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Abstract

Images captured with irregular exposures inevitably
present unsatisfactory visual effects, such as distorted hue
and color tone. However, most recent studies mainly fo-
cus on underexposure correction, which limits their ap-
plicability to real-world scenarios where exposure levels
vary. Furthermore, some works to tackle multiple expo-
sure rely on the encoder-decoder architecture, resulting
in losses of details in input images during down-sampling
and up-sampling processes. With this regard, a novel cor-
rection algorithm for multiple exposure, called luminance-
aware color transform (LACT), is proposed in this study.
First, we reason the relative exposure condition between
images to obtain luminance features based on a luminance
comparison module. Next, we encode the set of transfor-
mation functions from the luminance features, which en-
able complex color transformations for both overexposure
and underexposure images. Finally, we project the trans-
formed representation onto RGB color space to produce
exposure correction results. Extensive experiments demon-
strate that the proposed LACT yields new state-of-the-arts
on two multiple exposure datasets. Code is available at
https://github.com/whdgusdl48/LACT.

1. Introduction
Exposure is a crucial component in image formation. So,

images captured with improper exposures usually have un-
satisfactory visual effects, such as distorted hue and bright-
ness. Figure 1 shows examples of images captured with
overexposure and underexposure, which can cause overly
bright or darkened regions, leading to significant degrada-
tion of image quality. Many methods [3, 21, 1, 22, 8, 23,
41, 20] have been proposed to correct exposure-related is-
sues. However, most of them have focused on correcting
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either overexposure or underexposure, limiting their appli-
cability to real-world scenarios with various exposure lev-
els. Some studies [2, 14, 35, 15] have attempted to address
both overexposure and underexposure cases, leveraging the
U-Net [31] like architecture. While these methods have
shown improved performance, they still suffer from limita-
tions such as the down-sampling and up-sampling processes
in their approaches, resulting in the loss of image details.

The transformation function-based approach has gained
much attention in image enhancement [10, 20, 19, 39]. This
approach estimates transformation functions for color chan-
nels and performs color transformation based on the pre-
dicted functions. These methods are free from the down-
sampling and up-sampling processes, thereby preserving
the image details. However, they are still vulnerable to mul-
tiple exposures, since they do not exploit exposure informa-
tion explicitly. Also, as shown in Figure 1, a single transfor-
mation function may not be sufficient to address both over-
exposed or underexposed images, particularly those con-
taining saturated regions.

In this work, we present a novel approach, named
luminance-aware color transform (LACT), to tackle the
problem of multiple exposure correction. The proposed
method leverages two key insights - the critical role of lumi-
nance for correcting images with multiple exposure levels,
and the need to overcome the limitation of single intensity
transformation function. To this end, the proposed method
extracts luminance features, which encode exposure levels
in input images, by exploiting the luminance order relation-
ship between two randomly sampled input images. The
luminance features are used in the luminance-aware color
transform to estimate the sets of transformation functions
from the local structure, enabling complex color transform
for both overexposure and underexposure images. Then, the
proposed method generates a multi-channel representation
for exposure correction using the set of transformation func-
tions. Finally, a post-processing module projects this multi-
channel representation onto the RGB color space to produce
correction results. Extensive experiments on ME [2] and
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(a) Standard intensity transformation (b) The proposed luminance-aware color transform

Figure 1. Examples of multiple exposure correction with the standard intensity transformation and the proposed luminance-aware color
transformation.

SICE [6] datasets demonstrate that the proposed method
significantly outperforms state-of-the-arts [14, 15] in mul-
tiple exposure correction.

The main contributions of our work are three folds:

• We propose the luminance comparison module that
leverages the luminance order relationship to extract
the effective luminance feature.

• We propose the luminance-aware color transform
based on the luminance feature to obtain reliable cor-
rection results for both underexposure and overexpo-
sure images.

• We experimentally show the effectiveness of our ap-
proach in multiple exposure correction. Our method
surpasses recent state-of-the-arts on the ME [2] and
SICE [6] datasets.

