
µSplit: image decomposition for fluorescence microscopy

Ashesh1, Alexander Krull2, Moises Di Sante3, Francesco Silvio Pasqualini3, Florian Jug1,*

1Human Technopole, Italy, 2University of Birmingham, UK, 3University of Pavia, Italy

Abstract

We present µSplit, a dedicated approach for trained
image decomposition in the context of fluorescence mi-
croscopy images. We find that best results using regular
deep architectures are achieved when large image patches
are used during training, making memory consumption the
limiting factor to further improving performance. We there-
fore introduce lateral contextualization (LC), a novel meta-
architecture that enables the memory efficient incorporation
of large image-context, which we observe is a key ingredi-
ent to solving the image decomposition task at hand. We
integrate LC with U-Nets, Hierarchical AEs, and Hierar-
chical VAEs, for which we formulate a modified ELBO loss.
Additionally, LC enables training deeper hierarchical mod-
els than otherwise possible and, interestingly, helps to re-
duce tiling artefacts that are inherently impossible to avoid
when using tiled VAE predictions. We apply µSplit to five
decomposition tasks, one on a synthetic dataset, four oth-
ers derived from real microscopy data. Our method con-
sistently achieves best results (average improvements to the
best baseline of 2.25 dB PSNR), while simultaneously re-
quiring considerably less GPU memory. Our code and
datasets can be found at https://github.com/juglab/uSplit.

1. Introduction
Fluorescence microscopy [10] is routinely used to look at

living cells and biological tissues at cellular and sub-cellular
resolution [18]. Components of the imaged cells can be
highlighted using fluorescent labels, allowing biologists to
investigate individual structures of interest. Given the com-
plexity of biological processes, it is typically necessary to
look at multiple structures simultaneously, typically via a
temporal multiplexing scheme [10] that separates them into
different image channels.

Imaging more than 3 or 4 structures in this way is dif-
ficult for technical reasons, limiting the rate of scientific
progress in the life sciences. One way to circumvent this
limitation would be to label two cellular components with
the same fluorophore, i.e. image them in the same image

*Corresponding Author, (florian.jug@fht.org).

Figure 1. Splitting of superimposed image channels. The input
image is the sum of two image channels, each channel containing
structures from one given object class. The task of µSplit is to
identify and split the structures superimposed in the given input
image (dashed rectangles).

channel. Hence, a computational method to split apart (de-
compose) superimposed biological structures acquired in a
single image channel, i.e. without temporal multiplexing,
would have tremendous impact (see Figure 1).

Historically, image decomposition has found applica-
tions on natural images [9, 8, 1, 3]. Our approach for image
decomposition, called µSplit, rests on the idea of learning
structural priors for the two unmixed target image channels,
and then using these to guide the decomposition of the su-
perimposed (added) pixel intensities. Such content-aware
priors have previously been used for tasks such as image
restoration [29, 4, 28], denoising [14, 2, 15, 11, 20, 19], and
segmentation [5, 25, 30].

In many of these cases, the achievable performance
heavily depends on the portion of the image a network can
see before having to make a prediction. As we show in this
work, the need for large spatial context, i.e. receptive field
and patch size, is particularly pronounced for image decom-
position. Biological structures in microscopy images can
easily extend over distances of several hundred pixels. Ac-
cordingly, we observe that results improve with larger train-
ing patch sizes and deeper architectures (see Figure 6(a)).
Naturally, this leads to models having a huge GPU mem-
ory footprint, which limits their applicability to selected
compute-savvy life-science labs.

The importance of context has previously been utilized
in the field of image segmentation [16, 13]. Leng et al. [16]
devised a method to efficiently use the available context of

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21219

the input image for a segmentation task. However, they did
not use additional inputs for having access to a larger con-
text than what is already present in the given input patch.
Hilbert et al. [13] worked with 3D images and used an ad-
ditional lower resolution image to improve overall segmen-
tation performance.

Also for µSplit we observe that additional image context
is important. In contrast to the previously mentioned ar-
chitectures, we introduce Lateral Contextualization (LC), a
novel meta-architecture that feeds additional image context
at multiple processing steps. We introduce three variants,
Lean-LC, Regular-LC, and Deep-LC, differing from each
other in terms of GPU memory requirements and achievable
prediction quality. As we elaborate below, Deep-LC addi-
tionally offers the possibility to instantiate a more powerful
HIERARCHICAL VAE with more hierarchy layers than oth-
erwise possible, and show that this leads to improved per-
formance on the image splitting task at hand.

Since µSplit needs to be applicable to large microscopy
images, tiled predictions are required. In tiled predictions,
input image is divided into overlapping patches on which
predictions are performed individually. Those predictions
are then appropriately center-cropped into non-overlapping
tiles which can then be appended to form the final predic-
tion. Overlapping patches have to be used to ensure that
sufficient image context is available to address border arti-
facts to occur in the non-overlapping central region.

In Section 3, we argue that for deep networks operat-
ing on relatively small patches, overlapping regions should
not be created by making tiles larger (Outer Padding) which
is arguably the most common way, but that it is better to
instead center-crop regions smaller than the original patch
size (Inner Padding).

Since HIERARCHICAL VAES (HVAES) [26] have re-
cently gained popularity, e.g. for microscopy image denois-
ing and restoration [20, 19], we made these powerful archi-
tectures also available to the image decomposition task by
modifying the default VAE ELBO loss, incorporating the
fact that the fed input is different from the decoded output.

