

We take particular interest in egocentric settings, for sev-
eral reasons. The first is its complexity: the way humans
perceive the world is markedly different from that of many
popular datasets (also referred to as “internet images” or
exocentric views), resulting in notable new challenges. In-
ternet images [22, 27, 54]–until recently the primary fo-
cus of most computer vision methods–capture highly cu-
rated, object-centric, specific instances in time removed
from global context and filtered from noise and undesired
frames; many involve professional and/or manual framing
with clear composite objectives. In contrast, egocentric
videos typically capture unscripted, “in-the-wild” scenes,
replete with dense environments filled with many, diverse
objects in varying scales. These significant domain differ-
ences result in a weak inductive bias between the internet
images domain (e.g. COCO [54], ImageNet [22]) and the
egocentric domain (e.g. Ego4D [36], EpicKitchens [18]),
making transfer learning highly difficult [52, 72]; methods
designed for and trained on non-egocentric datasets struggle
when directly applied to egocentric settings, motivating the
development of egocentric-specific methods [9, 19, 51, 67].

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5225



Illumination 
directionReflectance 

direction

M
at

ch
ed

 p
at

ch
es

Different viewing angles 
and illumination directions

Bidirectional Reflectance 
Distribution Function (BRDF)

Model

Similar 
features for 
all patches

Figure 2. BRDF-inspired pipeline. Given a pair of patches cor-
responding to the same objects viewed from different viewing an-
gles and illumination conditions, our method seeks to maximize
the feature similarity of these patches. Best viewed in color.

We are also interested in egocentric videos for their
highly variable viewing directions and egocentric optical
flow. While in many ways adding difficulty, these char-
acteristics can provide unique advantages as well, and in-
creased availability of egocentric data in recent years [18,
36, 65, 75] brings new opportunities. In particular, objects
and the environment are mostly stationary in many egocen-
tric videos, with head movements and locomotion being the
primary sources of camera motion. We draw connections to
classical computational appearance-based methods such as
the bidirectional reflectance distribution function (BRDF)
[62] and Bidirectional Texture Function (BTF) [20], whose
computational appearance functions capture the distribution
of reflectance measurements of a given opaque surface from
all possible viewing angles and illumination conditions at
well defined sampling structures and scales. We propose
leveraging egocentric camera motion to naturally and unob-
trusively sample instances from an object’s computational
appearance distribution (see Fig. 2).1 From these diverse
views, we propose a novel, end-to-end, self-supervised
method for learning features by matching multi-temporal
patches covering the same surface or object, thus learning
good features for class-agnostic object detection.

An inherent challenge of patch sampling and patch-wise
representation learning is content ambiguity: A patch may
be sampled from any object, group of objects, or empty
surfaces, leading to ambiguous category association. For
that reason, we utilize our object residual module to en-
code soft representation to patches, capturing the affinity
of patches and all learnt clusters. The object residual mod-
ule also allows us to define the number of expected cate-

1More traditional, non-egocentric video datasets such as DAVIS [66]
and YT-8K [69] tend to have static or stable cameras following a specific
object, and video motion is often due to object motion or actions, with
accompanying changes in form or appearance. This makes such video a
lesser fit for our BRDF and BTF inspired patching matching method.

gories and therefore learn category-specific features, unlike
common self-supervised methods which learn image-wise,
general features. To the best of our knowledge, we are the
first to learn effective self-supervised features from egocen-
tric videos. We qualitatively demonstrate the ability of our
method to generate category-specific features in Fig. 1.

Our contributions in this work are as follows:

1. We present a self-supervised object detection model
from egocentric videos (DEVI) that estimates loca-
tions of objects in complex scenes.

2. We propose loss functions inspired by computational
appearance methods and tuned to egocentric percep-
tion named the multi-view and scale-regression losses.

3. Our object residual module extends existing work
on patch representation learning and complex scene
understanding to learn category-specific features and
precise representation of ambiguous patches without
hand-crafted assumptions.

2. Related work

2.1. Self-supervised representation learning

Increasing availability of unlabeled images and videos
has inspired researchers to learn effective representations
without manual annotations. These unsupervised meth-
ods learn invariance to color intensity [47], geometric and
affine transformations [61], temporal ordering [28], rela-
tive sub-patch localization [24], and patch filling [82]. Tra-
ditionally, self-supervised learning (SSL) methods max-
imize similarity of global features of an image and its
transform [13, 14] or learn through clustering features into
pseudo-labels [10, 11]. Many of these concepts have been
extended to self-supervised video representations as well
[30, 37, 38, 39, 64, 68, 76]. Although DEVI and these SSL
methods both aim to learn features from unlabeled video,
the learning objectives and settings are very different: SSL
methods generally learn generic visual features requiring la-
bels to fine-tune on for downstream tasks, while DEVI does
not use any annotations at any stage of training.