2. Related Work
2.1. Exposure correction

Early studies in exposure correction mainly aimed at en-
hancing the global contrast of an input image. Histogram
equalization [28] and its modifications [1, 30, 27] are a
well-known technique that modifies an image’s histogram
to stretch its limited contrast. Another popular method is
the power-law (gamma) transformation [9, 16, 28], which
maps input pixel values to output pixel values using pre-
defined transformations. Retinex theory [21]-based meth-
ods [11, 18, 25, 36] decompose exposure correction into il-
lumination enhancement and reflectance regularization.

Recently, deep learning-based methods [7, 41, 40, 38]
have been proposed for exposure correction. For instance,
SID [7] trains a fully-convolutional network to process
low-light sensing images. In [38], frequency decomposi-
tion is adopted for underexposure correction. DBRN [40]
decomposes image features into different bands and re-
cursively recomposes them to enhance underexposed im-
ages. STAR [41] introduces a structure-aware lightweight

Transformer [34] to extract long-short range contexts of
low light images. Another approach to exposure correc-
tion [19, 20, 10] enhances irregular colors based on an in-
tensity transformation function. Zero-DCE [10] formulates
exposure correction as a task of image-specific curve es-
timation with deep neural networks. GEN-LEN [20] ap-
plies global intensity transformation functions and then lo-
cally revises the global correction with spatial filtering.
RCTN [19] implements color transformation to enhance
low-light images based on the similarity between the input
image and its representative colors. However, most of these
methods focus on underexposure correction, which limits
their applications for various exposure levels.

2.2. Multiple exposure correction

Afifi et al. [2] introduced the ME [2] dataset, which in-
cludes over 20,000 images with multiple exposure scenes.
This has led to lots of attempts [26, 2, 5, 15, 35] to cor-
rect exposed images in multiple exposure levels. Wang et
al. [35] proposed the local color distribution embedded
module to detect overexposed and underexposed regions
based on the guidance of the local color distributions.
ENC [14] extents the previous underexposure correction [7,
40] to the multiple exposures one by adding a normaliza-
tion module that embeds multiple exposure features to the
exposure-invariant space. FECNet [15] converts the dif-
ferent exposure images into frequency properties, which
provide detailed information about lightness and structure
for the exposure correction networks. CMEC [26] applies
stacked self-attention layers [34] to model interactions be-
tween pixels with a diverse range of exposures. These meth-
ods [26, 2, 5, 15, 35], leverage U-Net [31] like architec-
ture and have shown promising performance. However,
the down-sampling and up-sampling processes in their ap-
proaches may result in the loss of image details. In contrast,
the proposed LACT aims to estimate transformation func-
tions that are free from these processes, preserving image
details while correcting unnatural exposures.
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Figure 2. Overview of the training process of the proposed luminance-aware multiple exposure correction network.

3. Proposed Method

Let X ∈ RH×W×3 be an input RGB image captured
with either underexposure or overexposure settings, where
H and W denote the image height and width, respectively.
The aim of multiple exposure correction is to restore the
high-quality image Y ∈ RH×W×3 by compensating for
exposure errors in the input image X. However, due to
the distinct nature of underexposure and overexposure, dif-
ferent correction procedures are necessary for each expo-
sure case. Therefore, we present a multiple exposure cor-
rection network based on the luminance-aware color trans-
form (LACT), which adaptively enhances the input image
by considering its exposure condition explicitly.

Figure 2 illustrates the overall training process of the
luminance-aware multiple exposure correction network,
which consists of four main components: backbone, lu-
minance comparison module, luminance-aware color trans-
form, and post-processing module. The backbone network
encodes the input image into image features. The lumi-
nance comparison module takes early features of the back-
bone and extracts luminance features to exploit the expo-
sure conditions of the input image. The luminance-aware
color transform combines the luminance features and the
image features to estimate the set of transformation func-
tions for each color channel. Then, it performs multi-
channel color transformation based on the transformation
functions to correct exposure in the input image. Finally,
the post-processing module further enhances the image to
yield visually pleasing results.

