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Abstract

Interactions between humans are diverse and context-
dependent, but previous works have treated them as cate-
gorical, disregarding the heavy tail of possible interactions.
We propose a new paradigm of learning human-human in-
teractions as free text from a single still image, allowing for
flexibility in modeling the unlimited space of situations and
relationships between people. To overcome the absence of
data labelled specifically for this task, we use knowledge
distillation applied to synthetic caption data produced by a
large language model without explicit supervision. We show
that the pseudo-labels produced by this procedure can be
used to train a captioning model to effectively understand
human-human interactions in images, as measured by a va-
riety of metrics that measure textual and semantic faith-
fulness and factual groundedness of our predictions. We
further show that our approach outperforms SOTA image
captioning and situation recognition models on this task.
We will release1 our code and pseudo-labels along with
Waldo and Wenda, a manually-curated test set for still im-
age human-human interaction understanding.

1. Introduction
“No man is an island entire of itself.” -John Donne

Humans are social beings. As such, interactions among
people are ubiquitous and diverse, affected by various fac-
tors including social context and cultural norms. Reason-
ing about these interactions is crucial for gaining a holistic
understanding of visual scenes depicting people. However,
in spite of significant progress in analyzing isolated human
actions [29, 73, 79] and relationships between entities and
objects [27, 83], far less attention has been devoted towards
an automatic understanding of human-human interactions
(HHI). This is despite the importance of this task for appli-
cations such as interactive robotics, social behaviour under-
standing, and captioning systems for the visually impaired.

There are a number of factors that make the analysis of

1via our project page https://learning-interactions.
github.io

Figure 1. How would you describe the interactions depicted in
these images? There are unlimited possible interactions between
people which cannot be easily described by a fixed set of cate-
gories or actions. Context plays a crucial role, as in the left image
where the clothing and cake in the background help to interpret
the depicted interaction. Moreover, interactions may be involve
participants at a physical distance as in the image on the right. To
model the heavy tail of possible interactions, we propose to learn
HHI as free text (see below2 for predictions using our method).

HHI difficult. The space of possible interactions between
people is vast and requires understanding social context and
physically non-local relationships, as illustrated in Figure 1.
In addition, images depicting HHI may have multiple inter-
pretations, some of which may be simultaneously correct.
For example, the image on the left might depict “celebrat-
ing a wedding” as well as “dancing”. Contextual cues such
as the cake in the background of the image provide addi-
tional information that hints at the depicted HHI.

Prior works targeting HHI understanding focus on a
small fixed number of interactions; representative works in-
clude [63, 65, 43, 30], all of whose models are trained to
recognize no more than ten interaction classes. In this work,
we are interested in modeling the heavy tail of possible HHI
to better understand the rich variety of ways in which people
interact. To this aim, we propose to model HHI understand-
ing as free text generation; since HHI are not confined to a
fixed set of categories or even to a syntactic class such as
verbs, HHI as free text enables the expression of an infinite
variety of possible interactions. Furthermore, in contrast to
previous works that frequently rely on extra context such
as video data [60], we use a single image with no addi-
tional information (during inference), making our method
more widely applicable. We focus on what Stergiou and

2A model fine-tuned on our pseudo-labels yields “dancing” and “hav-
ing a picnic”.
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Poppe [60] term dyadic interactions—pairwise interactions
between two people. Our goal is to identify the most salient
dyadic interaction given an image of two or more people
interacting.

One of the primary challenges to modeling HHI is a
scarcity of labelled data for this particular task. There are
only a handful of relatively small datasets specific to HHI,
and larger video datasets for action recognition are lack-
ing in coverage of interactions (see Table 1). To better
model the heavy tail of possible HHI, we leverage the abun-
dance of high-quality images of people and associated tex-
tual captions available on the Internet. In particular, we use
the Who’s Waldo dataset [13] that contains 270K image-
caption pairs from Wikimedia Commons depicting people
captured in a broad range of situations. Unlike many other
image captioning datasets, Who’s Waldo focuses on human-
centric situations which are described using real-world cap-
tioned Internet data, and thus is more relevant to HHI un-
derstanding. However, it is extremely challenging to learn
HHI from raw Internet captions directly, due to significant
noise introduced by clutter and irrelevant details. To over-
come this, we infer interactions from the original captions
by applying knowledge distillation to synthetic data gener-
ated by a large language model, without explicit supervi-
sion. This approach allows for creating accurate pseudo-
labels that provide textual descriptions of the HHI depicted
in the images. We will release these pseudo-labels along
with a manually annotated test set containing 1K image-
interaction pairs from diverse Internet images which we
name Waldo and Wenda, a new benchmark for our paradigm
of HHI understanding as free text on still images, capturing
the heavy tail of human-human interactions.

We demonstrate the utility of these pseudo-labels for
learning HHI from images by training captioning models
and using them as targets for a language modelling objec-
tive. We provide qualitative and quantitative analysis on
the Waldo and Wenda test set; in addition, we evaluate this
method on a larger scale by applying it to verb prediction
on the imSitu situation recognition dataset [75], which we
filter to select for images relevant to HHI.