When scenes are complex, with many, diverse, and/or
small objects, however, global features fail to capture fine-
grain details. To address more complex scenes, recent
methods propose patch-wise self-supervision approaches
[5, 45, 48] learning local, surface-based feature representa-
tions. MATTER [5] does this with remote sensing imagery,
though with significant data assumptions, requiring multi-
spectral, multi-temporal, and spatially aligned inputs. In
contrast to MATTER, we discard the inter-cluster residual
weighted average for more concise residual representation,
remove the need for spatial alignment by explicitly learning
to match patches, and eliminate the multi-spectral constraint
by generalizing the notion of material and texture to objects.
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2.2. Unsupervised class agnostic object detection

Because of the challenge of converting general self-
supervised features to category-specific features, unsuper-
vised object detection is still an open issue. Consequently,
many methods [43, 73, 80, 81, 84, 85] follow a naive
pipeline similar to the following: (1) self-supervised pre-
training of a general purpose network (e.g. DINO [12]), (2)
generate object discovery predictions for the entire dataset
(single object detected, even if there are multiple in the
scene), (3) cluster features of discovered objects into a pre-
defined number of clusters equal to the number of categories
in the dataset (e.g. foreground/background for class agnos-
tic object detection), and (4) train an off-the-shelf detector
using cluster labels and object discovery predictions.

In order for these methods to be effective, every mod-
ule in the pipeline must be successful, and individual fail-
ures may affect the entire system. While such approaches
may be relatively effective on simple datasets such as Pascal
VOC [27] or COCO [54], their reliance on object-centric
self-supervised pre-training produces sub-optimal features
(e.g. object saliency) on datasets with increased complex-
ity [36], leading to poor object discovery predictions and
subsequent overall object detection performance, as shown
in Tab. 1. In contrast, our method trains end-to-end, and is
able to learn fine-grain, category-specific features.

2.3. Patch-based learning

Many computer vision methods are based on patch-
wise learning, including SIFT [57], HOG [29], convolu-
tional neural networks [50], and vision transformers (ViT)
[25]. These approaches use patch-wise features (e.g. kernel
weights) to obtain global, image-wise representations. Typ-
ically, such patch representations are transient or interme-
diate to some image-level objectives such as detection [86],
image-deblurring [60], image-editing [7], or place recogni-
tion [40], where global, dense features are achieved. A more
explicit utility of patch representations and local descrip-
tors is to predict sparse features, such as keypoints, which
are then used for global objectives such as depth estima-
tion [55] and 3D reconstruction [32]. In contrast to these
methods, where some patch operation or representation is
transient and/or implicit for an image-wise task, we aim to
explicitly learn both dense and local features through our
multi-view and scale-regression patch-based loss functions.

2.4. Learning from egocentric data

The unique challenges presented in egocentric data have
compelled egocentric-specific methods and data collection
efforts for various tasks. The introduction of egocentric
datasets such as Ego4D [36] and EpicKitchens [18] pro-
pelled work in egocentric action recognition [67], egocen-
tric video-langauge pre-training [53], task understanding
[46], and object discovery [9, 19, 51]. Due to the elevated

complexity of egocentric settings, methods often require an-
notated data and/or specialized hardware. Instead, we uti-
lize the innate properties of egocentric videos to implicitly
learn high-level object features, without additional annota-
tions, specialized hardware, or intermediate tasks.

3. DEVI

DEVI aims to learn fine-grain, category-specific features
that are robust to varying viewing angles and illumination
conditions from egocentric videos. We achieve this with-
out any supervision, pre-trained weights, or hand-crafted
assumptions about the data in an end-to-end manner for the
task of class agnostic object detection. By using patches, we
allow the model to detach local features from their global
context and learn patch-level, local objectives, which in-
crease feature granularity and enables isolation of regions
in highly complex scenes. Our patch-wise objectives align
with our computational appearance analogy: an objective
function that operates in the temporal space, enforcing sim-
ilarity of multi-temporal patches, and a function in the scale
space, enforcing similarity of multi-scale patches. The for-
mer captures appearance variations in time such as viewing
angles and illumination conditions, and the latter captures
appearance variations in scale. The framework’s training
and inference pipelines are illustrated in Fig. 3 and 6.

3.1. Pipeline overview

Given a video V = {x0, x1, x2, ..., xT−1} composed of
T frames with xt ∈ R3×H×W , where t, H , and W repre-
sent the time instance, height, and width of the frame. We
sample two frames xτ and xτ

′
, where 1 ≤ τ ′ − τ ≤ δ,

and feed them to two architecturally identical (different
weights) transformer-based networks, the patch matching
network (Sec. 3.2) and patch feature extractor.