3.1. Backbone

Table 1 presents the detailed architecture of the back-
bone, which consists of three convolution blocks and four

Stage Operations Outputs

0 Resize h × w × 3

1 Conv-block, 5× 5 h/2 × w/2 × 16

2 IR-block, 5× 5 h/4 × w/4 × 40

3 IR-block, 5× 5 h/8 × w/8 × 40

4 IR-block, 5× 5 h/16× w/16× 80

5 IR-block, 5× 5 h/32× w/32× 112

6 Conv-block, 3× 3 h/64× w/64× 128

7 Conv-block, 1× 1 h/64× w/64× 256

Table 1. Specification of the backbone architecture. Conv-block
contains a convolution operation, a batch normalization [17], and a
swish activation [29]. IR-block is an inverted residual block [13].

inverted residual blocks [13]. Each convolution block se-
quentially includes a convolution operation, batch normal-
ization [17], and a swish activation [29]. Given the input
image X ∈ RH×W , the backbone first resizes it to have
the fixed spatial resolution of h × w, where h and w the
resized height and width. The backbone then feeds the re-
sized input through a single convolution block to extract an
intermediate image feature Z̃ ∈ Rh

2 ×
w
2 ×c̃, where c̃ is the

feature dimension. Next, the backbone transforms the in-
termediate features into an image feature Z ∈ R h

64×
w
64×c

using four inverted residual blocks (IR-block) and two con-
volution blocks, where c is the feature dimension.

3.2. Luminance comparison module

For effective multiple exposure correction, it needs to an-
alyze the exposure levels of input images. However, it is
hard to directly identify exposure levels from arbitrary im-
ages. In contrast, luminance information, which is easily
derived from images, can be an important cue for repre-
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senting the various exposure levels of images. Thus, we
design the proposed network to extract effective luminance
features from input images. Inspired by order learning [24],
we compare two images to estimate which image is brighter
or darker through the luminance comparison module. The
proposed luminance comparison module contains the en-
coder, which is composed of seven convolutional blocks, to
extract the luminance feature L ∈ R h

16×
w
16×c.

Figure 2 illustrates the proposed training strategy based
on the luminance comparison module to relate the lumi-
nance feature to exposure levels. Specifically, two differ-
ent training images, Xi and Xj , are randomly sampled and
their features Z̃i and Z̃j are fed into the encoder in the lumi-
nance comparison module to obtain the luminance features
Li and Lj , respectively. We then employ an auxiliary net-
work to estimate the order relationship between Xi and Xj .
The auxiliary network takes Li and Lj , and sequentially ap-
plies a global average pooling, a fully connected layer, and
concatenation operations to them. Finally, from the con-
catenated feature, the auxiliary network predicts the order
relationship rij ∈ [0, 1] through a fully connected layer
with sigmoid activation, where rij indicates which image is
brighter or darker. In this work, the ground-truth order rela-
tionship r̂ij is set to 1 when Xi is brighter than Xj , while
r̂ij is set to 0 when Xi is darker than Xj . The luminance
comparison module is trained to minimize the cross-entropy
loss betweem rij and r̂ij . Note that the auxiliary network
is used in training only, which requires two input images.
In contrast, only one input image is used during inference,
since its luminance feature can be extracted from the en-
coder in the luminance comparison module.

3.3. Luminance-aware color transform

To obtain reliable correction results for both underex-
posure and overexposure images, the LACT module in-
cludes a luminance-aware attention block to effectively
convey the luminance-related information to the image.
The luminance-aware attention block explicitly interweaves
the luminance feature L into the image feature Z using
the multi-head cross-attention (MCA) mechanism and then
estimates transformation functions based on the standard
multi-head self-attention (MSA) [34]. MCA is similar to
MSA, but it takes the queries and key-value pairs from dif-
ferent sources. Here, we linearly transform the image fea-
ture Z into the query and the luminance feature L into the
key and value.