2. Problem Statement

A dataset Dmix = (x1, x2, .., xN) of N images is cre-
ated by superimposing sampled pairs of image channels
(D1, D2), such that

xi = (di1 + di2)/2,∀i ∈ [1, N], (1)

with D1 = (d11, d
2
1, ...d

N
1) and D2 = (d12, d

2
2..., d

N
2).

Given a newly sampled x = (d1 + d2)/2, the task is to
decompose x into estimates of d1 and d2.

3. Our Approach

A Sound ELBO for µSplit. We train our VAE to describe
the joint distribution for both channel images d1 and d2.
We modify the VAE’s ELBO objective to incorporate the
fact that input and output are not the same (as they are for
autoencoders). When training the VAE, our objective is to
find

argmax
θ

N∑
i=1

logP (di1, d
i
2;θ),

based on our training examples (di1, d
i
2). Here, θ are the de-

coder parameters of our VAE, which define the distribution.
Next, we expand logP (d1, d2;θ) as

log

∫
P (d1, d2, z;θ)dz

= log

∫
q(z|x;ϕ) ∗ P (d1, d2, z;θ)

q(z|x;ϕ)
dz

>=

∫
q(z|x;ϕ) ∗ log P (d1, d2, z;θ)

q(z|x;ϕ)
dz, (2)

where q(z|x;ϕ) is our encoder network with parameters ϕ.
It can be shown that the evidence lower bound in Eq. 2 is
equal to

Eq(z|x;ϕ)[logP (d1, d2|z;θ)]−KL(q(z|x;ϕ), P (z)).

By making the assumption of conditional independence of
d1 and d2 given z, we can simplify the expression to

Eq(z|x;ϕ)[logP (d1|z;θ) + logP (d2|z;θ)]
−KL(q(z|x;ϕ), P (z)).

(3)

Expression 3 is what we end up maximizing during training.
Note that this analysis can be seamlessly extended to the
case where one has a hierarchy of latent vectors [26] instead
of just one.

For modelling q(z|x;ϕ), we use the identical setup of
the bottom-up branch used in [20] with the input being
x, the superimposed input. For modeling P (d1|z;θ) and
P (d2|z;θ), we again use the top-down branch design used
in [20] but make the top-down branch output two channels
for mean and two more for the pixelwise log(var), one each
for d1 and d2. So, the output of our model is a 4 chan-
nel tensor with identical spatial dimensions as the input.
Note that to encorporate LC, we modify both q(z|x;ϕ) and
P (d2|z;θ) which we describe next.

Lateral Contextualisation (LC). We introduce LC, allow-
ing µSplit to see large portions of the input image at increas-
ingly downscaled pixel resolutions. LC only requires small
full resolution patches, rendering the network considerably
more memory efficient.

21220

(a) (b)

[2
0]

[20]

[20]

[20]

[20]

xp

x(p,1)

Figure 2. Network architecture of µSplit. In (a), we show the network architecture employed by Regular-LC. The input (left side) consists
of a core image patch xp, together with downscaled version of the patch surroundings – the lateral context (LC). We show the area
corresponding to the original patch as red dotted box throughout the figure. (b) The network architecture of Deep-LC. The architecture
used in [20] is stacked on top of the Regular-LC architecture shown in (a). Note that this is only possible because the latent space in
Regular-LC retained the spatial dimensions of all layers by means of using the proposed LC. Note: a sketch of the Lean-LC architecture,
our third LC variant, can be found in the Supp. Figure S.1.

Many popular architectures, such as U-NETS [23] or
HVAES [20, 6, 27] are composed of a hierarchy of lev-
els that operate on increasingly downsampled and therefore
also increasingly smaller layers. The basic idea of LC is to
pad each downsampled layer by additional image context,
i.e. additional input from an available larger input image,
such that each layer at each hierarchy level maintains the
same spatial dimensions. (In Figure 2 (a), the red dashed
squares in the stack of inputs (leftmost column) indicate the
location of the original patch (xp) within the downscaled
and laterally contextualized inputs at higher hierarchy lev-
els (x(p,i)).)

Creating downsampled LC inputs. Let xp = x[c,h] denote a
patch of size h×h from x ∈ Dmix centered around pixel lo-
cation c. To decompose the patch xp, we additionally use a
sequence of successively downscaled and cropped versions
of x, X lowres

p = (x(p,1), x(p,2), . . . , x(p,nLC)), where x(p,k) is
x[c,2k·h], downsampled to the same pixel resolution of h×h,
and nLC denotes the total number of used LC inputs.

Implementation of Regular-LC. Overall architecture is
shown in Figure 2(a). Primary input patch xp is fed to
the first input branch (IB). The output of this IB is fed to

the first bottom up (BU) block, which downsamples the in-
put via strided convolutions, whose output is then passed
to some residual blocks (see Supp. figure S.1), and finally
zero padded to regain the same spatial dimension as the in-
put it received. The output of the first BU block is con-
catenated with the output of the second IB, which has re-
ceived the first lower resolution input containing additional
lateral context, x(p,1). Zero-padding followed by concate-
nation ensures pixelwise alignment between IB’s output and
BU’s output. We use 1×1-convolutions to merge these con-
catenated channels and feed the resulting layer into the next
BU block. This procedure gets repeated for every hierarchy
level in the given HVAE.