We denote the features of a frame at time t as zts ∈
RLs×D, representing Ls patches, each a 1 × D vector de-
noted as zti,s at scale s ∈ S and patch location i. For
each image patch location i and scale s in time τ , the patch
matching network (Sec. 3.2) determines the set of positive
indices P τ→τ ′

i,s corresponding to the patch matches between
xτ and xτ

′
, where |P | ≤ L; we also form a negative set

of the negative-matching indices Nτ→τ ′

i,s (illustrated in the
supplementary material). Matched patches in zτs and zτ

′

s are
fed to the object residual module (Sec. 3.3) to output resid-
uals rτs and rτ

′

s used for the multi-view and scale-regression
losses (Sec. 3.4). We note the sets of anchor, positive, and
negative matched patch features as zτ+, zτ

′+, and zτ
′−, and

their residuals as rτ+, rτ
′+, and rτ

′−, for all scales.
While DEVI requires video input for training, inference

can be performed on individual frames (Sec. 3.5). The
method assigns multi-scale features at each spatial location
to cluster centers learned by the object residual module to
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Figure 3. DEVI training framework. Multi-temporal frames xτ and xτ ′
are fed to patch-matching and the patch feature extractor to

produce sets of anchor, positive, and negative patch features zτ+, zτ
′+, and zτ

′− at all scales s ∈ S, from which the object residual module
generates anchor, positive, and negative residual representations rτ+, rτ

′+, and rτ
′−, used in the multi-view and scale-regression losses.

Positive examples are generated differently for the multi-view and scale-regression losses, as denoted with the MV and SR subscripts,
respectively. E, ϕ and K represent the feature extractor, learnt cluster, and total number of clusters respectively. Best viewed in color.

generate spatial cluster maps, from which we extract pre-
dicted bounding boxes and confidence scores.

3.2. Matching multi-temporal patches

The task of patch matching is closely related to the task
of keypoint matching, which is commonly used for depth
estimation [55], 3D reconstruction [32, 78], motion estima-
tion [77], and more. While patch matching is too spatially
sparse to be used for these downstream tasks, it provides a
few notable advantages for our method: (1) patch matching
has additional inter-patch, contextual information compared
to a single pixel for keypoint matching, making it signif-
icantly easier to learn, and providing more stable predic-
tions under significant view changes, and (2) patch-based
architectures and direct patch matching (compared to boot-
strapping keypoint matching) provide one-to-one patch cor-
respondence with our patch-based feature extractor. These
advantages allow us to train the method in an end-to-end
manner by allowing fast convergence for the patch match-
ing task, and simplifying model complexity and overhead
operations by re-utilizing the same architecture for both the
patch matching and patch feature extractor. The pipeline
and integration of the module are illustrated in Fig. 3 and 4.

Training. Given input image x, we apply a random affine
transformation, T, on x to obtain x̃ = T(x). Both x and x̃
are then fed to the patch matching network to obtain patch-
wise features zs and z̃s for all scales s ∈ S. We apply the
same affine transformation on zs to align anchor patches
T(zs) with their corresponding positive patches z̃s, while

all other, non-corresponding patches are considered nega-
tive. Lastly, we use a contrastive loss [63] to enforce feature
similarity between anchor and positive patches, and dissim-
ilarity between anchor and negative patches.
Inference. After the training procedure is performed for a
small number of epochs, the network weights are frozen,
and the model is federated with the main task’s training
pipeline. Multi-temporal input images xτ and xτ

′
, are fed

to the patch matching network, producing patch-wise z̃τs
and z̃τ

′

s respectively. We then select anchor, positive, and
N negative patch matches based on patch-wise similarity,
where anchor and positive patches are the most similar, and
anchor and negative patches are least similar (least similar
N patches are selected). We note the positive matches in-
dices as P τ→τ ′

i,s and negative matches indices as Nτ→τ ′

i,s .
Since the patch matching and patch feature extractor net-
works are architecturally identical, positive and negative
matches indices, P τ→τ ′

i,s andNτ→τ ′

i,s , have direct correspon-
dence with the patch feature extractor outputs, zτs and zτ

′

s ,
for the multi-temporal patch matching.

3.3. Object residual module

An implicit goal of any deep learning method is to clus-
ter features that belong to the same categories closely to-
gether. If we consider the task of classification, and scatter
image-wise features, it can be observed that examples from
a given category are mapped closely together, and are far
away from examples belonging to other categories. In order
to measure the relative similarity of a given example and all
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Figure 4. Patch matching network training framework. Image
xτ is fed to a random affine transformation, T, to produce x̃τ .
Both xτ and x̃τ are fed to a transformer-based network to produce
patch-wise representations zτs and z̃τs for all scales s ∈ S. We then
apply T on zτs to produce spatially aligned anchor and positive
samples, with all other, non-aligned patches considered negative
examples. E represents the feature extractor. Best viewed in color.

other examples within its own or any other category, we can
use residuals. The residual of a given feature vector is the
distance or similarity metric from/of that feature vector to
a specific cluster center. Recent methods have used resid-
ual representation as confidence measurements for classifi-
cation predictions [33, 42], intermediate soft representation
for data quantization [26, 34], and mixed-surface represen-
tation learning [5]. Here, we expand upon the work pro-
posed by [5, 42] to learn effective patch representation in
highly ambiguous and/or complex environments.