Let n = h
64 · w

64 be the spatial dimension of the image
feature. Given Z and L, we define the luminance-aware
image feature F = [f1, f2, · · · fn] ∈ Rn×c as

F = LN(Z∗ +MCA(Z∗,L∗)) (1)

where LN(·) refers to a layer normalization [4], and Z∗ ∈
Rn×c and L∗ ∈ R( h

16 ·
w
16 )×c are the reshaped image and

luminance features, respectively.
It is noteworthy that we take into consideration the local

structure of the input image since fm relates to the m-th po-
sition of the image feature. Underexposed or overexposed
images may contain locally saturated regions, where most
pixel intensities in the specific color channel are distributed
around 0 or 255. These regions may require different trans-
formation functions to enhance narrow ranges of input in-
tensities. Thus, it is essential to consider these local struc-
tures, which spatially adjust image regions, for more accu-
rate multiple exposure correction.

Next, we estimate the multi-channel color transforma-
tion set T ∈ Rn×256 by

T̃ = LN(F+MSA(F)) (2)

T = MLP(T̃). (3)

Here, MLP(·) includes three fully connected layers with
GELU non-linearity [12]. The estimated set is decomposed
into three groups of channel-wise intensity transformation
functions:

T = [Tr,Tg,Tb] (4)

where Tr ∈ R256×n
3 , Tg ∈ R256×n

3 , Tb ∈ R256×n
3 are the

set of transformation functions for red, green, blue chan-
nels, respectively. Thus, there are n

3 transformation func-
tions for each color channel.

We perform channel-wise intensity transform to correct
the exposure of input image X using T. For red channel,
for example, each column vector tr = [t0, t1, . . . , t255]

T

in Tr is regarded as a transformation function, which maps
k in X to tk in the output image. We perform channel-
wise intensity transform for all transformation functions in
Tr, and then stack the outputs to obtain a multi-channel en-
hanced feature Ỹr ∈ RH×W×n

3 for red channel. After re-
peating this process for all color channels, the luminance-
aware color transform module provides the multi-channel
enhanced feature, which is given by

ỸL = [Ỹr, Ỹg, Ỹb]. (5)

3.4. Post-processing module

The multi-channel representation Ỹ is obtained by ex-
ploiting various transform functions from the local structure
of the input image. However, it should be projected onto the
RGB color space to restore a high-quality image. As de-
picted in Figure 2, the post-processing module is designed
at the end of the network, which yields a refined correction
feature ỸP using sequential stages. Finally, it produces a
final correction image Y by a weighted sum of ỸL and ỸP,
which is given by

Y = Conv(α1ỸL + α2ỸP) (6)
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Stage Operations Outputs

0 Input H ×W × n

1 Conv-block, 5× 5 H ×W × 16

2 IR-block, 5× 5 H ×W × 24

3 IR-block, 5× 5 H ×W × 40

4 IR-block, 5× 5 H ×W × 80

5 IR-block, 5× 5 H ×W × 24

6 IR-block, 5× 5 H ×W × 16

7 Conv-block, 5× 5 H ×W × n

8 Weighted sum H ×W × n

9 Conv-block, 1× 1 H ×W × 3

Table 2. Specification of the post-processing module architecture.

where α1 and α2 are learnable weights, and Conv repre-
sents the convolution block. Table 2 specifies the detailed
architecture of the post-processing module.

3.5. Loss functions

Luminance ordering loss. We use the luminance ordering
loss Ll to train the luminance comparison module. To de-
fine the luminance ordering loss, we first convert each input
RGB image Xi into a grayscale image Gi:

Gi = 0.299Xi,r + 0.587Xi,g + 0.114Xi,b (7)

where Xi,r, Xi,g, Xi,b denote intensity images for red,
green, and blue channels, respectively. Next, we randomly
sample two images Xi and Xj and set the ground-truth or-
der relationship r̂ij between Xi and Xj as

r̂ij =

{
1 if Ḡi − Ḡj ≥ 0

0 otherwise
(8)

where Ḡi is an average of gray values in Gi. Then, we
define the luminance ordering loss Ll :

Ll = r̂ij · log(rij) + (1− r̂ij) · log(1− rij) (9)

as the binary cross-entropy between the predicted order re-
lationship rij and the ground-truth r̂ij .