Once the topmost hierarchy level is reached, the last
layer is fed into the topmost top down (TD) block. A
TD block consist of some residual layers, followed by a
stochastic block as they are used in HVAES. The output of
the stochastic block is center-cropped to half size and up-
sampled via transpose convolutions before again being fed
through some residual layers ((see Supp. figure S.1)). Crop-
ping and upsampling ensures that the output of the TD block
matches the next lower hierarchy level. The output of the

21221

Figure 3. Cartoon of a generic hierarchical network with an encoder-decoder architecture illustrating the relationship between the input
patch size, the effective receptive field, and the theoretical receptive field. The input patch, shown at the very left in the center of the light
blue area, is processed and downsampled multiple times (encoder) before being upsampled multiple times (decoder) to allow the output,
shown on the very right, to have the same pixel dimensions as the input patch. Cuboids shown by solid black lines represent the tensors
the network computes during its execution. Solid blue cuboids show the effective receptive field, i.e. the areas within each tensor that can
influence the center-most pixels in the two output layers (depicted by red rectangles). All but the last two tensors are fully ‘visible’ to
those pixels, since the theoretical receptive field, i.e. the maximum area that would influence those pixels if the respective tensor would
be sufficiently large, grows beyond their bounds (shown as light-blue solid cuboids). Note that working with larger input patches will fill
a larger portion of the theoretical receptive field. If theoretical and effective receptive fields diverge, as shown in this cartoon, padded
predictions on input patches larger then the training patch size will cause the network to operate out-of-distribution (OOD) and therefore
lead to degraded prediction quality (see main text and Supp. Section S.2.1).

TD block is, similar to before, first concatenated with the
output of the bottom up computations and then fed through
1 × 1-convolutions. Once we reach the bottom hierarchy
level, the output of the last TD block is fed through an out-
put block (OB) composed of some additional convolutional
layers, giving us the final predictions of d1 and d2.

We’ve integrated LC into HVAE, HAE and the clas-
sic U-NET architecture. Note that the difference between
HVAES and HIERARCHICAL AUTOENCODERS (HAES) is
that the stochastic block is replaced by the identity. We use
the term Vanilla to denote the underlying architecture on
which we then enable LC.

Deep-LC: deeper performs better. We observe empiri-
cally that having deeper hierarchies is beneficial (see Fig-
ure 6(a)). Since in U-NETS, HAES, and HVAES, each
consecutive hierarchical level halves the input tensor in all
spatial dimensions, a natural limit to the maximum hierar-
chy level is given by the fed patch size1. By making use of
additional lower resolution image context at each hierarchy
level, we’ve designed µSplit such that spatial dimensions of
latent tensors stay constant across all hierarchy levels. This
enables Deep-LC (see Figure 2(b)), our most potent archi-
tecture variant, to have additional hierarchy levels over what
a vanilla HVAE can have, typically showing best results in

1Using a patch size of 64, for example, can at most give rise to 5 hier-
archy levels (25+1 = 64).

our experiments (see Figure 6(b) and Figure 7).
More concretely, in our Deep-LC network, we stack a

default HVAE (like the one used in [20]) on top of our
Regular-LC variant (Figure 2(a)). This means that starting
from the highest hierarchy level using LC, any further hier-
archy level is built like a regular HVAE hierarchy stack.

Lean-LC: minimal memory footprint. Lean-LC, our
most memory efficient LC variation, does not use the lat-
eral context introduced in the bottom-up branch within the
top-down branch (see Supp. Figure S.1 for its architec-
ture). More specifically, the bottom-up branch is identical
to Regular-LC, but the top-down branch reduces to the de-
fault HVAE implementation, very similar to how it was also
used in [20]. This is enabled by centercropping the output
of each BU block going into the TD block.

Tiled Predictions. For virtually all tasks using fully con-
volutional architectures, trained networks are often used to
predict results on inputs much larger then the patches they
were trained on. Whenever an input image is so large that
the network in question cannot scale without running out-
of-memory, predictions are typically performed on over-
lapping patches and later suitably cropped and appended.
When applied to relatively shallow [24] and non-variational
networks, results can be pixel-perfect, i.e. not containing
any tiling artifacts. But we observe that there are two cases
wherein tiling artefacts are not easily avoidable.

21222

(a)

(b)

(c)

Figure 4. Strategies for tiled predictions. (a) The difference be-
tween Inner and Outer Padding. The blue dashed rectangle rep-
resents one patch used for tiled predictions. For each cell in the
faint gray grid superimposed on the input image one such patch
exists. The red dashed rectangle represents the center-crop region
used to tile the final prediction of the entire input image. The blue
shaded area is therefore the part of the patch that overlaps with
neighboring patches, i.e. it is the padding area for the red rectan-
gle. Outer Padding uses a tile size equivalent to the training patch
size and introduces overlap by enlarging the patch being fed to the
network. Inner Padding, in contrast, maintains the original patch
size, and uses only an inner crop to tile the given input image.
(b) Percentange variation (of PSNR measurements) when using
different amounts of Outer or Inner padding (for HAE and HVAE
vanilla setups using a patch size of 64). For varying amounts of
padding (x-axis), we plot how 6 data points for the PaviaATN data
(3 tasks∗2 = 6) and 2 data points for Hagen et al. data (1 task) are
distributed. Note how distributions for Inner Padding are consis-
tently better. (c) Using Outer Padding, predictions are performed
on patches larger than the ones used during training, leading to
out-of-distribution (OOD) inputs and therefore to inferior predic-
tions (red arrows). First and second row are the ground truth and
prediction made without any padding respectively. See Supp. Fig-
ure S.3 for more examples.

The first is caused by networks that have huge receptive
fields (see Figure 3). When trained with a patch size much
smaller than the theoretical receptive field size, large parts
of the theoretical receptive field will be empty (i.e. zero).
See also Supp. Section S.2.1 for a more detailed description.