Consider the large-scale patch in xτ
′

s=2 illustrated in
Fig. 5 (in magenta), where multiple objects of different cat-
egories are in view (2 bowls and a fruit box). Given our
anchor, a small scale patch sampled from xτ

′

s=1, only de-
picts one of the bowls, it would be inaccurate to enforce
strict equivalence (e.g. hard assignment where both patches
are labeled 1 and used as ground truth to a cross entropy
loss). By utilizing soft representation and residuals, we can
represent a patch by its similarity to multiple categories (i.e.
clusters), which allows us to enforce multi-category similar-
ity and learn from category ambiguous patches.

Given output feature map zts ∈ RLs×D, and learned
cluster centers Φ ∈ RK×D with K clusters, each repre-
sented by a 1 × D vector. Ideally, clusters centers learn
association with specific categories in the dataset, allowing
to directly distinguish between objects. The residual of the
feature vector z and cluster center ϕ is defined by the dis-
tance between them, using r = z−ϕ. We build a patch-wise
residual table, rt ∈ RL×K×D, measuring the similarity of

t0 t1

Maximize multi-view 
feature similarity

Maximize scale-regression 
feature similarity

Figure 5. Multi-view and scale-regression losses. We leverage
the natural egocentric perception of human agents to sample di-
verse perspectives of the same objects. Our multi-view loss max-
imizes similarity of patch features viewing the same object from
different viewing angles, and our scale-regression loss maximizes
similarity of multi-scale features of overlapping patches.

all patches in zts with learned cluster centers using

rt = σ(θ||zts − ϕ||2) ∗ (zts − ϕ) ∀ ϕ ∈ Φ, (1)

with learnable parameters θ ∈ R1×K and Φ correspond-
ing to residual scales and cluster centers respectively, and
softmax function σ applied on the normalized residual. We
perform this operation on patches in the anchor, positive,
and negative patch features sets, zτ+, zτ

′+, and zτ
′−, to ob-

tain rτ+, rτ
′+, and rτ

′−, where {(rτ+i , rτ
′+

i ) ∈ R1×K×D}
and rτ

′−
i ∈ R1×N×K×D for patch at location i, number

of negative patches N , and N < L. By enforcing similar
residual representations of anchor and positive patches, we
ensure similar mixture of surfaces and objects within them,
increasing robustness to ambiguous scenes.

3.4. Learning similarity across time and scale

Our loss functions aim to leverage the natural egocen-
tric perception of human agents to sample diverse views
of the same objects. As humans operate in a given envi-
ronment, they often either advance towards or circumnavi-
gate objects and elements in their surroundings. The action
of circumnavigation allows us to samples multi-temporal
patch matches, as described in Sec. 3.2, viewing the same
objects from different view points and illumination condi-
tions. These multi-temporal samples are then used for the
multi-view loss function, Lmulti−view, maximizing similar-
ity of features of corresponding patches. Ideally, this means
that objects viewed from different viewing angles, even if
visually different (as in Fig. 2), expect to generate highly
similar features. We illustrate our loss functions in Fig. 5.

We also address the direct advancement action by
proposing the scale-regression loss, Lscale−regress. This
loss maximizes feature similarity of a given patch and its
overlapping higher-scale patch, increasing model robust-
ness to local viewing scale. How we define positive ex-
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amples varies between our proposed loss functions. For the
multi-view loss, we utilize the multi-temporal patch match-
ing predictions, while for the scale-regression loss, we use
the higher-scale patch. Anchor and negative patches remain
the same for both losses. Once the sets of anchor, posi-
tive, and negative patches are defined, both loss functions
(MV=multi-view, SR=scale-regression) are formulated as

LMV/SR = −E
0≤i≤|P |

[
log

exp(rτ+i · rτ
′+

i )
|P |−1∑
j=0

exp(rτ+i · rτ ′−
j )

]
.

(2)

3.5. Inference from learned clusters

During inference, we first perform per-batch cluster
smoothing (batch can be 1 or more frames) on our learned
clusters, Φ, using output features zt at time t to ob-
tain smooth cluster centers Φ̃. We use the Expectation-
Maximization algorithm [21, 59] initialized with Φ to iter-
atively find maximum likelihood cluster assignments for all
features in zt. We optimize this for η iterations (not neces-
sarily until convergence) to produce per-batch smooth clus-
ter centers Φ̃ (qualitative examples in supplementary mate-
rial). This operation allows us to reduce overall noise when
assigning features in zt to cluster centers Φ̃ to obtain clus-
ter map mt. We separate mt into a set of blobs using the
connected components algorithm [23] and generate bound-
ing boxes around blobs and their confidence scores. The
inference pipeline is illustrated in Fig. 6.