Because we predict HHI as free text rather than categor-
ically as in previous works, we propose a set of evaluation
metrics chosen to measure important aspects of predicted
HHI quality, namely textual similarity, factual grounded-
ness, and verb similarity. Our evaluation shows that our
HHI pseudo-labels allow for generating meaningful HHI
free text descriptions from images, as measured by these
metrics. We also show that learning on these pseudo-labels
captures HHI substantially more effectively than either us-
ing existing SOTA image captioning models as-is or than
training on interactions extracted with naive syntactic pars-
ing. Explicitly stated, our key contributions are:

• A new paradigm and benchmark for HHI understand-

ing from images—i.e., predicting interactions as free
text—allowing to better understand the vast variety of
ways in which people interact.

• A method for isolating HHI from noisy Internet cap-
tions using knowledge distillation applied to a large
language model, and a set of pseudo-labels generated
by this method.

• An evaluation framework with metrics that capture
HHI understanding, and results demonstrating that
training image captioning models on these pseudo-
labels can allow for modeling the heavy tail of possible
HHI across various situations and configurations more
effectively than SOTA image captioning and situation
recognition models.

2. Related Work

Human action recognition. Human actions span a range
from simple to complex. These include simple actions
(“running”), human-object interactions (“dribbling a ball”),
human-human interactions (“shaking hands”), and group
actions (“gathering”). Because of the dynamic nature of
actions, a large portion of work on action recognition uses
video data [62, 64, 6, 82, 68]. Other approaches use other
modalities such as depth or skeleton data [76, 48, 73].
Among video-based approaches, some use shallow ap-
proaches separating feature representation of action videos
and classification of these features, while others use end-
to-end trainable networks (see [29, 79] for detailed sur-
veys). Works on human-object interactions (HOI) may
use separate modules such as human and object detectors
and relation modules [8, 20, 16], pose and gaze estima-
tion [35, 66, 71], or graph neural networks applied to scene
graphs [49, 72, 81, 36]. One line of recent work on HOI
uses end-to-end models, frequently with transformer archi-
tectures [61, 83, 10, 27, 9]. In our work, we aim to predict
the most salient interaction between the pictured individuals
in an end-to-end manner from still image data alone.

HHIs are a subset of human actions which pose particu-
lar challenges to automatic recognition, due to non-locality,
context dependency, and ambiguity. A number of works
have explicitly tackled HHI recognition, as surveyed by
Stergiou and Poppe [60]. As with general action recogni-
tion, these approaches most commonly use video data as
input [43, 19, 67, 58, 34]. However, a few works have tack-
led the more challenging task of HHI recognition in still im-
ages. Some of these use classical computer vision methods
to estimate human locations and poses in photos for pre-
dicting HHI [74, 7, 1]. Xiong et al. [70] use a CNN archi-
tecture with human, face, and object detection features for
event recognition. These works all treat HHI as categorical,
predicting them from a small set of predefined interaction
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classes. In contrast, we use free text to describe HHIs al-
lowing for more flexibility than categorical recognition.

HHI datasets. Most existing datasets of HHI or with sub-
sets representing HHI classes only include a small num-
ber of interaction categories. The majority consist of
video data, either curated [54, 77, 19, 22] or YouTube-
based [59, 42, 80].

There are few image datasets dedicated to human ac-
tions, of which HHI are a subset. Ronchi and Perona [53]
introduce the Visual Verbnet dataset consisting of images
with dense verb annotations. Yatskar et al. [75] introduce
the imSitu dataset for image situation recognition, involving
recognizing the action portrayed in a still image (often with
a human participant or participants) as well as predicting se-
mantic roles for observed entities. In both cases the labels
are selected from a fixed set of categories—single verbs in
the case of imSitu, verbs or phrases containing verbs (e.g.
“shake hands”) for Visual Verbnet. Other image datasets
such as Visual Genome [31] contain labeled entities, objects
and their relationships, but focus more on general objects
rather people and their interactions.

See Table 1 for a comparison of the most related datasets
with our proposed HHI dataset. Unlike prior datasets, ours
represents HHI as free text and not as fixed categories.

In-context learning with large language models (LLMs).
The recent explosive growth in size and NLP benchmark
performance of LLMs has led to their use as foundation
models for use on downstream tasks [3]. Models such
as GPT-3 show an emergent in-context learning property,
whereby they may solve new tasks when prompted with
only a few examples of a new task, or even just with a task
description, without any parameter updates [5, 14]. The out-
put of such models may then be used as supervised train-
ing data for conventional model fine-tuning. The idea of
training on data generated using in-context learning to cre-
ate a large training data set has been successfully applied
to achieve state-of-the-art results on the SuperGLUE NLP
benchmark by Wang et al. [69]. In our case, we use this data
to perform sequence-level knowledge distillation – transfer-
ring the knowledge exhibited by such a large model into a
smaller model by training on its output sequences [28, 21].

The use of LLM-generated synthetic data for multimodal
learning has been explored by Brooks et al. [4], who use
caption pairs generated by GPT-3 as auxiliary data for train-
ing a conditional diffusion model to perform image editing.
Their method uses hundreds of manually labelled pairs of
texts as training data; however, our pseudo-labelling method
uses no explicit supervision, instead using syntactic parsing
to generate automatic seeds for our synthetic data genera-
tion pipeline.

