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Abstract

3D instance segmentation has recently garnered in-
creased attention. Typical deep learning methods adopt
point grouping schemes followed by hand-designed geo-
metric clustering. Inspired by the success of transform-
ers for various 3D tasks, newer hybrid approaches have
utilized transformer decoders coupled with convolutional
backbones that operate on voxelized scenes. However, due
to the nature of sparse feature backbones, the extracted fea-
tures provided to the transformer decoder are lacking in
spatial understanding. Thus, such approaches often pre-
dict spatially separate objects as single instances. To this
end, we introduce a novel approach for 3D point clouds in-
stance segmentation that addresses the challenge of gener-
ating distinct instance masks for objects that share similar
appearances but are spatially separated. Our method lever-
ages spatial and semantic supervision with query refine-
ment to improve the performance of hybrid 3D instance seg-
mentation models. Specifically, we provide the transformer
block with spatial features to facilitate differentiation be-
tween similar object queries and incorporate semantic su-
pervision to enhance prediction accuracy based on object
class. Our proposed approach outperforms existing meth-
ods on the validation sets of ScanNet V2 and ScanNet200
datasets, establishing a new state-of-the-art for this task.

1. Introduction
In recent years, remarkable advances have been made in

3D scene understanding, owing to the rapid development
of 3D sensors (Kinect, RealSense, Velodyne laser scanner,
among others) and the increase in the number of large-scale
datasets. Data-driven deep learning models with a focus on
either point or sparse voxel approaches have been widely
explored. 3D instance segmentation on point clouds is the
task of simultaneously localizing and recognizing 3D ob-
jects from a set of 3D points. The desired output is a set
of binary masks representing the objects with their corre-
sponding semantic categories. This perception task serves

Input scene Prediction w/ our method

Semantic instance ground truth Prediction w/ Mask3D
Figure 1. Samples predictions of our approach on scenes from the
ScanNet200 [35] dataset. Our proposed approach utilizes both se-
mantic and spatial supervision to generate distinct instance labels
for objects in a given scene, by processing a 3D point cloud as in-
put. This enables the model to generate instance masks for objects
that are similar in appearance but located in different positions,
resulting in highly accurate and comprehensive labeling.

as the basis for a wide variety of applications, including au-
tonomous driving, mixed and virtual reality, and robot nav-
igation.

2D instance segmentation is a critical computer vision
task that involves identifying and distinguishing individual
objects or instances within an image and assigning semantic
classes to them. Unlike semantic segmentation, which as-
signs a label to each pixel in an image, instance segmenta-
tion aims to accurately identify each object in an image and
provide a unique mask or bounding box for each one. Thus,
instance segmentation lies at the intersection of object de-
tection and semantic segmentation. Numerous studies have
been conducted in this area, with many works focusing on
top-down approaches [4, 9, 6, 15], in which instance-level
proposals are generated initially to predict instance masks
that are later classified into one of the recognized classes.
One popular example of these approaches is BMask R-CNN
[9], which is an extension of Mask R-CNN. It was devel-
oped to address the challenges associated with segmenting
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objects with complex shapes and fine details. BMask R-
CNN introduces a boundary-sensitive branch to the Mask
R-CNN architecture, which predicts object boundaries in
addition to object masks.

In contrast to 2D instance segmentation, bottom-up
pipelines dominate 3D instance segmentation, where, gen-
erally speaking, point-level semantic labels are learned and
then spatially close points of the same classes are grouped
together into instances. Thus, there has been extensive
work on developing grouping strategies for this purpose
[21, 7, 24, 43]. The remarkable results of transformers
have motivated numerous researchers to explore their us-
age in the instance segmentation task. To overcome the
challenge of CNNs’ insufficient long-range dependencies,
hybrid-based techniques used attention mechanisms along
with CNN-based backbones for feature extraction. One
such method is presented in [38] for 3D instance segmenta-
tion. It relies on the successive and iterative refinement of
queries to learn masks and semantic labels by attending to
multi-scale features obtained from a CNN backbone. This
approach has been proven to achieve state-of-the-art results,
owing to CNNs’ proficiency in producing features for ob-
jects of varying scales and the attention mechanism’s capac-
ity to capture contextual information. Nevertheless, these
approaches do not allow enough information exchange be-
tween the encoder and the decoder because of the structural
differences between the transformer blocks and the sparse
convolutional backbone.