When such trained networks are later used for tiled pre-
dictions, a problem arises whenever the input patches, on
which predictions are made, are larger than the patch size
used during training (which typically is the case because
patch sizes is chosen such that GPU memory is best utilized,
and input patches need to overlap sufficiently to avoid bor-
der artifacts). These patches will fill a larger portion of the
theoretical receptive field than training patches did, result-
ing in out-of-distribution (OOD) predictions and worsened
performance (see Figure 4 (b) for quantitative assessment).

The second case for tiling artifacts arises when varia-
tional networks like HVAES are used. These architectures
sample from the variational latent space of encoded tiles,

with samples for neighboring tiles not necessarily decod-
ing into consistent image contents along the borders of pre-
dicted tiles.

The solution we propose is twofold: (i) Instead of tiled
prediction on large patches (Outer Padding), which is ar-
guably the most often used tiling scheme, we propose to
use Inner Padding instead, an approach that uses patches of
the same size as the ones used during training, thereby solv-
ing the OOD issue introduced above. More specifically, in
both tiling schemes, the input image is divided into overlap-
ping patches. The predictions on these patches are then cen-
tercropped and these crops are put right next to each other
in order to create a prediction for the entire input image.
To enlarge the overlap between neighboring patches, Outer
Padding enlarges the patch size. Inner Padding does not al-
ter the size of patches, but instead only uses a smaller cen-
tral area of their respective predictions. See Figure 4 (a) for
a visual depiction of Inner and Outer Padding. In our ex-
periments (see Section 5), we have used Inner Padding of
24 pixels, determined via grid-search. (ii) Overlap amount
with Inner Padding are constrained to be small. Small over-
lap would usually cause artifacts due to insufficient image
context at tile boundaries. However, due to our LC ap-
proach, µSplit is fed a very large and consistent image con-
text at both sides of all patch boundaries, allowing us to op-
erate with minimal artifacts even with small overlaps2. In
supplement, we empirically show the lower need of overlap
for our LC variants.

Training Details. For every dataset, we use 80%, 10% and
10% of the data as train-validation-test split. All models are
trained using 16-bit precision on a Tesla V100 GPU. Un-
less otherwise mentioned, all models are trained with batch
size of 32 and input patch size of 64. For all HVAES, we
lower-bound σs of P (d1, d2, θ) to exp(−5). This avoids
numerical problems arising from these σs going to zero, as
reported in [22]. Next, we re-parameterize the normal dis-
tributions for the BU branch using σExpLin reformulation
introduced in [7]. We additionally upper-bound the input to
σExpLin to 20. For training µSplit with Deep-LC, we fol-
low the suggestions in [6, 21], and divide the output of each
BU block by

√
2i̇, with i being the index of the hierarchy

level the BU block is part of.

4. Datasets

SinosoidalCritters.
We created this synthetic dataset explicitly to demon-

strate the importance of context for the splitting task and
the usefulness of using LC within µSplit. Images in this
dataset can only correctly be decomposed when sufficient
lateral image context is available during prediction time.

2Note that artifacts arising from independently sampling the latent
space in HVAES remains an unsolved problem.

21223

(a) (b)

Frequencies

Freq. pairs, i.e., Critters Connecting these Freq. pairs
Ch1. Image

Ch2. Image

Input Image

Figure 5. The synthetic SinosoidalCritters dataset is designed in such a way that large lateral image context is needed in order to perform
correct channel splitting. (a) A schema illustrating how we created the SinosoidalCritters dataset. A detailed description is provided in
Section 4. (b) We show two sample SinosoidalCritters input images (row 1) of size 128× 128 and 256× 256 pixels and the two channels
that created them (row 2), respectively. Below, we show the decomposition results obtained with a trained vanilla HVAE with input patch
size 64 (row 3), and results obtained with the same architecture but using Regular-LC (row 4). To recognise which critter is depicted and
assign it to a channel, the network has to see both wave forms, hence requiring long range lateral image context.

(a) (b)

Figure 6. Benefits of µSplit in one glance: Quantitative results of baselines vs. µSplit variants. (a) We plot the performance of the
vanilla U-NET and the vanilla HVAE baseline trained on increasingly larger patch sizes on our PaviaATN Act vs. Tub data. The U-NET

performance plateaus roughly at a patch size of about 256. The performance of the vanilla HVAE (not using LC) depends on how many
hierarchy layers we use (1 to 4, different colored plots), but then plateaus as well, or requiring a tremendous amount of GPU memory
(black plot, also see Table 1). (b) The left plot displays the data as shown in the HVAE plot in (a), but now as a function of hierarchy levels
in the used architecture. Each curve is now representing a given patch size. X-axis ticks express how many hierarchy levels the HVAE has,
and how many of those make use of LC (number in brackets). The rightmost two plots show results obtained with µSplit using an HVAE
with a patch size of only 64. Each plot shows results obtained with one of our LC variations being used. Not only do networks using LC
outperform all baselines, they do so already when using the smallest patch size (64), thereby requiring only a moderate amount of GPU
memory (see Table 1).

We first choose 4 different frequencies and combine
them into 4 unique pairs. Two pairs are dedicated for im-
age channel 1 (blue box), the other two for image channel 2
(green box). We call these pairs critters. The assignment of
these critters to channels is done such that each frequency
is assigned exactly once to each channel. We connect the
two sinosoids of each critter with a low frequency curve
of controllable length (later denoted by Njoin in Table 2).
Note that it is the specific combination of sinosoid frequen-
cies present in the curve which decides whether it belongs
to Channel 1 or 2 since the individual sinosoids themselves
occur in both channels in equal amount. Next, we assem-
ble channel images by placing a predefined number of ran-
domly chosen curves at random positions in the respective
image channel. The final input image is created as the sum
of the two channels. See Figure 5(a) for dataset construc-

tion.