Dataset #Seq #HHI Classes

Curated videos
UT-Interaction [54] 60 6
TV Human Interaction [45] 300 4
Hollywood2 [39] 3669 4
ShakeFive2 [19] 153 5
SBU Kinect [77] 300 8
AVA [22] ∼57.6k 13
NTU RGB+D (120) [56, 37] ∼114k 26

YouTube-based videos
Kinetics [26, 59] ∼500k 11
Moments in Time [42] ∼800k 32
HACS [80] ∼50k 23

Still images
imSitu [75] 126k 50∗

Visual Verbnet [53] 10k 52∗

Who’s Waldo [13] (w/ our labels) 127k ∞∗ (free text)
∗The number of HHI classes for Visual Verbnet includes verbs in the
communication, contact and social categories, which sometimes mark
solo actions or human-object interactions. The imSitu dataset contains a
total of 504 verbs. We estimate the number of HHI interactions using an
automatic methodology detailed in Section 5. Our free text pseudo-labels
are limited to the types of interactions available in Who’s Waldo.

Table 1. Comparison of HHI datasets. Prior datasets usually cap-
ture video data and target a small number of interaction classes.
Several datasets focus on human actions, some of which include
HHI. We denote the number of video/image samples with #Seq,
and the number of HHI classes with #HHI Classes (values are
taken from Stergiou and Poppe [60] where relevant). In our work,
we devise a technique for generating HHI pseudo-labels for Who’s
Waldo [13], a dataset containing real-world image–caption pairs,
allowing for modeling the heavy tail of HHI.

3. LLM-Based HHI Inference from Captions
To model the heavy tail of possible HHI using free text,

leverage weak supervision in the form of image captions.
We turn to Who’s Waldo [13], a dataset containing image–
caption pairs depicting human-centric scenes scraped from
Wikimedia Commons (with names masked using their sug-
gested [NAME] token). As illustrated in Figure 2, the men-
tions of the depicted HHI are embedded in detailed textual
captions, and do not directly correspond to syntactic struc-
tures such as verbs in the text. For instance, the first de-
picted caption is long and the only relevant detail is the
phrase “gets at [sic] high five”; the last depicted caption
contains no verb (while the noun phrase “Ski Tour” hints
at the relevant interaction). These captions are thus inade-
quate for training an HHI understanding model directly, as
a captioning model fine-tuned on them mainly learns to at-
tend to details that are irrelevant for our task (as shown in
Section 5.3). We therefore present a large language model
(LLM)-based abstractive text summarization technique that
produces clean interaction texts from the original Internet
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Parsing-based:[*] getting five from [*]
Final: [*] getting a high five from [*]

[*] and [*] playing
[*] playing doublebass with [*]

∅[NAME]
[*] skiing with [*]

Figure 2. HHI distilled from raw Internet captions alongside their corresponding images. On top we show several images and
captions from the Who’s Waldo dataset [13], with [*] denoting masked named person entities. Our syntactic parsing approach allows
for extracting an initial partial set of interactions (first row). We refine and enlarge this initial set using our abstractive summarization
model which yields our final HHI pseudo-labels (second row). While the original captions possibly contain many additional details or no
verb-based interaction at all (for example, see the rightmost image), our abstractive HHI pseudo-labels succeed in describing HHI visible
in the associated images.

captions, without explicit supervision.
Our unsupervised pseudo-labelling approach operates in

three stages, illustrated in Figure 3: (1) We extract syntac-
tic parsing-based interactions from captions from the Who’s
Waldo dataset, as well as constructing new synthetic inter-
action texts. (2) We prompt an LLM using the interaction–
caption pairs from Who’s Waldo along with the new inter-
actions. The output synthetic captions are filtered using a
pretrained natural language inference (NLI) model and var-
ious textual heuristics, to select for those that correspond to
the new interactions. (3) We train an abstractive summariza-
tion model on these synthetic caption–interaction pairs; this
model learns to output HHI from noisy Internet captions.
As seen in Figure 2, these interaction pseudo-labels accu-
rately describe the HHI visible in their associated images.
Below, we provide more details for each stage (Sections
3.1–3.3). We then present Waldo and Wenda, our manually-
curated HHI test set, in addition to statistics and an ethical
discussion (Section 3.4).

3.1. Constructing interaction texts

We first define a rule-based approach for extracting in-
teractions via syntactic parsing. Specifically, we extract the
first verb in the caption with a [NAME] subject along with
its direct objects and the heads of its prepositional argu-
ments. This roughly corresponds to an interaction, although
it may sound unnatural. This is also limited to captions con-
taining verb phrases. We apply this procedure to captions
from Who’s Waldo to obtain corresponding parsing-based
interactions.

We also construct new synthetic interactions by first ap-
plying this parsing procedure to scraped texts of news arti-
cles from the CC-News dataset [23] (from Common Crawl,
containing text without image data), and then using the out-
put interaction texts to prompt the large (1.3B-parameter)
language model GPT-Neo [2, 17], which produces a set of
diverse and more natural-sounding interactions.