In this paper, we propose to improve the learned features
for the modules of a hybrid-based instance segmentation
technique that combines a sparse convolutional backbone
with a transformer decoder for query refinement. Enhanced
supervision that targets the encoder specifically is proposed
to achieve this aim. Given the 3D geometry of a scene, the
model labels all the geometry that belongs to a single ob-
ject with a unique label and assigns a class to this object.
In particular, we propose a learning technique to regress
per-voxel coordinates and learn per-voxel semantic labels
in the encoder. Despite the benefits of using 3D point cloud
voxelization to enable regular 2D convolution on 3D point
clouds, the location and geometry information of 3D objects
may be lost. This arises from the fact that the decoder ex-
clusively relies on the encoder features, derived solely from
the RGB color of the voxel. Moreover, the process of vox-
elization can compound this issue by grouping small objects
into a limited number of voxels. Consequently, these aggre-
gated voxels fail to completely capture the geometry of the
original objects. However, the utilization of the coordinates
in voxel space after the sparse quantization step, which con-
sists of the X , Y , and Z values, can aid in recovering the
lost information.

To this end, our contributions are as follows:

• We explore various ways of improving information ex-

change between the convolutional encoder and trans-
former decoder of a hybrid 3D instance segmenta-
tion technique (i) spatial and semantic supervision in
the 3D encoder, (ii) appending raw coordinates to 3D
backbone features before feeding them to the decoder.

• We enrich the highest-resolution features used for
mask prediction with existing voxel positions to assist
in the prediction of higher quality and more precise
masks.

• We achieve state-of-the-art performance on ScanNet
V2 [12] (+1.3 mAP50) and ScanNet200 [35] (+2.7
mAP50).

2. Related Work
In this section, we present some of the works related

to 3D point clouds, 3D instance segmentation, as well as
recent paper which use transformers as building blocks in
their architecture for the 3D point clouds instance segmen-
tation task.

2.1. Deep Learning for 3D Point Clouds

Prior to the deep learning era, early methods [1, 2, 3, 37,
36] extracted hand-crafted features from point clouds based
on statistical analysis. On the other hand, recent methods
resort to learning feature extraction from the point cloud.

Early deep learning-based methods, e.g. PointNet [33,
34], processed point clouds directly through Multi-Layer
Perceptrons (MLPs) and max pooling operations to cap-
ture both local and global 3D geometries. Other approaches
[31, 30] opted to voxelized point clouds to go from an un-
ordered point set to regular 3D-ordered vectors compatible
with 3D convolutions. Some other approaches [41, 27, 10],
on the other hand, aimed to exploit the sparsity of voxelized
3D point clouds to reduce the computation complexity of
the regular 3D convolution operation using sparse convo-
lution, which was first introduced in 2D [25]. In order to
make the latter operation user-friendly, a universal sparse
convolution and auto-differentiation framework was intro-
duced with MinkowskiEngine in [10]. even though voxel-
based methods are highly efficient, they suffer from severe
information loss since the voxelization process performs ag-
gressive downsampling on the points [11, 16].

2.2. 3D Instance Segmentation

The problem of instance segmentation for 3D scenes
has been explored and addressed in numerous works; some
methods adopted the top-down approach, where propos-
als are generated from a stream, then combined with the
local features generated from a parallel stream to predict
the final masks for each instance. In this direction, 3D-
BoNet [45] predicts the final masks using regressed bound-
ing boxes and point-wise semantic labels generated from
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Figure 2. This figure illustrates the architecture of our proposed instance segmentation technique which is composed of (1) a 3D convolu-
tional backbone, (2) a farthest point sampling module, (3) a query refinement strategy, and (4) a prediction head made up of a segmentation
branch and a classification branch. Here, Vr represents the voxel-level coordinates.