Bounding box scoring. Object detection methods tradi-
tionally use confidence scores to rank predictions [35]. As
we do not use any supervision, usual confidence scores
are unavailable: we don’t define what the method should
be confident in. Instead, we define confidence scores of
boxes by the convexity of their corresponding blobs, follow-
ing a common assumption that objects tend to have convex
shapes [74]. Given cluster mapmt of frame at time instance
t, we use the connected component algorithm [23] on mt to
obtain a set of blobs, b, and their bounding boxes. We de-
fine the confidence score of a bounding box, S(bi) by the
harmonic mean of the convexity measurement and average
objectness prior of their corresponding blob bi, using

S(bi) = (1 + β2)

Area(bi)
ConvexHull(bi)

O(bi)

(β2 Area(bi)
ConvexHull(bi)

) +O(bi)
, (3)

where β is a scaling factor and O(bi) represents the mean
objectness prior of blob bi obtained from an off-the-shelf,
self-supervised model [12].

Filtering bounding boxes. We employ classical and unsu-
pervised methods to filter probable false positive predicted

Connected 
Components

Blob-wise Convexity 
Measurement

Cluster Map

(box, score)Assign to 
Clusters

Figure 6. Inference pipeline. We assign features to learned clus-
ter centers from all scales to generate cluster map mt. We then
feed mt to the connected component algorithms to obtain a set of
blobs b. We use the convexity measurement function as a scoring
mechanism for all bi ∈ b and their corresponding bounding boxes.

boxes, including cluster pruning [16], an objectness prior
[49], and convexity thresholding. Cluster pruning is used
during the cluster smoothing operation to prune clusters
with less than γ mapped pixels. The objectness prior is ob-
tained from an off-the-shelf self-supervised model estimat-
ing coarse foreground regions, from which predicted boxes
are filtered. Lastly, we employ a convexity threshold ψ, un-
der which bounding boxes are not considered.

4. Experiments
4.1. Datasets

We report performance on in-domain (egocentric) and
out-of-domain (internet images) datasets of varying com-
plexity. For the egocentric domain, DEVI is trained and
evaluated on Ego4D [36] and EgoObjects [65]. Ego4D
provides ∼3,600 hours of egocentric videos and is highly
complex. For training, we temporally down-sample un-
annotated Ego4D videos to produce ∼27M frames over-
all, out of which we use ∼1M. For evaluation, we use
the episodic memory validation set, which provides ∼9.9k
sparsely annotated frames. EgoObjects [65] provides ∼110
hours of egocentric videos, resulting in ∼66k training
frames, and ∼7.7k sparsely annotated validation frames,
and is largely object-centric, lower complexity dataset. We
emphasize that while we train on video, inference is per-
formed on an image level, making comparisons with other
frame-based methods fair. For our out-of-domain (internet
images) study (Sec. 5.2), we show our performance on the
COCO [54] validation set which provides ∼5k annotated
images. Note that we do not train on COCO at any stage.

4.2. Evaluation protocol

We evaluate our method for the task of class agnos-
tic object detection using average precision (AP) and av-
erage recall (AR), though we tend to prefer AR (particu-
larly with more proposals) due to the non-exhaustive na-
ture of most object detection datasets [87] making preci-
sion measurements less reliable. We use non-maximum
suppression with Intersection-over-Union (IoU) threshold
of 0.5. Since we use static validation datasets, we run the
entire training and evaluation pipeline 5 times and report
the mean performance. We note that the difference between
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Table 1. Quantitative results on the egocentric domain. Average precision (AP) and average recall (AR) on EgoObjects [65] and Ego4D
[36] validation sets. DEVI outperforms other self-supervised methods for the task of class agnostic object detection, despite the baselines’
increased model complexity and multi-stage procedure. We note the number of stages methods require before final inference.

Dataset EgoObjects [65] Ego4D [36]

Method # stages AP50 AR1 AR10 AR100 AP50 AR1 AR10 AR100

Selective Search [79] IJCV13 1 0.12 0.00 0.86 4.15 0.09 0.00 0.88 3.98
LOST † [73] BMVC21 4 2.13 0.89 6.99 9.41 0.82 0.43 1.42 6.67
FreeSOLO† [84] CVPR22 5 15.70 8.30 20.70 32.90 2.40 2.80 12.80 17.00
TimeCycle [83] CVPR19 1 6.94 4.24 11.86 12.32 2.95 1.52 6.29 6.97
VideoMAE [76] NeurIPS22 1 9.25 5.16 16.08 16.47 4.05 2.19 8.42 8.96
MoCo V3 [15] ICCV21 1 11.66 7.62 16.83 16.94 4.57 2.59 8.33 8.48
DEVI (Ours) 1 14.96 6.47 29.61 39.43 6.51 2.91 14.12 22.03

multi-object discovery and class-agnostic object detection
depends on the evaluated dataset. Multi-object discovery
generally refers to when the task is performed on the train
set, while class-agnostic object detection refers to when the
task is performed on the validation or test set. In this work
we only consider the task of class agnostic object detection.