3.2. Synthetic caption data generation

Using the caption–interaction pairs from Who’s Waldo
and the new synthetic interactions as seeds, we generate
synthetic caption–interaction pairs using in-context learn-
ing with GPT-Neo. This allows us to create a larger and
more diverse set of caption–interaction pairs than by us-
ing caption–interaction pairs directly from Who’s Waldo.
These pairs serve as the teacher model outputs used for
knowledge distillation in the following section.

At each step, the language model is shown a prompt
beginning with multiple randomly-selected examples of
caption–interaction pairs from Who’s Waldo. This pro-
vides context for the model to understand the task at hand–
associating interactions with captions that contain them. We
use ten examples in each prompt to balance between the
providing sufficient context with computational considera-
tions. The prompt ends with a new desired interaction, and
the language model proceeds to generate a caption corre-
sponding to this interaction. We filter these results using
a pretrained NLI model and various textual heuristics de-
tailed further in the supplementary material, ensuring that
the output caption logically is properly formatted and logi-
cally entails the corresponding interaction.

3.3. Knowledge distillation for summarization

Using the synthetic data generated in the previous stage,
we fine-tune a smaller (220M-parameter) student T5 model,
a sequence-to-sequence transformer network whose pre-
training tasks include text summarization [52]. We use the
synthetic captions (with the task prefix “summarize:”) as
input and the synthetic interactions of the target text for
fine-tuning. Empirically, we find that our fine-tuned stu-
dent model is able to summarize captions and output valid
interactions even when the caption does not contain a verb
or has a syntactic structure that the syntactic parsing-based
method could not process.

We apply this model to the captions in the Who’s Waldo
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Synthetic caption generation with teacher LM and NLI filtering Fine-tuning student LM Pseudo-label inference

Figure 3. LLM-Based HHI Extraction from Captions. We generate synthetic interaction-caption pairs via in-context learning (left), use
them to fine-tune a summarization model (center), and then use this model to producing HHI pseudo-labels for captions in Who’s Waldo
(right), as detailed in Section 3. Captions are shown in red boxes, interaction texts in blue, and synthetic texts in italic letters. LMT and
LMS indicate teacher and student language models respectively.

dataset to create pseudo-labels representing interactions as
free text. See Figure 2 for examples of such pseudo-labels.

3.4. Our HHI dataset

Using our learned abstractive summarization model, we
may generate interaction pseudo-labels from Who’s Waldo
captions. Out of the ∼270k samples in Who’s Waldo, we
use only those ∼130k containing at least two human face
detections, using the detections provided by Cui et al. [13].
We filter out duplicate and near-duplicate images, those
with high similarity to test set images, and samples with
pseudo-labels that do not pass a few simple text-based fil-
tering rules, including enforcing the format of [NAME], fol-
lowed by a present continuous verb (“-ing”), and including
another [NAME] token. We are left with ∼126k images
with pseudo-labels in total, which we hereby refer to as
pHHI.

The Waldo and Wenda Benchmark. We also create Waldo
and Wenda3, an HHI test set containing 1K manually cu-
rated image–interaction text pairs. In order to test general-
ization to HHI understanding across a wide variety of natu-
ral images, we include data from three sources: (1) 300 im-
ages from Who’s Waldo, (2) 300 images from COCO Cap-
tions [11], (3) 400 images from Conceptual Captions [57].
The images are selected from the validation and test splits
of the relevant datasets. As the distribution of HHI in natu-
ral photographs is highly imbalanced—for instance, images
in captioning datasets often display people standing side by
side and posing for photographs—we curate this test set to
represent a wide variety of interactions and to reflect per-
formance on the long tail of uncommon HHI. Examples of
images from Waldo and Wenda can be seen in Figures 1, 2,
and 4.

Dataset Statistics. Overall, our pHHI training dataset con-
tains 126,696 pairs of images and pseudo-labels. These la-
bels contain 1,263 unique verbs and 16,136 unique interac-
tions. The majority of the images (59.3%) only contain two

3Wenda appears in the Where’s Waldo? book series as Waldo’s girl-
friend.

detected people, with less than 5% of the images containing
more than six detected people. The Waldo and Wenda test
set contains 1,000 images along with their manually written
ground truth HHI labels. These include 238 unique verbs
and 575 unique interaction labels.

Ethical considerations. Our dataset inherits a diverse rep-
resentation of people (ages, ethnicities, geographic etc.)
from the Who’s Waldo dataset [13]. Furthermore, we use
their provided name masking to mitigate biases (e.g., gender
biases). We verify that all manually-curated test samples are
neutral in nature and do not contain lurid or negative mate-
rial. We perform similar verification on external test data, as
described in Section 5, to avoid exposure to harmful or of-
fensive behaviors. Furthermore, our pseudo-labels and test
set will only be made available for academic purposes.

4. Learning HHI from Still Images
In the previous section, we demonstrated how we can ob-

tain free text HHI pseudo-labels from the Internet captions
of the Who’s Waldo dataset [13]. We proceed to show how
we use these to supervise learning HHI from still images via
the paradigm of image captioning.

4.1. Models considered

After obtaining a set of images and pseudo-labels, we
consider the task of HHI in the framework of image cap-
tioning. Given (image, pseudo-label) pair (I, L), we train
an encoder-decoder network M to maximize the predicted
conditional likelihood of L using a cross-entropy loss. Dur-
ing inference, we use autoregressive beam search decoding
to generate text token by token, given I as input.