PaviaATN Microscopy Dataset. We’ve created PaviaATN
dataset. It has been imaged in the Synthetic Physiol-
ogy Laboratory at University of Pavia, and is composed
of 62 4-channel fluorescence microscopy images of size
2720× 2720. Notably, this dataset has higher pixel resolu-
tion than most publicly available fluoroscence microscopy
datasets [12, 17, 31]. The three channels we use label Actin,
Tubulin and Nuclei, respectively, yielding three decomposi-
tion tasks we refer to as Actin vs. Tubulin, Actin vs. Nu-
clues, and Tubulin vs. Nucleus. Note that the dataset has
two channels labelling Nuclei from which we picked one.
See supplement for more details.

Hagen et al. Actin-Mitochondria Dataset. From many
sub-datasets provided by Hagen and colleagues [12], we
picked the one with Mitochondria and Actin channels, the

21224

PSNR:28.3 (27.2) PSNR:30.4 (29.8) PSNR:30.1 (30.7)

PSNR:22.3 (23.1) PSNR:24.4 (25.5) PSNR:24.0 (26.5)

Figure 7. Qualitative results on the Act vs. Tub task from our PaviaATN dataset. We compare ground truth to results obtained with the
vanilla HVAE baseline trained with a patch size of 64 to results obtained with two variations of µSplit (HVAES using lean and deep LC,
both also using a patch size of 64). The overlaid histograms shows either the intensity distribution of the two channels (column 1) or the
intensity distribution of the ground truth and the prediction (red). The given PSNR are for the individual prediction (full input image) and
for the entire dataset (in brackets).

one with the highest pixel resolution (2048× 2048).

5. Experiments and Results

Incrementally Introducing LC. In left panel of Fig-
ure 6(b), we show that for Vanilla HVAE, as hierarchy lev-
els increase (BU blocks), so does the performance, provided
we’ve large enough patch size. For patch size of 64, increas-
ing hierarchy levels does not bring any benefit after a point.

In central panel of Figure 6(b), keeping the patch size
and hierarchy levels fixed to 64 and 4 respectively, we in-
troduce LC to an increasing number of hierarchy levels (de-
noted by the number in the brackets along the x-axis). This
gives us a cumulative gain of around 2dB PSNR. Further-
more, with Deep-LC (right panel), we increase the hierar-
chy level even further which gives us further improvements.
Two things are worth noting here for the patch size of 64:
(i) There is not much benefit in increasing hierarchy lev-
els for Vanilla HVAE. Using LC, on the other hand, leads
to additional improvements, and (ii) Vanilla HVAE, can-
not employ as many hierarchy levels as we can do using
Deep-LC, and the results gain substantially from those extra
levels. The Vanilla-XL model denotes Vanilla model trained
with a patch size of 512. The Deep-LC results outperform
the Vanilla-XL HVAE, see Figure 6(a), while also having a
much smaller GPU memory footprint (see Table 1).

Experiments on Microscopy Data. We present results on 3
decomposition tasks on the PaviaATN dataset and 1 decom-
position task on the Hagen et al. dataset. Table 1 summa-
rizes our findings. As baselines, we’ve adapted the works

of [16, 13] and find that µSplit outperforms them. It is worth
noting that architecture used in [13], unlike ours, did not
generalize to using a hierarchy of lower resolution inputs
and worked with just one additional low resolution input. It
also, unlike us, did not respect pixel alignments while con-
catenating the latent space tensors of the two resolution lev-
els. We have also applied the unsupervised Double-DIP [9]
baseline to random sampled 6 crops of size 256 × 256
for each test-set image of the PaviaATN and Hagen et al.
datasets (see Table 1 and supplementary figure).

Over all four tasks, the best performing LC variant with
HVAE architecture outperforms the best LC variant with
HAE architecture by 0.5 PSNR on average. Using the
HVAE architecture, Deep-LC outperforms Lean-LC on av-
erage by 0.8 PSNR. For the HAE architecture this differ-
ence is 0.1 PSNR. Qualitative results are shown in Figure 7
and in the supplement.

Outer vs. Inner Padding and Runtime Performance. In
Figure 4(c), we show the percentage change in PSNR with
different amounts of padding and see that the vanilla HAE
and HVAE setup performances degrade (left plot) when
Outer Padding is used with large padding amounts. But with
Inner Padding (right plot), we see improvement saturation
with increase in padding amount. In Figure 4(b), one can
observe an artefact appearing solely due to Outer Padding
(artifact does not exist in ’No padding’). These results sup-
port our claim about OOD issue as described in Section 3.