5. Results

Tab. 1 reports the average precision at 0.5 IoU and aver-
age recall at 1, 10, and 100 boxes per image for the class ag-
nostic object detection task (additional discussion on met-
ric interpretation is found in the supplemental). We com-
pare with state-of-the-art self-supervised detection meth-
ods, LOST [73] and FreeSOLO [84], on the egocentric do-
main. We train and evaluate these baselines according to re-
ported procedures on Ego4D and EgoObjects, showing the
best results. We also compare with recent generic image and
video representation learning methods MoCo V3 [15] and
VideoMAE [76]. These self-supervised works require fine-
tuning on bounding box labels for detection, which we do
not assume in our setting; instead, we compare by dropping
these pre-trained models in as a replacement to our self-
supervised learned patch feature extractor. Our approach
outperforms our baselines by up to 4.11% AP50, 0.11%
AR1, 1.32% AR10, and 5.03% AR100, despite their exten-
sive multi-stage and complex pipeline. FreeSOLO requires
3 separate training stages: self-supervised pre-training for
object discovery generation (FreeMasks), training on the
generated FreeMasks for pseudo-label generation, and then
training on the generated pseudo labels for final predictions.
This lengthy training process takes ∼72 hours of training
with substantial computing resources (we use 8 Tesla V100-
32GB GPUs), not including any intermediate inference or
evaluation steps. In contrast, our method trains end-to-
end in ∼36 hours with the same computational resources,
without any pre-training or multi-training stages, achieving
state-of-the-art performance in a single-stage.

Both LOST and FreeSOLO depend on a global, image-

wise self-supervised pre-training procedure followed by
object discovery (expanded seeded patch for LOST and
FreeMask for FreeSOLO). Generic self-supervised methods
like MoCo V3 and VideoMAE also tend to have global ob-
jectives. When considering dense and complex scenes, as
typical in egocentric data, such pre-training strategies result
in coarse features, leading to sub-optimal object discovery
and class-agnostic object detection. This is supported quan-
titatively: As scene complexity increases, with COCO and
EgoObjects on the lower end of complexity and Ego4D on
the higher end, our baselines’ performances suffer signifi-
cantly. In particular, generic self-supervised visual features
are not fine-grained enough for detection when bounding
box annotations for fine-tuning are unavailable. In contrast,
by utilizing patches and residuals, our method has the fea-
ture granularity and scene ambiguity robustness to achieve
state-of-the-art performance.

In Fig. 7 we present the qualitative results of our method
on the EgoObjects and Ego4D datasets. Our method pro-
duces bounding boxes that align well with objects in the
scene, even when scenes are highly complex. We include
implementation details, ablation study, and additional qual-
itative of results and challenging cases in the supplemental.

5.1. Interpreting metrics

The nature of egocentric data presents challenges not
only in network design and increased scene complexity,
but also during pre-processing and evaluation steps such
as annotations and performance analysis. Due to the high
complexity of the data, distinguished by largely varying ob-
ject scales, diversity, and density, annotation of egocentric
videos is often sparse, only considering specific categories
at specific scenes. For example, brooms might be annotated
when videos are captured in a kitchen, but not annotated
when captured in a parking lot. This results in sparsely an-
notated datasets, which may alter the traditional view on
performance metrics. While both recall and precision are
affected by the sparse annotation problem, we note that pre-
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Figure 7. Qualitative results of DEVI on EgoObjects (top three rows) and Ego4D (bottom three rows) validation sets. It can be observed
that our method has a strong notion of objectness and is able to detect most objects in scenes, even when they are highly complex.

cision is more noticeably affected. That is due to the high
number of un-annotated objects in frames, leading to many
false positives. As the number of false positives increases,
the precision decreases (P = TP

TP+FP ). For that reason,
in this work, we place higher importance on recall perfor-
mance.

5.2. Ablation studies

DEVI components. To understand what makes DEVI ef-
fective, we investigate the impact of various model design
choices to overall performance. We study all possible com-
binations of the loss functions, LMV and LSR, and the Ob-
ject Residual Module (ORM), and report performance in
Table 2. Note that when the ORM is not used, we use K-
Means clustering [56] on the raw features instead. Note that
at least one loss function is required for training.

We observe worse overall performance without the
ORM, which implies its increased utility in ambiguous
scenes compared to classical clustering methods such as K-
Means. Then, just by incorporating our multi-view loss,
LMV, with the Object Residual Module, we already outper-
form our baseline by 1.62% AP50. We then further improve
our performance by adding the scale-regression loss, LSR,
component. All combinations were trained for the same
number of iterations, and with the same hyperparameters.

Table 2. Ablation study on Ego4D validation set. We report per-
formance of Object Residual Module (ORM), LMV (multi-view
loss), and LSR (scale-regression loss) model design combinations.