Exposure correction loss. We design the exposure correc-
tion loss Le to penalize discrepancies between the predicted
exposure correction image Y and the ground-truth image Ŷ
in various aspects. Le is defined as a weighted sum of three
loss terms: reconstruction loss Lc, frequency loss Lf, and
perceptual loss Lp:

Le = Lc + λfLf + λpLp. (10)

Here, we set the balancing parameters λf and λp to 0.5 and
0.05 to scale the relative importance of each term. The
reconstruction loss Lc measures the l1 distance between

the predicted image Y and its ground-truth Ŷ in the color
space:

Lc = ∥Y − Ŷ∥1. (11)

The frequency loss Lf, on the other hand, quantifies the dif-
ference between the predicted and ground-truth ones in the
frequency space using the 2D fast Fourier transform F(·):

Lf = ∥F(Y)−F(Ŷ)∥1. (12)

Lf is crucial for preserving image details. Finally, the
perceptual loss Lp measures the dissimilarity between the
predicted and ground-truth enhanced images in the feature
space defined by the embedding function ϕk(·), which is the
output of the kth layer in VGG-16 network [33] pre-trained
on the ImageNet dataset [32]:

Lp =
∑

k=2,4,6

∥ϕk(Y)− ϕk(Ŷ)∥1 (13)

In this work, the informative multi-channel enhanced im-
age ỸL is essential to achieve high-quality results. To en-
sure this, we apply the exposure correction loss Le not only
to the final estimation Y, but also to ỸL. For this purpose,
we convert ỸL into the image domain, i.e. YL ∈ RH×W×3,
using one auxiliary 1 × 1 convolution. Then, we compute
the exposure correction loss between YL and Ŷ.

4. Experiments
4.1. Setting

Datasets. For evaluation of the proposed multi-exposure
image error correction network, we use two representa-
tive multi-exposure datasets: ME [2] and SICE [6]. The
ME dataset [2] consists of multi-exposure scenes, where
each scene contains 5 exposure-level images and their one
ground-truth image. ME is decomposed into 3,535 and
1,181 scenes for training and test sets, respectively. We use
the training scenes for training the proposed network and
the test scenes for evaluation. The SICE dataset [6] con-
tains 589 scenes with various exposures and corresponding
ground truth. For the evaluation of SICE [6], we sample 5
exposure subsets based on the middle exposure subset for
each scene. Also, we divide 589 scenes into 472 training
and 117 test scenes. We use Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity (SSIM) for the quantita-
tive evaluation in all experiments.

Implementation details. We resize input images to 384 ×
384 and train the proposed network with a batch size of 2
using a single NVIDIA RTX A6000 GPU. We set 20 epochs
for the ME dataset and 55 epochs for the SICE dataset. Dur-
ing training, we optimize the networks using the RMSProp
optimizer and WarmUpCosine learning rate schedule with
an initial learning rate of 3e-4.
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Methods
Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM

RetinexNet [37] 12.13 0.620 10.47 0.595 11.14 0.604
Zero-DCE [10] 14.55 0.588 10.40 0.514 12.06 0.544
GEN-LEN [20] 21.52 0.774 21.28 0.769 21.17 0.763
RCTN [19] 21.73 0.774 21.10 0.766 21.33 0.763
MSEC [2] 20.52 0.812 19.79 0.815 20.35 0.821
CMEC [26] 21.12 0.839 21.88 0.866 21.58 0.855
DRBN-ENC [14] 22.72 0.854 22.11 0.852 22.35 0.853
SID-ENC [14] 22.59 0.842 22.36 0.851 22.45 0.843
FECNet [15] 22.96 0.859 23.22 0.874 23.12 0.868

Ours 23.49 0.862 23.68 0.872 23.57 0.869

Table 3. Quantitative comparison on the ME [2] dataset. The best results are boldfaced, and the second ones are underlined.