parallel pipelines. 3D-SIS [19] follows the same reasoning
as [45], but uses RGB-D scans for training, while NeuralBF
[40] uses learnable bilateral filtering and shows that this can
further improve the instance proposal generation. An al-
ternative strategy is a bottom-up method, whereby instance
prediction is accomplished through semantic segmentation,
followed by instances prediction in the same stream. Nu-
merous methods were proposed [21, 22, 19, 26], [22] em-
ployed Multi-Task Metric Learning and clustering to gen-
erate the instance proposals, while [7] suggested a differ-
ent framework through hierarchical aggregation. In order to
benefit from the two approaches, SoftGroup [44] proposes
a two-stage architecture, the first is bottom-up-based, for
semantic information extraction, while the second stage is
to generate instance proposals through refinement in a top-
down manner.

2.3. Transformers

Transformers were first introduced in [42] and have since
gained significant popularity in the field of natural language
processing due to their ability to capture similarities be-
tween embeddings of various categories. The computer vi-
sion community later adopted this mechanism, and its po-
tential was first demonstrated in [14]. The global contextual
learning capability of transformers has motivated computer
vision researchers to utilize them in 3D object detection
[28, 32, 39, 3], 3D semantic segmentation [23], and, more
recently, in 3D instance segmentation [38]. In contrast to

the conventional top-down approaches, Mask3D [38] and
Group-Free [28] have used a transformer for query refine-
ment in the instance proposal generation stage while using
a multi-scale sparse convolutional backbone for feature ex-
traction. Mask3D addresses some major problems in previ-
ous 3D instance segmentation approaches. State-of-the-art
methods heavily rely on hand-crafted voting mechanisms
that require the points to each vote for manually-tuned geo-
metric properties of the instance such as centers, bounding
boxes, or occupancy. Furthermore, these models are trained
with proxy losses based on the point votes, so the learn-
ing objective is not to explicitly predict the instance masks.
Even though Mask3D proved to be significantly more pow-
erful compared to the other state-of-the-art methods, it still
has some shortcomings. A systematic mistake often ob-
served in the qualitative results is that objects of the same
class having similar geometry but existing far apart in the
scene are combined into a single instance. The authors at-
tribute this to the attention mechanism that simultaneously
attends to the entire point cloud.

3. Methodology

Fig. 2 illustrates our proposed instance segmentation ar-
chitecture composed of a 3D Convolutional backbone that
extracts features from the voxel space, a furthest point sam-
pling method to generate K object queries, stacked atten-
tion modules to refine those queries based on sampled point
features, and a mask prediction module that predicts in-
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stance heatmaps and class probabilities given full-resolution
feature maps extracted by the backbone and the correspond-
ing raw coordinates for each voxel. Furthermore, interme-
diary supervision is imposed on the encoder from existing
labelled information.

3.1. Problem Formulation

3D point cloud processing. Given an input point cloud
P ∈ RN×6, where N is the number of points of which each
holds RGB colors and 3D full-resolution coordinates, the
goal is to predict K binary masks, each classified into one
of C classes. P is first voxelized into Vc ∈ RM×3 voxels,
each holding average RGB color information of the points
it includes. Given a sparse 3D convolutional backbone with
a symmetric encoder and decoder, R feature maps are ex-
tracted from Vc at different resolutions. These feature maps
form a hierarchy of multiple scales.

Query top-down refinement. Since it is impractical to
follow a top-down strategy in choosing initial object queries
in 3D due to the fact that the search space is too huge, we
follow the recent practice of sampling object queries from
the point cloud in a bottom-up approach via farthest point
sampling (FPS) [34]. This method has been used to down-
sample a point cloud or to choose initial object candidates
from a point cloud. This simple method relies on randomly
choosing a point and then iteratively sampling the farthest
point from the already chosen points until the number of
desired points is chosen.

The goal is to refine the K
′

initial instance queries for L
stages to end up at K spatially accurate and scene-relevant
queries. After sampling initial object queries with FPS,
a transformer decoder is used to iteratively refine these
queries by allowing them to (1) cross-attend to masked
scene features and (2) self-attend among each other. Thus,
the transformer is composed of stacked multi-head masked
cross-attention and multi-head self-attention. The masked
variant of cross attention is used, as in [8], to force the trans-
former to ignore out-of-context features by design. Self-
attention among queries is necessary to establish inter-query
communication and avoid duplicate or overlapping instance
masks.