Note that Inner Padding requires a larger number of indi-
vidual predictions, indicated by the smaller grid size seen in
Figure 4(a) (denoted by red dashed rectangle). Specifically,

21225

PaviaATN Hagen et al.
Model + Patch Size GPU Act vs Nuc Tub vs Nuc Act vs Tub Act vs Mit

(GiB) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Double-DIP [9] - 22.8 0.30 21.2 0.20 20.9 0.30 25.3 0.56
BraveNet [13] 64 2.8 31.7 0.73 30.3 0.61 25.9 0.62 33.0 0.92
Context-Aware U-Net [16] 64 4.7 31.5 0.74 29.0 0.61 25.1 0.61 31.1 0.91
U-Net 256 9.4 33.2 0.79 31.4 0.71 28.1 0.69 34.2 0.95
U-Net 512 28.7 33.3 0.79 31.1 0.72 27.9 0.69 34.1 0.94
U-Net Regular-LC 64 12.5 33.5 0.79 32.0 0.71 27.6 0.68 32.7 0.93

HAE

Vanilla 64 2.3 31.7 0.74 29.5 0.64 25.4 0.63 31.9 0.92
Lean-LC 64 3.9 33.6 0.78 31.9 0.70 27.7 0.67 32.9 0.94
Regular-LC 64 6.0 33.5 0.79 31.6 0.71 27.9 0.68 33.4 0.94
Deep-LC 64 6.9 33.7 0.80 31.8 0.72 28.3 0.69 32.8 0.94
Vanilla-XL 512 31.2 33.2 0.79 30.2 0.68 27.6 0.67 34.2 0.95

HVAE

Vanilla 64 2.8 31.8 0.75 29.6 0.64 25.2 0.61 31.9 0.93
Lean-LC 64 4.4 33.8 0.79 31.9 0.71 27.7 0.68 32.7 0.94
Regular-LC 64 11.1 33.9 0.80 32.1 0.72 27.8 0.68 34.1 0.95
Deep-LC 64 12.8 33.9 0.81 32.5 0.73 28.6 0.70 34.3 0.95
Vanilla-XL 512 (∗) 33.4 0.78 32.9 0.69 27.6 0.67 34.3 0.95

Table 1. Quantitative results on fluorescent image decomposition tasks derived from the PaviaATN and Hagen et al. datasets. All results are
reported in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). For each model we also report the
used training patch size and GPU memory usage during training. The baselines we use are Double-DIP [9], BraveNet [13], Context-Aware
U-Net [16], as well as vanilla HAES and HVAES using four hierarchy levels. Additionally, we show results for U-NETS [23], HAES,
and HVAES trained on much larger patch sizes (256 and 512). The results of µSplit are also obtained with the same HAE and HVAE
architectures trained on patches of size 64 × 64, but with all hierarchy levels also employing either Lean-LC, Regular-LC, or Deep-LC
(see main text for details). Bold numbers denote the best result for any given task (column). In all but one case (PaviaATN, Tubulin vs.
Nuclei), our results outperform all baselines despite having a comparatively lean memory footprint. Note that the Vanilla-XL HVAE with
patch size of 512 and batch size of 32 did not fit in 32 GiB of GPU memory and so we lowered the batch size such that the model did fit in
memory.

Image Model Njoin = 0 Njoin = 25
Size PSNR SSIM PSNR SSIM

128
Vanilla 28.3 0.90 25.5 0.85

Lean-LC 37.3 0.97 35.1 0.96
Regular-LC 37.0 0.98 39.2 0.98

256
Vanilla 19.4 0.75 15.8 0.43

Lean-LC 34.1 0.97 32.2 0.97
Regular-LC 41.5 0.99 41.6 0.98

Table 2. Quantitative results on the SinosoidalCritters dataset. We
compare results obtained with vanilla HVAES that do not use LC,
and HVAES employing either Lean-LC or Regular-LC (i.e. µSplit
results, see main text for details). All experiments are performed
using a patch size of 64. Bold numbers denote the best result for
any given task (columns), showing that our results consistently
outperform the vanilla baselines.

using an Inner Padding of 24 pixels with a patch size of 64
will use 16×16 center-crop per patch. Hence, we will need
to predict 16 ((64/16 = 4)2) times more patches to cover
the entire input image.

Interestingly, we found padding giving minor benefits for
Deep-LC quantitatively and so Deep-LC results in Table 1

BU Blocks vanilla 64 rLC 64 rLC 128
1 24.3 24.7 24.8
2 25.1 25.9 25.9
3 25.2 27.0 27.0
4 25.4 27.8 27.9

Table 3. Performance of HVAE + Regular-LC trained with patch
size of 64 (col 3) and 128 (col 4) on Act vs Tub data. The larger
patch size shows diminishing returns, indicating that LC is provid-
ing enough image context, showcasing the value of our approach.

were computed without padding thereby leading to a better
runtime for Deep-LC. However, we still find few tiling arte-
facts with Deep-LC and in those cases Inner Padding helps.
Other two LC variants benefit both quantitatively and qual-
itatively from Inner Padding.

Effects of Larger Training Patch Sizes. In Figure 6(a)
we show that increasing the training patch size improves
the performance of a U-NET and vanilla HVAES across
different hierarchy levels. While the U-NET baseline per-
formance saturates, HVAES’ improvement with increasing
hierarchy levels does not, but quickly reach a hard limit in
terms of GPU memory requirement (see Table 1).

21226

Performance of LC with larger patch sizes. Using µSplit,
microscopy labs having limited GPU compute will still get
similar performance to labs with ample resources, labs ca-
pable of using networks employing larger patch sizes. So
far, all our LC variants have been trained with a patch size
of 64. A natural question to ask is whether there is still
some benefit in using larger patch sizes when also using LC.
While the answer to this question depends upon multiple
factors like how much long range interactions are present
in the data, the receptive field size of the network etc, we
did an ablation to empirically investigate this in Table 3.
One can observe that for HVAE + Lean-LC, across differ-
ent hierarchy levels (BU Block count), using a patch size of
128 only provides a minor performance improvement over
a patch size of 64. This implies that for a pixel’s prediction,
only a small amount of neighbourhood context needs to be
given at native pixel resolution and most of the context can
be given via lower-resolution lateral image context.