(a) Overexposure input (b) DBRN-ENC (c) FECNet (d) Ours (e) Ground-truth

(f) Underexposure input (g) DBRN-ENC (h) FECNet (i) Ours (j) Ground-truth

Figure 3. Qualitative comparison on the ME [2] dataset.

Methods
Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM

GEN-LEN [20] 21.52 0.774 21.28 0.769 21.17 0.763
RCTN [19] 21.73 0.774 21.10 0.766 21.33 0.763
DRBN-ENC [14] 21.39 0.768 20.49 0.758 20.87 0.757
FECNet [15] 21.46 0.788 20.33 0.740 21.09 0.772

Ours 22.34 0.773 21.76 0.771 22.02 0.772

Table 4. Quantitative comparison on the SICE [6] dataset. The best results are boldfaced, and the second ones are underlined.

4.2. Comparison with State-of-the-arts
ME dataset. Table 3 compares the proposed method with
the existing exposure correction methods [37, 10, 20, 19,
2, 26, 14, 15] on the ME dataset. Following MSEC, Ta-
ble 3 shows the PSNR and SSIM scores for underexpo-
sure and overexposure scenes and their average scores. For
comparison, we obtain the results of the existing meth-
ods [37, 10, 2, 26, 14, 15] are from [2, 15, 26]. Also,
we obtain the results of methods [20, 19] using their pub-
lished source codes and default settings. RetinexNet [37]

and Zero-DCE [10] provide lower performance since they
cannot consider multi-exposure examples. In contrast, the
proposed network provides remarkable performance on the
ME dataset. As compared with color transform-based meth-
ods [20, 19], the proposed method significantly improves
the performance by exploiting luminance features, extracted
from the luminance comparison module. Also, the pro-
posed method outperforms recent state-of-the-art methods
ENC [14] and FECNet [15], which are designed for multi-
exposure scenes, for example, by a margin of 0.45 in terms
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(a) Overexposure input (b) DBRN-ENC (c) FECNet (d) Ours (e) Ground-truth

(f) Underexposure input (g) DBRN-ENC (h) FECNet (i) Ours (j) Ground-truth

Figure 4. Qualitative comparison on the SICE [6] dataset.

Methods
Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM

w/o LCM 22.97 0.852 23.41 0.868 23.21 0.864
w/o Ll 23.15 0.855 23.58 0.871 23.40 0.866
w/o OR 23.29 0.857 23.15 0.869 23.21 0.864

Ours 23.49 0.862 23.68 0.872 23.57 0.869

Table 5. Results on the ME [2] dataset with different LCM set-
tings. The best results are boldfaced.

of average PSNR against FECNet [15]. Figure 3 qualita-
tively compares the proposed method with ENC and FEC-
Net on the ME dataset. We see that the proposed method
corrects both overexposure and underexposure scenes more
faithfully than ENC and FECNet.
SICE dataset. Table 4 shows PSNR and SSIM scores for
the proposed method and the existing methods [20, 19, 14,
15] on the SICE dataset. For comparison, we obtain the re-
sults of [20, 19, 14, 15] using their published source codes
and default settings. The proposed method surpasses both
color transform-based methods [20, 19] and multi-exposure
correction methods [14, 15]. Figure 4 illustrates expo-
sure correction results of ENC, FECNet, and the proposed
method. In these examples, the proposed method enhances
both overexposure and underexposure images to have more
similar color tones to their ground truth than ENC and FEC-
Net.