Classification branch. The classification branch takes
as input instance queries X and applies a softmax function
on them after projecting them to C + 1 dimensions with
a linear layer. This facilitates the prediction of a semantic
class for each of the K ′ queries. It is worth noting that
the instances are classified into one of the C classes or an
ignored class which helps filter out the queries from K ′ to
K.

Segmentation branch. To predict the binary foreground
masks, Fr=0 ∈ RM0×D, the highest-resolution feature map
with dimension D, is used alongside K

′
instance queries,

where K
′ ≥ K. The binary masks B ∈ {0, 1}M,K are

calculated as follows:

B = {bi,j = [σ
(
F0fmask(X)T

)
i,j

> τ ]} (1)

where fmask(.) is a linear layer that maps the queries X to
D dimensions, σ is a sigmoid function, and τ is a thresh-
olding scalar ∈ [0, 1]. τ is set to 0.5.

Learning objectives. The whole network can be trained
in an end-to-end manner with a weighted dual-task loss as
follows:

Ldecoder =

L∑
l

λmaskL(l)
mask + λclassL(l)

class (2)

where Lmask is composed of a binary cross-entropy loss
over both the foreground and background of the mask and
Dice loss [13], Lclass is a multi-class cross-entropy loss on
the instance level, and L is the number of query refinement
steps.

3.2. Enhanced Supervision

We argue that a shortcoming in existing solutions is that
limiting the supervision at the decoder level of the archi-
tecture hinders the ability of the network, specifically the
convolutional encoder, to learn semantically and spatially
rich features. This limitation arises primarily from the weak
spatial and geometric information encoded in the 3D back-
bone, due to sparse convolution and voxelization. To miti-
gate this, we utilize readily available information including
per-voxel semantic labels and per-voxel raw coordinates to
introduce intermediary supervision that targets the convolu-
tional backbone of the network. The goal is to encode both
spatial and semantic understanding into the features that are
ultimately used in the query refinement process and in the
prediction of the final set of class-labeled masks.

Spatial Supervision. Hybrid models, which take as in-
put a set of voxels with features that encode the RGB color
do not include features to represent the points’ locations.
As a result, the transformer block ends up taking as input
the features from the highest level of the backbone, which
does not necessarily encode the voxels’ positions, given the
sparse nature of point clouds. In order to fill this gap, spatial
supervision takes into account the output voxels’ locations
when predicting the mask used for refining the instance
queries, a vital property in the context of 3D localization
tasks. The first learning target imposed on the convolutional
encoder is the prediction of the per-voxel raw coordinates
Vr ∈ RM×3 from the highest-resolution features F0. A pro-
jection head fspatial(.) composed of a single linear layer is
used to map F0 from M×D to M× 3, to finally use it for
the heatmap prediction step.

Semantic Supervision. The second learning objective
aims to enhance the semantic understanding of the net-
work by guiding the network to learn per-voxel class la-
bels instead of limiting its semantic context to the instance
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Figure 3. Architecture of the transformer module inspired by [5]. The multi-head cross attention is masked with the predicted heatmaps.
These heatmaps are obtained from the interaction between (1) the instance queries and (2) point features to which Vr , the voxel-level raw
coordinates, were appended. Refer to Eq. 5.

level. The goal of this supervision is to bridge the seman-
tic gap between point and instance identity, and have the
voxel-level label assist in better instance-level label pre-
diction. To achieve this, F0 is projected to M × (C + 1)
using fsemantic(.), a single-layer MLP, after which a soft-
max function is applied. The ground truth labels utilized
for computing the loss in this case are the same labels used
to supervise the instance class prediction task, where vox-
els not belonging to any instance are labeled with an ignore
class. Thus, no additional supervision signal is required.

The loss objective for the sparse convolutional encoder
is:

Lencoder = λsemanticLsemantic + λspatialLspatial (3)

where Lsemantic is a cross-entropy loss and Lspatial is a
mean squared error loss. Thus, the overall objective func-
tion of the network is:

L = Ldecoder + Lencoder (4)

This objective function can be used to train the network in
an end-to-end fashion.

