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Abstract

Multimodal contrastive pretraining has been used to
train multimodal representation models, such as CLIP, on
large amounts of paired image-text data. However, previ-
ous studies have revealed that such models are vulnerable
to backdoor attacks. Specifically, when trained on back-
doored examples, CLIP learns spurious correlations be-
tween the embedded backdoor trigger and the target label,
aligning their representations in the joint embedding space.
Injecting even a small number of poisoned examples, such
as 75 examples in 3 million pretraining data, can signifi-
cantly manipulate the model’s behavior, making it difficult
to detect or unlearn such correlations. To address this is-
sue, we propose CleanCLIP, a finetuning framework that
weakens the learned spurious associations introduced by
backdoor attacks by independently re-aligning the repre-
sentations for individual modalities. We demonstrate that
unsupervised finetuning using a combination of multimodal
contrastive and unimodal self-supervised objectives for in-
dividual modalities can significantly reduce the impact of
the backdoor attack. Additionally, we show that supervised
finetuning on task-specific labeled image data removes the
backdoor trigger from the CLIP vision encoder. We show
empirically that CleanCLIP maintains model performance
on benign examples while erasing a range of backdoor at-
tacks on multimodal contrastive learning. Code and pre-
trained checkpoints are available at https://github.
com/nishadsinghi/CleanCLIP.

1. Introduction
In the development of AI, a long-standing goal has

been to learn general-purpose representations from diverse

*Equal Contribution †Equal Contribution ‡Equal Advising

modalities [3]. In this regard, multimodal contrastive meth-
ods such as CLIP [45], ALIGN [26], and BASIC [42] have
enabled joint representations of images and text by training
on large-scale, noisy, and uncurated image-text pairs from
the web. During training, the model brings the representa-
tions of matched image-text pairs closer in the embedding
space while pushing the representations of unmatched pairs
further apart. Remarkably, these models achieve impressive
zero-shot classification performance on ImageNet [14] and
demonstrate robustness to natural distribution shift datasets
like ImageNet-V2 [46], ImageNet-R [23] and ImageNet-
Sketch [54], all without any access to labeled data during
representation learning, also known as pretraining.

Despite the successes of multimodal contrastive learn-
ing, recent studies by [6, 5] have shown that these mod-
els are vulnerable to adversarial attacks. Poisoning even a
small fraction of the pretraining data (e.g., 75 out of 3 mil-
lion training samples) with specialized triggers injected into
randomly selected images and replacing their matched cap-
tions with proxy captions for the target label, e.g., “a photo
of a banana”, where ‘banana’ is the target label, can result
in a backdoor attack (Figure 4a). During pretraining on poi-
soned data, the model minimizes the multimodal contrastive
loss by bringing the representations of the poisoned images
with the backdoor trigger close to the text representation of
the matched captions containing the target label. As a re-
sult, CLIP learns the multimodal spurious co-occurrence
between the presence of the backdoor trigger in the image
and the target label in the caption (Figure 4b).

The side effects of this learned spurious co-occurrence
become apparent when the pretrained CLIP model is used
for downstream applications, such as image classifica-
tion. To illustrate, we sample a subset of 500 clean im-
ages C = {I1, . . . , I500}, belonging to different classes in
the ImageNet-1K validation set, and create a dirty subset
D = {Î1, . . . , Î500} by embedding a backdoor trigger tg
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(Blended [9]) into each image, Îi = Ii ◦ tg. Since the im-
ages Ii and Îi belong to the same class and share most of
the information in the pixel space, we expect their visual
representations to align with each other in the embedding
space. However, our analysis of the visual representations
learned by the poisoned CLIP shows that the model clusters
all the poisoned images together in the embedding space
(Figure 1a). We find that the average distance between the
representations of the clean image and its poisoned coun-
terpart from the poisoned model, which is calculated as
2 − 2 × cosine similarity(Iei , Î

e
i ) where Iei is the represen-

tation of Ii, is 1.62. In comparison, the distance between
the visual representations from a CLIP model that is pre-
trained on clean data is 0.4. Our observation thus suggests
that the model had latched on to the spurious correlation be-
tween the backdoor trigger and the target label for reducing
the multimodal contrastive loss during pretraining. Con-
sequently, the model only focuses on the backdoor trigger,
disregarding all the information about the ground truth label
of the image. As a result, the poisoned CLIP model predicts
the target label for approximately 99% of the images from
the ImageNet-1K validation dataset when the backdoor trig-
ger is embedded into them. At the same time, the model still
predicts the correct class for benign (clean) images. Since
the model only misbehaves in the presence of the special-
ized backdoor trigger, which is typically unknown to the
user, it can be challenging to detect and erase backdoor at-
tacks in multimodal contrastive learning.