In order to evaluate the utility of transfer learning from
general image captioning to our HHI understanding setting,
we evaluate two choices for the model M :

(1) Vanilla encoder-decoder (EncDec). In this setting, we
fine-tune a simple encoder-decoder model. We use the im-
age encoder of pretrained CLIP-ViT [50], with its pooled
embedding output followed by a single linear projection
layer to match the hidden dimension of the decoder. For
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CLIPCap
(CC)

EncDec
(pHHI)

GT

person, left, and person,
right, receive a standing
ovation for their service.

[*] administering the oath
to [*]

[*] swearing in [*]

friday night rivals was for
high school vs game!

[*] coaching [*]

[*] huddling with [*]

wallpaper with a concert
and a well dressed person
entitled pop artist.

[*] performing with [*]

[*] dancing with [*]

person, left, shakes hands with
person, daughter of person,
during a ribbon cutting ceremony.

[*] cutting the ribbon with [*]

[*] cutting a ribbon with [*]

Figure 4. Results on the Waldo and Wenda test set. We compare results obtained by a baseline, our vanilla encoder-decoder technique
(trained on our pHHI data), and the ground truth labels in Waldo and Wenda, with [*] denoting [NAME] tokens that represent person
entities. As illustrated above, our method generates text describing the HHI depicted in the image, without attending to other irrelevant
details. In comparison, the SOTA captioning model CLIPCap used as-is may not output an interaction at all (middle two images). We also
observe that our model predicts HHI that may require both a verb and other arguments to adequately understand (leftmost and rightmost
images).

the decoder we use pretrained GPT-2 [51] with a causal
language modelling head and cross-attention over the en-
coder output. Consistent with previous works on fine-tuning
vision-and-language models [38, 41, 78], we freeze the
weights of the image encoder as we fine-tune it on our pHHI
data. By considering this model that was not previously
trained on image captioning, we aim to evaluate the extent
to which our pHHI aid in learning to understand the seman-
tics of HHI in images (rather than simply cueing a caption-
ing model to the correct surface form of HHI labels).

(2) Fine-tuned captioner. The second approach we con-
sider is to apply transfer learning to a SOTA captioning
model by fine-tuning it on our pHHI data. Because the
Conceptual Captions (CC) dataset is more people-centric
than COCO and thus closer to our use case, we pick CLIP-
Cap [41] pretrained on CC as the base model for fine-tuning.
Consistent with CLIPCap’s training method, we freeze its
image encoder and fine-tune the model on our pHHI data.

4.2. Training and Decoding

For all models, we use cross-entropy loss and consistent
hyperparameter settings. For each model, we decode using
beam search with 32 beams. We report metric values for the
top 1, 5, and 8 beams.

5. Evaluation
5.1. Test Datasets

We evaluate our models on the following datasets:

Waldo and Wenda. As detailed in Section 3.4, this consists
of 1,000 images with manually-written ground truth labels.

Examples of ground truth labels along with model predic-
tions can be seen in Figure 4. We report metric values aver-
aged over the three data sources (Who’s Waldo, Conceptual
Captions, COCO) of Waldo and Wenda in Table 2. We also
show a breakdown of data source in Table 3.

imSitu-HHI. We use an 8,021-sample subset of the im-
Situ [75] situation recognition benchmark, which we refer
to as imSitu-HHI, to perform a large-scale evaluation of our
models. Although imSitu does not contain free text HHI
labels, it does contain categorical verb labels which can be
used for comparison. Additionally, as the majority of im-
ages in imSitu do not depict HHI, we first filter for rele-
vant samples as follows: We use person detections from
YoloV5 [15] to select for images containing at least two hu-
mans. We further filter to select only samples with semantic
frames containing at least two human participants. Finally,
due to the noisy nature of this filtering, we only use verbs
supported by at least 100 images in this filtered subset, as
these verbs are most likely to describe HHI. We use these
verb labels as the ground truth and evaluate predictions with
the verb similarity metric as described below.

5.2. Baseline comparisons

We compare our approach to two types of SOTA model
of that do not use our pHHI data as baselines:

(1) Pretrained captioner. The first baseline approach
that we test is the use of a SOTA model that has already been
pretrained for image captioning. We test the recent cap-
tioning models ExpansionNet v2 (ENv2) [25] and CLIP-
Cap [41]. We use these captioners as-is and evaluate our
metrics on their outputs with beam search decoding. CLIP-
Cap is avilable with pretrained weights for both COCO [11]
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and Conceptual Captions (CC) [57], and thus we test both
models. ENv2 only uses COCO weights.

(2) Pretrained situation recognition model. We pro-
vide a comparison to the results of the CoFormer model [12]
for grounded situation recognition with pretrained weights.
Unlike weakly-supervised models trained on our pseudo-
labels, which were generated from natural captions, Co-
Former is supervised by training on the manually-labelled
SWiG dataset [47], an extension of imSitu which includes
grounding information for arguments that are visible in the
accompanying images, and the model predicts the relevant
verb, arguments, and grounding information given an im-
age. We evaluate CoFormer by using its predicted verb,
discarding semantic frame and grounding predictions since
these semantic arguments do not directly map to the text of
a human-human interaction string. See the supplementary
material for details on how we insert its verb predictions
into text prompts for metric calculations.