3.3. Enhancing Spatial Localization

Further, we argue that the features produced by the
sparse convolutional backbone are lacking in terms of spa-
tial information necessary for the accurate prediction and
localization of the masks in 3D space. To this end, we
aim to enrich the information used to predict the binary
masks. Eq. 1 is altered as follows. Vr is used alongside
Fr=0 ∈ RM0×D and the K

′
instance queries to predict the

binary masks as shown in Fig. 3. More specifically, B is
computed using the following:

B = {bi,j = [σ
(
(F0 ⊕ Vr)fmask(X)T

)
i,j

> τ ]} (5)

where fmask maps the queries X to D + 3 dimensions.
This primarily influences the MLP in each of the L seg-

mentation branches that projects the queries X to a common
dimensionality with the point features F0.

4. Experiments

In the following section, we first present the used
datasets and the evaluation protocol (Sec. 4.1). After this,
we provide details on the implementation of the method
(Sec. 4.2). Quantitative results (Sec. 4.3) and qualitative
results (Sec. 4.4) follow. Finally, ablation studies are pre-
sented in Sec. 4.5.

4.1. Datasets and Evaluation Protocol

We evaluate our approach on ScanNet V2 [12] and Scan-
Net200 [35], widely-used indoor 3D instance segmenta-
tion datasets. We adopt the standard data splits for these
datasets.

ScanNet V2 [12] is a dataset composed of 1513 richly
annotated 3D reconstructed indoor scenes. It includes hun-
dreds of reconstructed rooms such as hotels, libraries, and
offices. Provided labels include per-point instances, seman-
tic labels, and 3D bounding boxes for 18 classes. The metric
used for evaluation of this dataset is mean average precision
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Figure 4. Performance comparison with Mask3D [38], the currently best performing 3D instance segmentation approach. Per-class AP50

results for 100 classes of ScanNet200 are presented.

(mAP) over various Intersection over Union (IoU) thresh-
olds: mAP at IoU of 25%, 50%, and [50%, 95%] (averaged
at 5% steps).

ScanNet200 [35] is a more recent extension of ScanNet
V2 that includes 200 class labels for the same scenes. Scan-
Net200 facilitates the evaluation of an algorithm’s perfor-
mance on naturally occurring imbalanced data since it fol-
lows a long-tail distribution with 66 head classes, 68 com-
mon classes, and 66 tail classes. We use the same evalua-
tion protocol followed for ScanNet V2 to evaluate on this
dataset.

4.2. Implementation Details

We conduct all of our experiments on a single NVIDIA
Tesla A100 GPU device. Data augmentations on the scenes
include horizontal flipping, random rotations along the z-
axis, elastic distortion, random scaling, color jitter, and
brightness/contrast alterations. The convolutional encoder
is a Minkowski Res16UNet34C [11] used in Mask3D [38].
We train for 600 epochs with AdamW [29] optimizer and
a learning rate of 1e − 4. the scheduler used is the one-
cycle learning rate scheduler. We set λBCE to 5, λdice to
5, λCE to 5, λsemantic to 2, and finally λspatial to 2. The
voxelization is done at 2cm voxel size.

4.3. Quantitative Results

Table 2 shows the results of our approach and the most
prominent methods on validation set of ScanNet V2 [12]
in terms of mAP , mAP50, and mAP25. The proposed
method achieves the highest score, with a 1.3% margin on
mAP50. Table 1 further shows per-class AP50 for the 18
classes in the dataset. Our approach achieves the best per-
formance in 14 out of the 18 categories.

Similarly, we report metrics on the validation set of

ScanNet200 [35]. Table 3 shows that the proposed method
surpasses the state-of-the-art by a significant margin of
2.7% on mAP50. Since this dataset exhibits a long-tailed
distribution, we also report on mAP50 per data split of head,
common, and tail in Table 4. Our approach significantly im-
proves the performance of tail classes specifically, with an
improvement of 5.9%. Additionally, Fig. 4 presents per-
class AP50 on 100 classes out of the 198 in the dataset as
compared to Mask3D [38].