ORM LMV LSR AP50 (%) AR10 (%) AR100 (%)

✓ 1.12 2.46 8.58
✓ 1.96 4.51 11.87
✓ ✓ 2.20 4.05 15.40

✓ ✓ 2.39 3.31 16.08
✓ ✓ 4.02 7.92 21.34
✓ ✓ ✓ 6.51 14.12 22.03

Egocentric vs. exocentric training data. While DEVI is
designed with egocentric properties in mind, we also inves-
tigate the utility of our method on exocentric videos. This
aims at verifying our computational appearance-based ap-
proach which utilizes the varying viewing angles and illu-
mination conditions of objects in egocentric videos, which
may not exist in exocentric videos. Due to the commonly
stationary viewing angles captured in exocentric videos, we
expect reduced efficacy of output features when trained on
exocentric data. For this experiment, we train our model
on ∼1M frames from the YouTubeBB-8M video dataset
[1] and evaluate on Ego4D validation set. We validate our
hypothesis by showing significantly increased performance
when trained on egocentric data than on exocentric data,
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Figure 8. Varying viewing angle and illumination conditions. We observe consecutive frames and their corresponding pre-smoothing
cluster masks. As the viewing direction changes, we observe that objects retain their cluster assignments, indicating feature consistency
regardless of viewing direction and illumination conditions. Colors are random. Best viewed in color.

Table 3. Out of domain study. We test our method on unseen, out
of domain data to study its generalizability. Note that the baseline
methods are trained on COCO while we are not. † corresponds to
performance achieved through independent experiments.

Dataset COCO Validation Set [54]

Method AP50 AR1 AR10 AR100

UP-DETR [17] CVPR21 0.00 0.00 0.00 0.40
Selective Search [79] IJCV13 0.50 0.20 1.50 10.90
DETReg [6] CVPR22 3.10 0.60 3.60 12.70
LOST† [73] BMVC21 4.73 1.99 3.87 8.14
FreeSOLO† [84] CVPR22 9.60 3.70 9.70 12.60
FreeSOLO [84] CVPR22 12.20 4.60 11.40 15.30

DEVI (Ours) 8.03 3.31 15.64 25.93

improving AP50 by +3.86%, AR1 by +1.42%, AR10 by
+8.80%, and AR100 by +16.17%.

Out of domain study. We investigate generalizability
to out-of-domain datasets by training DEVI on the Ego4D
dataset and evaluating on the COCO validation set [54].
We compare DEVI to recent, state-of-the-art class agnos-
tic object detection methods. Note that while our baselines
are trained on the COCO training set, our method is not
exposed to any COCO data at any stage. We include re-
ported performance, if available, and performance obtained
through our independent experiments (indicated by †). We
note that LOST [73] only officially reports performance on
the train set, while here we report on the validation set.
Despite the domain misalignment, our method is able to
achieve competitive performance, outperforming LOST by
3.30%, 1.32%, 11.77%, and 17.70% on the AP50, AR1,
AR10, and AR100 metrics respectively (Tab. 3). We also
demonstrate competitive performance compared to our in-
dependent experiments of FreeSOLO. Qualitative results on
the COCO validation set are shown in Fig. 9 and supple-
mentary material.

Varying viewing angles and illumination. We qualita-
tively visualize our robustness to changes in viewing an-
gle and illumination conditions in Fig. 8; we expect similar
cluster assignments for objects across frames. To verify, we
visualize the pre-smoothing cluster masks, as it bypasses

Image Prediction
Figure 9. Qualitative results of DEVI on COCO validation set.
Albeit not trained on COCO, DEVI is able to achieve competitive
performance for the task of class agnostic object detection.

random elements from smoothing. It can be seen that de-
spite the viewing direction of objects changes (also affect-
ing illumination), the method is still able to retain consis-
tent cluster assignments. Additional examples are provided
in the supplementary material.

6. Conclusion

We have introduced DEVI, a self-supervised class ag-
nostic object detection method for the egocentric domain.
We utilize natural human movement patterns to sample
views of objects for our computational appearance inspired
method, demonstrating that our proposed multi-view and
scale-regression losses enable our method to learn robust
invariance to viewing angles and illumination conditions.
We also show that our object residual module allows learn-
ing of effective features in highly complex and ambiguous
scenes. Lastly, we achieve state-of-the-art performance on
class agnostic object detection on egocentric datasets in a
single, end-to-end stage, eliminating lengthy, multi-stage,
and computationally expensive procedures.
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[50] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
3

[51] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman. Dis-
covering important people and objects for egocentric video
summarization. In 2012 IEEE conference on computer vi-
sion and pattern recognition, pages 1346–1353. IEEE, 2012.
1, 3

[52] Yanghao Li, Tushar Nagarajan, Bo Xiong, and Kristen Grau-
man. Ego-exo: Transferring visual representations from
third-person to first-person videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6943–6953, 2021. 1

[53] Kevin Qinghong Lin, Jinpeng Wang, Mattia Soldan, Michael
Wray, Rui Yan, Eric Z XU, Difei Gao, Rong-Cheng Tu, Wen-
zhe Zhao, Weijie Kong, et al. Egocentric video-language
pretraining. Advances in Neural Information Processing Sys-
tems, 35:7575–7586, 2022. 3