5.3. Ablations

In order to ablate the effect of our pseudo-labelling, we
also report results of a captioning model fine-tuned on the
entire text of the captions provided in Who’s Waldo (listed
in 2 and 4 under training data as “WW”). In the supplemen-
tary material we also provide a detailed comparison with re-
sults when training directly on the syntactic parsing-based
seeds described in Section 3.1.

5.4. Metrics

A number of metrics have been proposed for natural lan-
guage generation tasks, measuring various aspects of text
quality [24, 18]. As no prior works (to the best of our
knowledge) predict HHI as free text, we propose a set of
metrics that evaluate various relevant aspects of generated
text:

Textual similarity. We use the BLEURT [55] metric to
measure similarity to the ground truth interaction. This is
a learned metric for text generation which measures simi-
larity between the text output by a model and the reference
text. Because our test set is relatively small and the ref-
erence texts are short, this better reflects textual similarity
than ngram-based metrics such as BLEU [44] which have
high variance and must be averaged over large datasets, as
is shown in detail in the supplementary material.

Factual groundedness. A key property of generated text
is whether it is consistent or contradictory with respect to
the ground truth (such as a source document in the case of
summarization, or a reference caption in the case of im-
age captioning) [32]. This may be quantified by using the
scores output by a natural language inference (NLI) model,
in order to measure the degree of factual groundedness or
hallucination in generated text [40, 33]. For example, given

Method Train Data BL ↑ pe ↑ pc ↓ sim ↑
Results@1
CoFormer SWiG 0.41∗ 0.33∗ 0.28∗ 0.35
ENv2 COCO 0.27 0.25 0.33 0.41
CLIPCap COCO 0.28 0.34 0.37 0.42
CLIPCap CC 0.27 0.18 0.38 0.35
CLIPCap CC+WW 0.26 0.16 0.40 0.17
EncDec pHHI 0.38 0.30 0.37 0.41
CLIPCap CC+pHHI 0.42 0.41 0.32 0.46

Results@5
ENv2 COCO 0.31 0.39 0.19 0.46
CLIPCap COCO 0.31 0.47 0.24 0.46
CLIPCap CC 0.33 0.32 0.20 0.47
CLIPCap CC+WW 0.33 0.29 0.24 0.27
EncDec pHHI 0.51 0.61 0.09 0.59
CLIPCap CC+pHHI 0.57 0.71 0.07 0.65

Results@8
ENv2 COCO 0.32 0.43 0.17 0.48
CLIPCap COCO 0.32 0.50 0.21 0.46
CLIPCap CC 0.35 0.36 0.16 0.49
CLIPCap CC+WW 0.35 0.33 0.21 0.31
EncDec pHHI 0.54 0.65 0.19 0.65
CLIPCap CC+pHHI 0.59 0.76 0.04 0.69

∗Evaluated by using the best of two prompt templates for each item, as
described in the supplementary material.

Table 2. Results on Waldo and Wenda. The listed metrics are
BLEURT (BL) and NLI scores (pe, pc) and verb embedding simi-
larity (sim). CC+WW/pHHI indicates models that were initialized
with pretrained CC weights and subsequently fine-tuned on Who’s
Waldo captions or on pHHI respectively. Best results are in bold,
and second best are underlined. Results are aggregated across the
three data sources of Waldo and Wenda. For models using beam
search, we report results for top 1, 5, and 8 beams.

an image with ground truth label [NAME] sitting next to
[NAME], the prediction [NAME] standing with [NAME]
logically contradicts the reference label and thus is a factual
hallucination. To measure this, we use scores (pe, pc) from a
pretrained NLI model to estimate the factual groundedness
of the predicted text, where pe is the probability of entail-
ment and pc is the probability of contradiction. We treat the
image caption from Waldo and Wenda as the premise and
the model’s prediction as the hypothesis for NLI inference.
For test items sourced from COCO Captions, in which im-
ages correspond to multiple reference captions, we use the
first reference as the premise for this calculation.

Verb similarity. We calculate the average cosine similarity
of the predicted and ground truth verbs in GloVe [46] em-
bedding space. The motivation for this metric is that a pre-
diction may be valid or nearly valid even if it is not identical
to the ground truth label as long as the semantic distance be-
tween the verbs is small (e.g. “hugging” vs. “embracing”).
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WW CC COCO
Method Train Data BL ↑ pe ↑ pc ↓ sim ↑ BL ↑ pe ↑ pc ↓ sim ↑ BL ↑ pe ↑ pc ↓ sim ↑
Results@1
CoFormer SWiG 0.40∗ 0.29∗ 0.35∗ 0.34 0.45∗ 0.40∗ 0.43∗ 0.38 0.37∗ 0.30∗ 0.33∗ 0.33
Env2 COCO 0.24 0.20 0.28 0.38 0.26 0.20 0.45 0.41 0.31 0.36 0.26 0.45
CLIPCap COCO 0.27 0.37 0.35 0.39 0.26 0.26 0.43 0.43 0.31 0.38 0.33 0.44
CLIPCap CC 0.30 0.24 0.42 0.36 0.25 0.18 0.38 0.40 0.26 0.11 0.34 0.30
CLIPCap CC+WW 0.28 0.12 0.59 0.27 0.26 0.21 0.34 0.15 0.23 0.15 0.28 0.10
EncDec pHHI 0.41 0.38 0.30 0.42 0.38 0.30 0.44 0.42 0.34 0.22 0.36 0.38
CLIPCap CC+pHHI 0.42 0.38 0.33 0.45 0.44 0.44 0.33 0.47 0.40 0.40 0.30 0.47