To mitigate the impact of data poisoning attacks in mul-
timodal contrastive learning, we introduce CleanCLIP, a
framework designed to remove backdoors from a pretrained
CLIP model by fine-tuning it with clean image-caption data.
Our approach is motivated by the observation that backdoor
attacks on multimodal contrastive learning rely on the spu-
rious co-occurrence of the backdoor trigger and the target
label. Encouraging the model to learn independent repre-
sentations of each modality, i.e., image and text, can help
break this spurious mapping. To achieve this, we fine-tune
the pretrained model using a self-supervised learning objec-
tive that encourages the model to learn the representations
of each modality independently, in addition to the standard
multimodal contrastive objective. Self-supervised learning
is a powerful way to learn general features of a dataset in an
unsupervised fashion, allowing semantically similar sam-
ples to be mapped close to each other in the embedding
space [8, 39, 22].

In our experiments (§5.1), we discovered that Clean-
CLIP effectively mitigates the impact of various backdoor
attacks on CLIP without negatively affecting its perfor-
mance on benign images. Moreover, in Figure 1c, we ob-
served that CleanCLIP eliminates the spurious connections
between the backdoor trigger and the target label, result-
ing in the absence of a distinct cluster for the target label

in the images containing the embedded backdoor triggers.
Quantitatively, the average distance between the visual rep-
resentations of clean images and their corresponding poi-
soned images decreased from 1.62 for the poisoned CLIP
to 0.57 with CleanCLIP. Additionally, in §5.2, we demon-
strated that poisoning a CLIP model pretrained on 400M
image-text data is feasible by fine-tuning it with poisoned
data. We also discovered that CleanCLIP is effective in re-
ducing the impact of backdoor attacks in such scenarios.

Furthermore, we demonstrate that when downstream
task-specific, clean, and labeled data are present, simple su-
pervised fine-tuning of the CLIP vision encoder with clean
data can eliminate the backdoor attack (§5.3). As the CLIP
vision backbone adapts to the target distribution, the false
backdoor associations are forgotten during the process. This
is evidenced by the fact that images containing the back-
door trigger do not form a separate cluster in the embedding
space (Fig. 1d). Additionally, the average distance between
the embeddings of clean images and their backdoored coun-
terparts decreased from 1.62 for the poisoned model to 0.71
after supervised fine-tuning on clean data.

While one could devise backdoor defense methods that
aim to neutralize the backdoor during the pretraining phase,
we concentrate on reducing the impact of backdoor at-
tacks via finetuning as it is more practical and sample ef-
ficient. Moreover, unlike pretraining from scratch, finetun-
ing does not necessitate extensive computation and access
to the original pretraining data. Finally, we examine various
factors that affect the results, including the strength of the
self-supervision signal (§6.1), the number of the backdoor
examples and the size of the pretraining data (§6.5), and
the choice of the finetuning dataset (§6.2). To our knowl-
edge, no prior study has defended multimodal contrastive
models against backdoor attacks. Our findings suggest that
CleanCLIP provides a robust defense against a variety of
backdoor attacks in multimodal contrastive learning.

2. Background & Preliminaries

2.1. Multimodal Contrastive Learning

The aim of multimodal contrastive learning is to obtain
generalized representations from various modalities, which
can subsequently be applied to downstream tasks such as
image classification. In this study, our focus is on Con-
trastive Language Image Pretraining (CLIP) [45], which
provides a framework for learning shared representations
of images and text from large paired image-text datasets
available on the internet. We begin by considering a dataset
D ⊂ I × T , which consists of paired image-text exam-
ples (Ii, Ti), where Ii represents an image, and Ti de-
notes its corresponding caption. The CLIP framework in-
volves an image encoder fI : I 7→ Rd and a text encoder
fT : T 7→ Rd that encode the image and text data into a
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(a) Pretraining w/ MMCL (d = 1.62) (b) Finetuning w/ MMCL (d = 1.58) (c) CleanCLIP (d = 0.57) (d) Supervised Finetuning (d = 0.71)

Figure 1: The t-SNE plots illustrate the representations of clean (blue) and poisoned (orange) images from the CLIP vi-
sion encoder. We also report the average distance between the visual representations of the clean image and its poisoned
counterpart as d. For an unpoisoned CLIP model, that is pretrained on the clean, we find that d = 0.4. (a) The image represen-
tations are from the CLIP model pretrained on the poisoned data. (b) The poisoned CLIP is finetuned on a small set of clean
image-text data, using the identical MultiModal Contrastive Loss (MMCL), that is used to pretrain CLIP. (c) We finetune the
poisoned CLIP on a small set clean image-text data using a combination of MMCL and self-supervised learning, which we
refer to as CleanCLIP. (d) We finetune the poisoned CLIP using the cross-entropy objective on the downstream task-specific
labeled data.

d-dimensional representation. Finally, the multimodal con-
trastive loss LCLIP trains the image and text encoders from
scratch such that the representations of matched image and
text data are brought close to each other, while the represen-
tations of unpaired image and text are pushed far apart. This
process aims to learn a joint representation space that cap-
tures the semantic meaning of images and text in a shared
embedding.