[54] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1, 3, 6, 9

[55] Yebin Liu, Xun Cao, Qionghai Dai, and Wenli Xu. Continu-
ous depth estimation for multi-view stereo. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2121–2128. IEEE, 2009. 3, 4

[56] Stuart Lloyd. Least squares quantization in pcm. IEEE trans-
actions on information theory, 28(2):129–137, 1982. 8

[57] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004. 3

[58] Xinzhu Ma, Zhihui Wang, Haojie Li, Pengbo Zhang, Wanli
Ouyang, and Xin Fan. Accurate monocular 3d object detec-
tion via color-embedded 3d reconstruction for autonomous
driving. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6851–6860, 2019. 1

[59] Geoffrey J McLachlan and Kaye E Basford. Mixture mod-
els: Inference and applications to clustering, volume 38. M.
Dekker New York, 1988. 6

[60] Tomer Michaeli and Michal Irani. Blind deblurring using
internal patch recurrence. In European conference on com-
puter vision, pages 783–798. Springer, 2014. 3

[61] Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6707–6717, 2020. 2

[62] Fred E Nicodemus. Directional reflectance and emissivity of
an opaque surface. Applied optics, 4(7):767–775, 1965. 2

[63] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 4

[64] Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei
Liu. Videomoco: Contrastive video representation learn-
ing with temporally adversarial examples. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11205–11214, 2021. 2

[65] Lorenzo Pellegrini, Chenchen Zhu, Fanyi Xiao, Zhicheng
Yan, Antonio Carta, Matthias De Lange, Vincenzo
Lomonaco, Roshan Sumbaly, Pau Rodriguez, and David
Vazquez. 3rd continual learning workshop challenge on
egocentric category and instance level object understanding.
arXiv preprint arXiv:2212.06833, 2022. 2, 6, 7

[66] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc
Van Gool, Markus Gross, and Alexander Sorkine-Hornung.
A benchmark dataset and evaluation methodology for video
object segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 724–732,
2016. 2

[67] Chiara Plizzari, Mirco Planamente, Gabriele Goletto, Marco
Cannici, Emanuele Gusso, Matteo Matteucci, and Bar-
bara Caputo. E2 (go) motion: Motion augmented event
stream for egocentric action recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 19935–19947, 2022. 1, 3

[68] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang,
Huisheng Wang, Serge Belongie, and Yin Cui. Spatiotempo-
ral contrastive video representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6964–6974, 2021. 2

[69] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan,
and Vincent Vanhoucke. Youtube-boundingboxes: A large
high-precision human-annotated data set for object detection
in video. In proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5296–5305,
2017. 2

[70] Ken Sakurada, Mikiya Shibuya, and Weimin Wang. Weakly
supervised silhouette-based semantic scene change detec-
tion. In 2020 IEEE International conference on robotics and
automation (ICRA), pages 6861–6867. IEEE, 2020. 1

[71] John B Sigman, Gregory P Spell, Kevin J Liang, and
Lawrence Carin. Background adaptive faster r-cnn for semi-
supervised convolutional object detection of threats in x-ray
images. In Anomaly Detection and Imaging with X-Rays
(ADIX) V, 2020. 1

[72] Gunnar A Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali
Farhadi, and Karteek Alahari. Charades-ego: A large-scale
dataset of paired third and first person videos. arXiv preprint
arXiv:1804.09626, 2018. 1
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[81] Huy V Vo, Patrick Pérez, and Jean Ponce. Toward unsu-
pervised, multi-object discovery in large-scale image collec-
tions. In European Conference on Computer Vision, pages
779–795. Springer, 2020. 3

[82] Jinpeng Wang, Yuting Gao, Ke Li, Yiqi Lin, Andy J Ma,
Hao Cheng, Pai Peng, Feiyue Huang, Rongrong Ji, and Xing
Sun. Removing the background by adding the background:
Towards background robust self-supervised video represen-
tation learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11804–
11813, 2021. 2

[83] Xiaolong Wang, Allan Jabri, and Alexei A. Efros. Learn-
ing correspondence from the cycle-consistency of time. In
CVPR, 2019. 7

[84] Xinlong Wang, Zhiding Yu, Shalini De Mello, Jan Kautz,
Anima Anandkumar, Chunhua Shen, and Jose M Alvarez.
Freesolo: Learning to segment objects without annotations.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14176–14186, 2022.
3, 7, 9

[85] Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L
Crowley, and Dominique Vaufreydaz. Self-supervised trans-
formers for unsupervised object discovery using normalized
cut. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14543–14553,
2022. 3

[86] Enze Xie, Jian Ding, Wenhai Wang, Xiaohang Zhan, Hang
Xu, Peize Sun, Zhenguo Li, and Ping Luo. Detco: Unsuper-
vised contrastive learning for object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 8392–8401, 2021. 3

[87] Yuewei Yang, Kevin J Liang, and Lawrence Carin. Object
detection as a positive-unlabeled problem. In British Ma-
chine Vision Conference, 2020. 6

[88] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 1

5237