Results@5
Env2 COCO 0.28 0.30 0.17 0.42 0.30 0.32 0.28 0.46 0.35 0.55 0.12 0.51
CLIPCap COCO 0.31 0.50 0.21 0.42 0.29 0.38 0.28 0.46 0.34 0.52 0.23 0.49
CLIPCap CC 0.36 0.41 0.23 0.46 0.30 0.31 0.23 0.50 0.32 0.23 0.14 0.43
CLIPCap CC+WW 0.33 0.20 0.50 0.33 0.34 0.37 0.13 0.28 0.33 0.31 0.09 0.20
EncDec pHHI 0.55 0.61 0.11 0.63 0.51 0.65 0.10 0.59 0.46 0.56 0.07 0.56
CLIPCap CC+pHHI 0.57 0.64 0.10 0.64 0.60 0.75 0.06 0.68 0.53 0.74 0.05 0.63

Results@8
Env2 COCO 0.29 0.34 0.15 0.42 0.31 0.35 0.25 0.48 0.36 0.59 0.10 0.53
Env2 COCO 0.32 0.53 0.18 0.43 0.30 0.41 0.25 0.47 0.35 0.55 0.21 0.50
CLIPCap CC 0.38 0.47 0.17 0.48 0.32 0.35 0.19 0.53 0.34 0.26 0.11 0.45
CLIPCap CC+WW 0.34 0.22 0.48 0.35 0.36 0.42 0.10 0.33 0.35 0.34 0.06 0.25
EncDec pHHI 0.60 0.69 0.06 0.69 0.55 0.72 0.05 0.64 0.50 0.66 0.04 0.61
CLIPCap CC+pHHI 0.60 0.70 0.07 0.68 0.63 0.81 0.03 0.72 0.55 0.78 0.03 0.67

∗Evaluated by using the best of two prompt templates for each item, as described in the supplementary material.

Table 3. Results on Waldo and Wenda split by data source – Who’s Waldo (WW), Conceptual Captions (CC), and COCO Captions. For
models using beam search, we report results for top 1, 5, and 8 beams.

To evaluate this on free text predictions, we either select the
first non-[NAME] word in the output (for models trained
on pHHI) or extract its first verb using a syntactic parsing
model. If syntactic parsing does not yield a verb, the zero
vector is used as the given embedding.

5.5. Results and Discussion

For Waldo and Wenda, we report all of the metrics de-
scribed above. For imSitu-HHI, we only use the verb simi-
larity metric since the ground truth label is a single verb. We
report average similarity over all samples in imSitu-HHI as
well as displaying averages for the most-supported verbs.
See Tables 2–4 for quantitative results, and see Figure 4 for
a visual comparison on Waldo and Wenda. Note that we
do not include CoFormer in the table of imSitu-HHI results
since it was trained directly on some of these items; see
the supplementary material for analysis of CoFormer on in-
distribution and out-of-distribution images in imSitu-HHI.

Overall we see that training on our pseudo-labels im-
proves performance on our benchmarks. In Tables 2
and 3, showing results on Waldo and Wenda, the best-
performing model by all metrics is CLIPCap fine-tuned
with our pseudo-labels. This holds across data sources, as
seen in Table 3, showing that this improvement general-

izes to images beyond those originating in the Who’s Waldo
dataset. This model is also the best-performing on average
and across a majority of verb categories on imSitu-HHI as
seen in Table 4. Qualitative comparison shows that the cap-
tioning models used as-is output text that is far from the
ground truth HHI labels, containing many irrelevant details
and not necessarily describing an interaction. This can be
seen in Figure 4, where the CLIPCap (CC) captions contain
many hallucinated, non-factual details.

While transfer learning with pretrained CLIPCap yields
the best results, we also observe that the vanilla Encoder-
Decoder fine-tuned on our pseudo-labels also performs
well, achieving the second-best BLEURT score on Waldo
and Wenda and second-best verbal similarity metrics over-
all and across many verb categories on imSitu-HHI. We in-
fer that our pseudo-labels do impart semantic knowledge
of HHI beyond simply cueing existing captioning models
to the surface form of HHI labels. Nevertheless, CLIPCap
fine-tuned on pHHI does generalize better across the data
from all sources in Waldo and Wenda and to imSitu-HHI
which is entirely out-of-distribution for this model.