4.4. Qualitative Results

In Fig. 5, we present qualitative 3D instance segmenta-
tion results on ScanNet V2 [12] as compared to the ground
truth masks and those of Mask3D. The showcased scenes
are from the validation splits of this dataset, and they are
diverse in terms of the type of challenges they exhibit,
e.g. background clutter, similar objects, and scanning ar-
tifacts. It can be observed that, with the proposed method,
more precise instance segmentation masks are obtained as
compared to the current state-of-the-art. The highlighted
sections clearly outline examples where Mask3D predicts
merged instances that are far apart while our method, which
explicitly encodes the spatial locations of features, is able
to distinguish between those instances.

4.5. Ablation Studies

We ablate the effects of the key designs on ScanNet200
as shown in Table 5. We observe a boost in performance as
each component is added, and the best results are attained
with the three components combined which gave a 2.7%
increase in mAP50 and 2.0% increase in mAP on the val-
idation set. It can be observed that carrying out the mask
prediction with appending of Vr to the point features gives
the biggest individual boost in performance, which shows
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MTML [22] 70.8 54.0 21.9 14.5 79.2 0.8 39.9 14.2 32.4 10.9 42.1 64.3 36.4 48.8 42.7 96.5 32.7 21.5 40.2
PointGroup [21] 80.5 69.6 54.9 48.1 87.7 22.4 44.9 41.6 42.0 37.7 37.2 64.4 61.1 71.5 62.9 98.3 46.2 53.0 56.9
DyCo3D [18] 77.4 70.4 48.4 52.3 90.2 34.9 47.5 52.3 40.5 44.7 51.5 70.3 74.3 69.6 94.8 47.2 46.2 56.4 61.0
Mask3D [38] 87.0 79.1 66.7 65.5 94.4 63.1 73.6 63.5 74.4 65.8 77.1 71.4 77.5 78.0 82.8 100.0 65.1 73.2 73.7
(Ours) 90.1 76.7 54.5 67.6 95.0 63.7 71.0 66.3 73.5 65.8 77.1 71.4 77.5 78.0 82.8 100.0 65.1 73.9 75.0

Table 1. 3D instance segmentation results in terms of AP50 scores on ScanNet V2 [12]. The table shows the AP50 score of all semantic
categories as well as the average score, which is sorted in ascending order of mAP50. The proposed method outperforms the current
state-of-the-art on the average AP50.

Method Val
mAP mAP50 mAP25

3D-SIS [19] - 18.7 35.7
GSPN [46] 19.3 37.8 53.4
MTML [22] 20.3 40.2 55.4
3D-MPA 35.5 59.1 72.4
DyCo3D 35.4 57.6 72.9
PointGroup [21] 34.8 56.7 71.3
MaskGroup [47] 27.4 42.0 63.3
OccuSeg [17] 44.2 60.7 71.9
SSTNet [24] 49.4 64.3 74.0
HAIS [7] 43.5 64.1 75.6
SoftGroup [43] 46.0 67.6 78.9
Mask3D [38] 55.2 73.7 83.5
(Ours) 56.1 75.0 83.7

Table 2. State-of-the-art comparison on the ScanNet V2 [12] 3D
instance segmentation dataset. This table shows mAP with vari-
ous IoU thresholds of our method as well as all recent methods.

Method Val
mAP mAP50 mAP25

CSC [20] - 25.24 -
LGround [35] - 26.09 -
Mask3D [38] 27.4 37.0 42.3
(Ours) 29.4 39.7 44.9

Table 3. mAP for 3D instance segmentation on validation split of
ScanNet 200 [35] with various IoU thresholds of our method as
well as other recent methods.

Method Val mAP50

head common tail
Mask3D [38] 54.9 30.6 23.2
(Ours) 55.5 32.8 29.1

Table 4. mAP50 for 3D Instance Segmentation on head, com-
mon, and tail class splits of ScanNet 200 [35] of our method and
Mask3D [38].