Experiments on Synthetic Data. In Table 2 we show the
results obtained on the SinosoidalCritters dataset. We used
two input image sizes, 128×128 and 256×256, and two val-
ues for Njoin, namely 0 and 25 pixels. On average, µSplit
outperforms the vanilla HVAE by 18 PSNR. Also note that
the larger input size, constituting a harder problem to solve,
is resulting in a drop of performance for the vanilla HVAE.
Using µSplit, instead, the performance increases. To recog-
nise which critter is depicted and assign it to a channel, the
network has to see both wave forms. The vanilla HVAE is
able to do splitting on 128 × 128, but it has artefacts (red
circle in Figure 5(b)). For the 256 × 256 pixel images, it
completely fails because it is unable distinguish between
the critters since it cannot simultaneously process a suffi-
ciently large part of the image. In contrast, by using LC we
are able to successfully split both images.

U-NET Hyperparameter Tuning. We tuned depth and
patch size of a classic U-NET to achieve optimal perfor-
mance for the tasks at hand (see supplement for details).

6. Discussion

In this work, on our dataset we show that µSplit performs
better when deeper architectures, i.e. HAES and HVAES,
are employed and enabled to process additional image con-
text via the memory efficient lateral contextualization (LC)
schemes we propose.

The deeper such networks become, the larger will the re-
ceptive field (RF) sizes grow, in our case routinely exceed-
ing sizes of 512×512 pixels. An immediate consequence of
this is that we cannot easily employ common tiling schemes
(i.e. Outer Padding) without running into out-of-distribution
(OOD) issues (see Section 3). Hence, we propose to use In-
ner Padding to circumvent this problem. Additionally, we
observe that Deep-LC does even perform quite well with-

out padded tiled predictions (no additional overlap between
patches). The reason for this is that the patch context typ-
ically given by overlapping regions is now substituted by
context being fed via Deep-LC. Still, best performance is
typically obtained using Deep-LC and Inner Padding dur-
ing tiled predictions.

It is important to point out that for any variational mod-
els, such as HVAES, tiled predictions suffer from the addi-
tional problem that neighboring tiles will likely not be con-
sistent due to the sampling step performed independently
per tile. While Inner Padding still is the better strategy to
employ (for the same argument as for any other model with
huge receptive fields), sampling inconsistencies cannot be
fully avoided. The strength of these artifacts will depend
on the data uncertainty (i.e. the ambiguity in the fed inputs
w.r.t. the trained model).

In summary, we have proposed a powerful new method
to efficiently use image context. We have then applied this
method to an impactful new image decomposition task on
fluorescence microscopy data. We believe that the presented
ideas will prove to also be useful in the context of other
computer vision problems. We will explore the applicabil-
ity of LC to other problem domains in future work. Addi-
tionally, we will make µSplit more amenable to noisy fluo-
rescence data and to disentanglement tasks where more than
two image channels are superimposed.

Acknowledgements
This work was supported by the European Commission

through the Horizon Europe program (IMAGINE project,
grant agreement 101094250-IMAGINE and AI4LIFE
project, grant agreement 101057970-AI4LIFE) as well as
the compute infrastructure of the BMBF-funded de.NBI
Cloud within the German Network for Bioinformatics In-
frastructure (de.NBI) (031A532B, 031A533A, 031A533B,
031A534A, 031A535A, 031A537A, 031A537B,
031A537C, 031A537D, 031A538A). Additionally, the
authors also want to thank Damian Dalle Nogare of the
Image Analysis Facility at Human Technopole for useful
guidance and discussions and the IT and HPC teams at HT
for the compute infrastructure they make available to us.

References
[1] Yuval Bahat and Michal Irani. Blind dehazing using internal

patch recurrence. In 2016 IEEE International Conference on
Computational Photography (ICCP), pages 1–9, May 2016.
1

[2] Joshua Batson and Loı̈c Royer. Noise2Self: Blind denoising
by Self-Supervision. pages 1–16, Jan. 2019. 1

[3] Dana Berman, Tali Treibitz, and Shai Avidan. Non-local im-
age dehazing. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1674–1682. IEEE,
June 2016. 1

21227

[4] Tim-Oliver Buchholz, Alexander Krull, Réza Shahidi, Gaia
Pigino, Gáspár Jékely, and Florian Jug. Content-aware im-
age restoration for electron microscopy. Methods Cell Biol.,
152:277–289, July 2019. 1

[5] Tim-Oliver Buchholz, Mangal Prakash, Deborah Schmidt,
Alexander Krull, and Florian Jug. DenoiSeg: Joint denois-
ing and segmentation. In Computer Vision – ECCV 2020
Workshops, pages 324–337. Springer International Publish-
ing, 2020. 1

[6] Rewon Child. Very deep VAEs generalize autoregressive
models and can outperform them on images. Nov. 2020. 3,
5

[7] David Dehaene and Rémy Brossard. Re-parameterizing
VAEs for stability. June 2021. 5

[8] Tali Dekel, Michael Rubinstein, Ce Liu, and William T Free-
man. On the effectiveness of visible watermarks, 2017. 1

[9] Yossi Gandelsman, Assaf Shocher, and Michal Irani.
“Double-DIP” : Unsupervised image decomposition via cou-
pled deep-image-priors, 2019. Accessed: 2022-2-14. 1, 7,
8

[10] Ionita C Ghiran. Introduction to fluorescence microscopy.
Methods Mol. Biol., 689:93–136, 2011. 1