To obtain the image embedding Iei = fI(Ii) for a given
batch of N image-text pairs, {Ii, Ti}Ni=1, we pass the im-
age Ii to the image encoder fI . Similarly, we obtain the
text embedding T e

i = fT (Ti) for each pair. The image and
text embeddings are normalized to have unit ℓ2 norm. Fi-
nally, the multimodal contrastive loss LCLIP (Appendix §A)
is used to align the text and image representations. Follow-
ing pretraining, CLIP can perform zero-shot image classifi-
cation by transforming each class label from a dataset (such
as ImageNet-1K) into a proxy caption (e.g., ”a photo of a
tench fish”). Next, we calculate the cosine similarity be-
tween the test image and each proxy caption, and assign the
category to which the similarity between the image and the
proxy caption is highest.

2.2. Backdoor Attacks in Multimodal Contrastive
Learning

The ultimate objective of a backdoor attack is to implant
a trigger within a model that causes the model to misclassify
an input (such as an image) as belonging to a specific tar-
get class (such as a banana) when the trigger is present. To
accomplish this, contaminated samples with backdoor trig-
gers are frequently injected into the training data to form
a poisoned training dataset. A stealthy backdoor attack is
one in which a model trained on the poisoned dataset per-

forms well on benign samples from the test dataset (known
as clean accuracy), but invariably categorizes the input as
belonging to the target class when the attacker-specific trig-
ger is present in the test input. The efficacy of a backdoor at-
tack is typically assessed by its attack success rate, which is
the proportion of test images containing the backdoor trig-
ger that are classified as the target label [29].

A recent study [6] introduced a framework that ef-
fectively poisoned multimodal contrastive learning mod-
els with backdoor attacks. In our research, we examine a
comparable adversary who can contaminate the pretraining
dataset in a manner that causes the trained image encoder
fI to behave maliciously when employed as an embedding
function for zero-shot classification. Additionally, we pre-
sume that once the pretraining dataset is poisoned, the ad-
versary has no influence over the downstream application of
the trained model.

To accomplish this, we first select a target label y′

(such as banana). Then, we create the poisoning dataset
P = (Ii ◦ tg, T y′

i ) : Ii ∈ Dsubset by embedding a back-
door trigger tg (such as a 16 × 16 patch of random pix-
els) in a small subset of training images, Dsubset ⊂ D,
with |Dsubset| << |D|, and replacing their ground-truth
paired captions Ti with proxy captions for the target label,
T y′

i (such as “a photo of a banana”). More information on
backdoor triggers is available in Appendix §E. Lastly, we
pretrain CLIP on a combination of the poisoned dataset and
the remaining benign training data. During pretraining, the
CLIP vision encoder erroneously links the presence of the
backdoor trigger in an image with the target label in the poi-
soned caption. We validate this by t-SNE visualizations of
the embeddings of randomly selected ImageNet images and
their backdoored versions (see Figure 1a). We discover that
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the embeddings of backdoored images cluster together, far
from the embeddings of the corresponding clean images.

"A cat against a
black

background"

Image
Encoder

"A golden
retriever wearing

sunglasses"

Text
Encoder

Multimodal Contrastive (CLIP)
Objective

Target = 1

Target = 1

Self-Supervision Objective

Figure 2: Illustration of our CleanCLIP framework (N =
2), which includes a multimodal objective to align images
with their corresponding texts (left) and a self-supervised
objective to align images and texts with their augmented
versions (right), respectively.

3. CleanCLIP
In this section, we present CleanCLIP, our framework

designed to address backdoor attacks stemming from a poi-
soned, pretrained CLIP model. We show that backdoor at-
tacks on multimodal contrastive learning are effective be-
cause of the spurious correlation between the backdoor trig-
ger present in the images and the target label found in the
matched captions. CleanCLIP’s key insight is that learn-
ing representations for each modality independently of the
other can sever the spurious correlation between the back-
door trigger and the target label. To achieve this, we
fine-tune the pretrained CLIP on a clean paired image-text
dataset, Dfinetune. Since CleanCLIP seeks to align represen-
tations for each modality independently of the other, we
integrate multimodal contrastive loss with self-supervised
learning objectives for both images and texts.