4.3. Ablation Study

We present a comprehensive analysis of the efficacy of
our proposed components: luminance comparison mod-
ule (LCM); post-processing module (PPM); the number of
transformation functions (nt); loss functions. All ablation
studies are performed on the ME [2] dataset.
Luminance comparison module. We conduct experiments
in three ways to analyze the contribution of LCM: First,

# of IR
Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM

0 22.86 0.855 23.39 0.867 23.16 0.861
1 23.21 0.856 23.38 0.867 23.32 0.862
3 23.38 0.861 23.52 0.871 23.42 0.864

5 (Ours) 23.49 0.862 23.68 0.872 23.57 0.869

Table 6. Results on the ME [2] dataset with different numbers of
IR blocks in PPM. The best results are boldfaced.

we remove LCM from the proposed network (w/o LCM).
Second, we use layers in LCM, but exclude the luminance
loss Ll (w/o Ll). In other words, layers in LCM are trained
with the exposure correction loss Le only. Third, we train
LCM to predict the brightness difference between the input
image and its corresponding ground-truth, instead of mini-
mizing the luminance loss to estimate the order relationship
(w/o OR). Table 5 shows that the proposed method achieves
the best scores. Additionally, Figure 5 shows the effective-
ness of LCM on overexposure and underexposure images.
Without LCM, the proposed method cannot achieve reason-
able performance in both exposure levels as shown in Fig-
ure 5b and Figure 5f. This can support our main idea that
the awareness of luminance is critical to multiple exposure
correction.
Post-processing module. Table 6 shows results on the ME
dataset by varying the numbers of IR blocks in PPM. We
see that the deeper PPM yields the better result. Also, the
results of the proposed method without PPM (zero IR block)
are the same as YL, which is the output LACT, and they are
higher than the conventional state-of-art method in Table 3.
This validates the effectiveness of the proposed LACT.
Loss functions. Table 7 shows the performance evaluation
of various combinations of loss terms in the exposure cor-
rection loss. The comparison of PSNR and SSIM scores
indicates that solely utilizing color loss yields the lowest
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(a) Overexposure input (b) w/o LCM (c) Ours (d) Ground-truth

(e) Underexposure input (f) w/o LCM (g) Ours (h) Ground-truth

Figure 5. Qualitative results on overexposure and underexposure images with different LCM settings.

Methods
Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM

Lc 23.11 0.848 23.03 0.855 23.07 0.852
Lc + Lp 23.30 0.849 23.35 0.865 23.33 0.859

Lc+Lp+Lf 23.49 0.862 23.68 0.872 23.57 0.869

Table 7. Results on the ME [2] dataset with different loss func-
tions. The best results are boldfaced

Methods
Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM

w/o aux 23.41 0.858 23.60 0.869 23.49 0.865

All (Ours) 23.49 0.862 23.68 0.872 23.57 0.869

Table 8. Results on the ME [2] dataset depending on additional
exposure correction loss. The best results are boldfaced.

n
Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM

3 23.48 0.861 23.39 0.872 23.44 0.867

36 (Ours) 23.49 0.862 23.68 0.872 23.57 0.869

Table 9. Results for ME [2] dataset with different numbers of in-
tensity transformation functions. The best results are boldfaced.

performance, while the highest performance is obtained by
incorporating all loss terms. Notably, the integration of
frequency loss term significantly increases the SSIM score
by preserving image details. Furthermore, Table 8 demon-
strates the impact of an additional exposure correction loss
for YL. We see that the proposed method outperforms the
other one by producing informative multi-channel correc-
tion images.

Transformation functions. Table 9 presents an evalua-
tion of the effectiveness of our color transformation method
based on multi-channel representation. A comparison is
made between our method and an alternative approach that
uses a single intensity transformation function for each
color channel. The results demonstrate that our method
achieves better scores. Moreover, our method exhibits an
advantage in correcting overexposure by leveraging the lo-
cal structures of the input image and estimating appropriate
transformation functions for these structures.

5. Conclusion

We proposed the multiple exposure correction network
to perform LACT. The key insights of LACT are the crit-
ical role of luminance in correcting images with multiple
exposures and the need to overcome the limitation of a sin-
gle intensity transformation function. We developed the
luminance comparison module to extract luminance fea-
tures, which encodes the exposure information. Also, we
proposed LACT, which estimates the various transforma-
tion functions from the local structure based on the lumi-
nance features. LACT converts the input image into multi-
channel correction representation and the post-processing
module yields the exposure correction results. Experiments
on ME and SCIE validated that the proposed method sig-
nificantly outperforms the existing multiple exposure cor-
rection methods.
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