[11] Anna S Goncharova, Alf Honigmann, Florian Jug, and
Alexander Krull. Improving blind spot denoising for mi-
croscopy. In Computer Vision – ECCV 2020 Workshops,
pages 380–393. Springer International Publishing, 2020. 1

[12] Guy M Hagen, Justin Bendesky, Rosa Machado, Tram-Anh
Nguyen, Tanmay Kumar, and Jonathan Ventura. Fluores-
cence microscopy datasets for training deep neural networks.
Gigascience, 10(5), May 2021. 6

[13] Adam Hilbert, Vince I Madai, Ela M Akay, Orhun U Ay-
din, Jonas Behland, Jan Sobesky, Ivana Galinovic, Ahmed A
Khalil, Abdel A Taha, Jens Wuerfel, Petr Dusek, Thoralf
Niendorf, Jochen B Fiebach, Dietmar Frey, and Michelle
Livne. BRAVE-NET: Fully automated arterial brain vessel
segmentation in patients with cerebrovascular disease. Front
Artif Intell, 3:552258, Sept. 2020. 1, 2, 7, 8

[14] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug.
Noise2Void - learning denoising from single noisy images.
arXiv, cs.CV:2129–2137, Nov. 2018. 1

[15] Alexander Krull, Tomas Vicar, Mangal Prakash, Manan
Lalit, and Florian Jug. Probabilistic Noise2Void: Unsuper-
vised Content-Aware denoising. Frontiers in Computer Sci-
ence, 2:60, Feb. 2020. 1

[16] Jiaxu Leng, Ying Liu, Tianlin Zhang, Pei Quan, and Zhenyu
Cui. Context-Aware U-Net for biomedical image segmen-
tation. In 2018 IEEE International Conference on Bioinfor-
matics and Biomedicine (BIBM). IEEE, Dec. 2018. 1, 7, 8

[17] Chawin Ounkomol, Sharmishtaa Seshamani, Mary M.
Maleckar, Forrest Collman, and Gregory R. Johnson.
Label-free prediction of three-dimensional fluorescence im-
ages from transmitted-light microscopy. Nature Methods,
15(11):917–920, Nov. 2018. 6

[18] Wei Ouyang, Fynn Beuttenmueller, Estibaliz Gómez-de
Mariscal, Constantin Pape, Tom Burke, Carlos Garcia-
López-de Haro, Craig Russell, Lucı́a Moya-Sans, Cristina
de-la Torre-Gutiérrez, Deborah Schmidt, Dominik Kutra,

Maksim Novikov, Martin Weigert, Uwe Schmidt, Peter
Bankhead, Guillaume Jacquemet, Daniel Sage, Ricardo
Henriques, Arrate Muñoz-Barrutia, Emma Lundberg, Flo-
rian Jug, and Anna Kreshuk. BioImage model zoo: A
Community-Driven resource for accessible deep learning in
BioImage analysis. June 2022. 1

[19] Mangal Prakash, Mauricio Delbracio, Peyman Milanfar, and
Florian Jug. Interpretable unsupervised diversity denoising
and artefact removal. Apr. 2021. 1, 2

[20] Mangal Prakash, Alexander Krull, and Florian Jug. DivNois-
ing: Diversity denoising with fully convolutional variational
autoencoders. ICLR 2020, June 2020. 1, 2, 3, 4

[21] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, and Others. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
5

[22] Danilo Jimenez Rezende and Fabio Viola. Taming VAEs.
Oct. 2018. 5

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, volume 9351, pages 234–241.
Springer International Publishing, Cham, Oct. 2015. 3, 8

[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation, May 2015. arXiv:1505.04597 [cs]. 4

[25] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and
Gene Myers. Cell detection with Star-Convex polygons. In
Medical Image Computing and Computer Assisted Interven-
tion – MICCAI 2018, pages 265–273. Springer International
Publishing, 2018. 1

[26] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,
Søren Kaae Sønderby, and Ole Winther. Ladder variational
autoencoders. Adv. Neural Inf. Process. Syst., 29:3738–3746,
Jan. 2016. 2

[27] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical
variational autoencoder. July 2020. 3

[28] Martin Weigert, Loic Royer, Florian Jug, and Gene Myers.
Isotropic reconstruction of 3D fluorescence microscopy im-
ages using convolutional neural networks. In Medical Im-
age Computing and Computer-Assisted Intervention - MIC-
CAI 2017, pages 126–134. Springer International Publishing,
2017. 1

[29] Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas
M uuml ller, Alexander Dibrov, Akanksha Jain, Ben-
jamin Wilhelm, Deborah Schmidt, Coleman Broaddus, Siân
Culley, Maurı́cio Rocha-Martins, Fabián Segovia-Miranda,
Caren Norden, Ricardo Henriques, Marino Zerial, Michele
Solimena, Jochen Rink, Pavel Tomancak, Loı̈c Royer, Flo-
rian Jug, and Eugene W Myers. Content-aware image
restoration: pushing the limits of fluorescence microscopy.
Nature Publishing Group, 15(12):1090–1097, Dec. 2018. 1

[30] Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara,
and Gene Myers. Star-convex polyhedra for 3D object de-
tection and segmentation in microscopy. arXiv, cs.CV, Aug.
2019. 1

21228

[31] Yide Zhang, Yinhao Zhu, Evan Nichols, Qingfei Wang,
Siyuan Zhang, Cody Smith, and Scott Howard. A Poisson-
Gaussian Denoising Dataset with Real Fluorescence Mi-
croscopy Images, Apr. 2019. arXiv:1812.10366 [cs, eess,
stat]. 6

21229