We also note that the metrics improve dramatically for
both datasets when considering 5 or 8 beams. This is consis-
tent with the fact that beam search using models fine-tuned
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Results@1
ENv2 COCO 0.22 0.19 0.07 0.22 0.21 0.28 0.19 0.25 0.26 0.11 0.45 0.38 0.29 0.44 0.28 0.28
CLIPCap COCO 0.23 0.18 0.07 0.26 0.24 0.29 0.17 0.26 0.24 0.10 0.44 0.36 0.25 0.46 0.30 0.63
CLIPCap CC 0.27 0.16 0.25 0.37 0.26 0.21 0.23 0.28 0.35 0.16 0.46 0.31 0.37 0.38 0.26 0.53
CLIPCap CC+WW 0.09 0.02 0.08 0.12 0.05 0.30 0.08 0.10 0.09 0.06 0.25 0.07 0.09 0.11 0.05 0.08
EncDec pHHI 0.28 0.19 0.21 0.34 0.27 0.23 0.24 0.35 0.38 0.17 0.60 0.36 0.34 0.46 0.76 0.64
CLIPCap CC+pHHI 0.32 0.21 0.25 0.56 0.33 0.27 0.30 0.43 0.44 0.19 0.66 0.38 0.44 0.46 0.65 0.70

Results@5
ENv2 COCO 0.26 0.21 0.10 0.26 0.23 0.30 0.21 0.27 0.31 0.13 0.49 0.45 0.35 0.49 0.33 0.31
CLIPCap COCO 0.25 0.19 0.09 0.29 0.26 0.31 0.20 0.27 0.26 0.12 0.47 0.41 0.29 0.48 0.32 0.66
CLIPCap CC 0.35 0.21 0.30 0.48 0.33 0.28 0.31 0.37 0.43 0.21 0.56 0.42 0.48 0.47 0.31 0.64
CLIPCap CC+WW 0.18 0.05 0.15 0.22 0.14 0.60 0.16 0.17 0.22 0.11 0.46 0.15 0.21 0.22 0.15 0.24
EncDec pHHI 0.40 0.30 0.35 0.49 0.41 0.39 0.33 0.51 0.51 0.23 0.79 0.47 0.49 0.57 0.92 0.86
CLIPCap CC+pHHI 0.44 0.29 0.35 0.85 0.44 0.41 0.40 0.56 0.56 0.27 0.88 0.48 0.56 0.58 0.86 0.92

Results@8
ENv2 COCO 0.28 0.22 0.12 0.27 0.24 0.30 0.21 0.28 0.32 0.13 0.51 0.47 0.37 0.50 0.35 0.34
CLIPCap COCO 0.26 0.20 0.10 0.31 0.27 0.31 0.21 0.28 0.26 0.12 0.48 0.43 0.31 0.49 0.32 0.67
CLIPCap CC 0.37 0.23 0.31 0.51 0.34 0.31 0.32 0.40 0.45 0.22 0.59 0.45 0.51 0.49 0.32 0.70
CLIPCap CC+WW 0.21 0.06 0.16 0.25 0.16 0.62 0.16 0.20 0.24 0.12 0.51 0.20 0.23 0.26 0.18 0.32
EncDec pHHI 0.44 0.33 0.38 0.55 0.44 0.42 0.34 0.54 0.56 0.25 0.85 0.49 0.56 0.59 0.94 0.91
CLIPCap CC+pHHI 0.47 0.33 0.37 0.90 0.46 0.41 0.43 0.60 0.59 0.29 0.92 0.50 0.59 0.61 0.91 0.96

Table 4. Results on imSitu-HHI. In addition to the average verb embedding similarity between predicted verbs and the ground truth verb,
we also present mean similarities for the most common 15 verbs in imSitu-HHI. Best results are in bold, and second best are underlined.
For models using beam search, we report results for top 1, 5, and 8 beams.

on pHHI outputs a list of diverse candidate interactions, al-
lowing a more directed search in the space of HHI descrip-
tors, while beam search applied to captioning models as-is
tends to produce many slight variations of the same long
caption.

6. Conclusion

We present a new framework for learning to understand
human-human interactions in still images using weak su-
pervision from textual captions. We demonstrate the use
of knowledge distillation applied to a large language model
without explicit supervision to produce pseudo-labels that
can serve as targets for predicting interactions as free text.
We show that training on these pseudo-labels enables HHI
understanding beyond that of SOTA captioning and situ-
ation recognition models, and we provide the Waldo and
Wenda as a new benchmark for this task.

There are various avenues for future research to extend
our work. One possible direction is the incorporation of
visual grounding into HHI understanding. We predict the
most salient interaction in an image, which we assume to

be the interaction the one that is described or suggested in
its accompanying caption. It remains to localize the partic-
ipants, including generalizing to group interactions where
more than two participants are visible. Another important
aspect that remains to be explored is the hierarchical nature
of interactions. For example, the generic HHI label “meet-
ing” is valid for almost every image, while “shaking hands”
is more specific and valid for a subset of those images. Fur-
ther research could extend our results to hierarchical predic-
tion of multiple HHI labels for a single image.

Finally, we note the importance of style-content disen-
tanglement in HHI prediction, which our work does not ex-
plicitly consider. Scene cues in images can be important
for correctly identifying HHI, as illustrated in Figure 1, but
also may be misleading. For instance, an image of soldiers
in uniform is more likely to depict “saluting”, but HHI is
only valid if the image actually contains a salute. Future
work on disentangling style and content shows promise for
improving the robustness of HHI understanding models.
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