Spatial
Supervision

Semantic
Supervision

Mask prediction
w/ Vr

mAP mAP50

✓ × × 27.9 37.1
× × ✓ 28.9 39.2
✓ × ✓ 29.0 39.6
× ✓ ✓ 29.0 38.4
✓ ✓ ✓ 29.4 39.7

Table 5. Ablation study on the impact of each component on the
performance of our proposed method on the ScanNet 200 [35] 3D
instance segmentation dataset, specifically the validation set.

the importance of explicitly encoding per-voxel spatial in-
formation into the mask prediction module.

In our final design, we use RGB information in the vox-
elized point cloud for subsequent feature extraction. Next,
we ablate the choice of input in Table 6. We experiment
with (1) feeding the full-resolution coordinates as input, (2)
the coordinates in conjunction with the RGB colors, and (3)
the RGB colors with spatial supervision. Empirically, spa-
tial supervision gave a better performance as can be shown
in Table 6.

Experiment mAP50
Raw coordinates as input 36.2
Raw coordinates and color as input 36.6
Spatial supervision with color as input 38.0

Table 6. Results for various spatial supervision approaches on
ScanNet200 [35] validation set.

5. Conclusion
In this paper, we present a simple yet effective way to

learn semantically and spatially rich features for better lo-
calization of instance masks in 3D space using a hybrid in-
stance segmentation architecture. The method re-purposes
existing supervision signals related to the perceptual task at
hand to assist in the semantic and location information flow
between the sparse convolutional backbone and the trans-
former decoder. In addition, readily-available voxel posi-
tions are fed to the mask prediction branch to maximize its
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Scene Ours Mask3D Ground Truth

Figure 5. Qualitative instance segmentation results on ScanNet V2 scenes from the validation split. This figure shows the original input
scene as a textured mesh, the scene with its ground truth masks, predictions of Mask3D [38], and predictions with our method.
Key regions are highlighted in black circles.

performance, specifically in accurately localizing the masks
in 3D space, this approach proved to be more effective
than using RGB and raw coordinates as input features for

the backbone. The proposed method achieves state-of-the-
art performance on ScanNet V2 and ScanNet200 validation
splits.

548



References
[1] Luıs A Alexandre. 3d descriptors for object and category

recognition: a comparative evaluation. In Workshop on
Color-Depth Camera Fusion in Robotics at the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Vilamoura, Portugal, volume 1, page 7. Citeseer,
2012.

[2] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers.
The wave kernel signature: A quantum mechanical approach
to shape analysis. In 2011 IEEE international conference on
computer vision workshops (ICCV workshops), pages 1626–
1633. IEEE, 2011.

[3] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun
Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust
lidar-camera fusion for 3d object detection with transform-
ers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1090–1099,
2022.

[4] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee.
Yolact: Real-time instance segmentation. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 9157–9166, 2019.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part I 16, pages 213–229.
Springer, 2020.

[6] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-
iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,
Wanli Ouyang, et al. Hybrid task cascade for instance seg-
mentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4974–4983,
2019.

[7] Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, and
Xinggang Wang. Hierarchical aggregation for 3d instance
segmentation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 15467–15476,
2021.

[8] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1290–1299, 2022.

[9] Tianheng Cheng, Xinggang Wang, Lichao Huang, and
Wenyu Liu. Boundary-preserving mask r-cnn. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIV 16, pages
660–676. Springer, 2020.

[10] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3075–3084,
2019.

[11] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 3075–3084,
2019.

[12] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017.

[13] Ruoxi Deng, Chunhua Shen, Shengjun Liu, Huibing Wang,
and Xinru Liu. Learning to predict crisp boundaries. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 562–578, 2018.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[15] Yuxin Fang, Shusheng Yang, Xinggang Wang, Yu Li, Chen
Fang, Ying Shan, Bin Feng, and Wenyu Liu. Instances as
queries. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6910–6919, 2021.

[16] Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submani-
fold sparse convolutional networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 9224–9232, 2018.

[17] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg:
Occupancy-aware 3d instance segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2940–2949, 2020.

[18] Tong He, Chunhua Shen, and Anton Van Den Hen-
gel. Dyco3d: Robust instance segmentation of 3d point
clouds through dynamic convolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 354–363, 2021.

[19] Ji Hou, Angela Dai, and Matthias Nießner. 3d-sis: 3d se-
mantic instance segmentation of rgb-d scans. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4421–4430, 2019.

[20] Ji Hou, Benjamin Graham, Matthias Nießner, and Saining
Xie. Exploring data-efficient 3d scene understanding with
contrastive scene contexts. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15587–15597, 2021.

[21] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-
Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point
grouping for 3d instance segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and Pattern
recognition, pages 4867–4876, 2020.

[22] Jean Lahoud, Bernard Ghanem, Marc Pollefeys, and Mar-
tin R Oswald. 3d instance segmentation via multi-task met-
ric learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9256–9266, 2019.

[23] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified trans-
former for 3d point cloud segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8500–8509, 2022.

549



[24] Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, and
Kui Jia. Instance segmentation in 3d scenes using semantic
superpoint tree networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2783–
2792, 2021.

[25] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen,
and Marianna Pensky. Sparse convolutional neural networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 806–814, 2015.

[26] Chen Liu and Yasutaka Furukawa. Masc: Multi-scale affinity
with sparse convolution for 3d instance segmentation. arXiv
preprint arXiv:1902.04478, 2019.

[27] Zhijian Liu, Haotian Tang, Shengyu Zhao, Kevin Shao, and
Song Han. Pvnas: 3d neural architecture search with point-
voxel convolution. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(11):8552–8568, 2021.

[28] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong.
Group-free 3d object detection via transformers. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 2949–2958, 2021.

[29] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[30] Daniel Maturana and Sebastian Scherer. 3d convolutional
neural networks for landing zone detection from lidar. In
2015 IEEE international conference on robotics and au-
tomation (ICRA), pages 3471–3478. IEEE, 2015.

[31] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pages 922–928. IEEE, 2015.

[32] Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao
Huang. 3d object detection with pointformer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7463–7472, 2021.

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017.

[34] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017.

[35] David Rozenberszki, Or Litany, and Angela Dai. Language-
grounded indoor 3d semantic segmentation in the wild. In
Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXIII, pages 125–141. Springer, 2022.

[36] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (fpfh) for 3d registration. In 2009
IEEE international conference on robotics and automation,
pages 3212–3217. IEEE, 2009.

[37] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and
Michael Beetz. Aligning point cloud views using persistent
feature histograms. In 2008 IEEE/RSJ international con-
ference on intelligent robots and systems, pages 3384–3391.
IEEE, 2008.

[38] Jonas Schult, Francis Engelmann, Alexander Hermans, Or
Litany, Siyu Tang, and Bastian Leibe. Mask3d for 3d seman-
tic instance segmentation. arXiv preprint arXiv:2210.03105,
2022.

[39] Hualian Sheng, Sijia Cai, Yuan Liu, Bing Deng, Jianqiang
Huang, Xian-Sheng Hua, and Min-Jian Zhao. Improving 3d
object detection with channel-wise transformer. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 2743–2752, 2021.

[40] Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir
Tankovich, Soroosh Yazdani, Kwang Moo Yi, and Andrea
Tagliasacchi. Neuralbf: Neural bilateral filtering for top-
down instance segmentation on point clouds. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 551–560, 2023.

[41] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin,
Hanrui Wang, and Song Han. Searching efficient 3d archi-
tectures with sparse point-voxel convolution. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXVIII, pages
685–702. Springer, 2020.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[43] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and
Chang D Yoo. Softgroup for 3d instance segmentation on
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2708–
2717, 2022.

[44] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and
Chang D Yoo. Softgroup for 3d instance segmentation on
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2708–
2717, 2022.

[45] Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen
Wang, Andrew Markham, and Niki Trigoni. Learning ob-
ject bounding boxes for 3d instance segmentation on point
clouds. Advances in neural information processing systems,
32, 2019.

[46] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J
Guibas. Gspn: Generative shape proposal network for 3d
instance segmentation in point cloud. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3947–3956, 2019.

[47] Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, and
Yunhe Wang. Maskgroup: Hierarchical point grouping and
masking for 3d instance segmentation. In 2022 IEEE Inter-
national Conference on Multimedia and Expo (ICME), pages
1–6. IEEE, 2022.

550