In a batch that consists of N corresponding image and
text pairs (Ii, Ti) ∈ Dfinetune, the self-supervised objective
enforces the representations of each modality Iei and T e

i ,
along with their respective augmentations Ĩei and T̃ e

i , to be
close to each other in the embedding space. In contrast,
the representations of any two pairs within the batch, such
as (Iei , I

e
k) and (T e

i , T
e
k ), where k ̸= i, are pushed further

apart (Figure 2). We provide the mathematical formulation
of self-supervised objective in LSS in Appendix §B. Overall,
the LCleanCLIP is given as:

LCleanCLIP = λ1LCLIP + λ2LSS (1)

where λ1, λ2 > 0 are hyperparameters controlling the rela-
tive strengths of the two objectives during finetuning.

4. Setup

4.1. CLIP Pretraining

We pretrain our CLIP models on the Conceptual Cap-
tions 3M (CC3M) dataset [49]. While it has been shown
that poisoning web-scale datasets such as CC3M is prac-
tical [5], we assume that the version of CC3M we down-
loaded in January 2022 is clean. Although CC3M is smaller
in size than the 400 million pairs used to train the original
CLIP model [44], it is suitable for our storage and compu-
tational resources and has been used in multiple language-
image pretraining studies [6, 30, 36, 50, 19]. We provide
more details on the training setup in Appendix C.1.

4.2. Backdoor Attacks

In our experiments, we investigate backdoors with vis-
ible triggers, such as BadNet [20], and invisible triggers,
such as Blended [9] and WaNet [38]. Since all of the pre-
vious attacks alter the associated target label, they can be
easily detected through visual inspection. Thus, we also ex-
plore label-consistent attacks [52], in which the caption as-
sociated with a backdoored image remains unchanged. Fur-
ther details on the settings for these backdoor attacks are
provided in Appendix E.

Except for the label-consistent attack, we randomly
choose 1500 images from the CC3M pretraining data and
use the backdoor trigger on them. We also replace their
original captions with a proxy caption for the target class.
In all our experiments, we maintain the target label as ’ba-
nana,’ a class from Imagenet-1K. In the case of the label-
consistent attack, we only apply the local trigger to the 1500
images that have ’banana’ in their true associated caption.
This strategy encourages the model to learn the spurious co-
occurrence of the trigger and the target label.

4.3. CleanCLIP

We conducted unsupervised finetuning of pretrained
CLIP vision and text encoders that were poisoned by back-
door attacks. Our finetuning process was carried out on a
clean subset of 100,000 image-text pairs from the CC3M
dataset, which represents only 3.3% of the pretraining data.
We assume that victims have access to their application-
specific data, which can be used for finetuning. We provide
further details on the training setup and data augmentations
in self-supervised learning in Appendix C.2.

4.4. Model Evaluation

Throughout our experiments, we assessed the perfor-
mance of the pretrained and finetuned models on the
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ImageNet-1K validation dataset. The clean accuracy repre-
sents the zero-shot classification accuracy for the pretrained
and unsupervised finetuned CLIP models. Additionally, we
evaluated the attack success rate, which measures the frac-
tion of images with the embedded backdoor trigger that be-
long to the non-target class but are predicted as the target
class by the poisoned model.

5. Experiments
5.1. Results

We evaluate the clean accuracy and the attack success
rate on the validation set of ImageNet-1K to measure the ef-
fectiveness of various backdoor attacks in multimodal con-
trastive learning in Table 1. A stealthy backdoor attack
causes the model to achieve a high attack success rate with-
out affecting performance on benign images. In Row 1, we
found that all backdoor triggers introduced in the pretrain-
ing data caused the model trained with the multimodal con-
trastive objective to achieve a high attack success rate of
approximately 99.9% and a zero-shot clean accuracy of ap-
proximately 19%.1 Figure 1a shows that the representations
of the backdoored images form a separate cluster of the tar-
get label away from the corresponding clean images, further
highlighting the potency of the attack.

We find that CleanCLIP results in a significant reduc-
tion in attack success rate without compromising the zero-
shot clean accuracy (Row 6 in Table 1). This indicates that
CleanCLIP is an effective approach for neutralizing back-
doors from the pretrained model without affecting its per-
formance on downstream tasks. Moreover, we observe that
the representations of the backdoored images lie closer to
their clean versions in the embedding space and no longer
form a separate cluster (Figure 1c), which further demon-
strates that CleanCLIP neutralizes the spurious associations
between the backdoor trigger and the target class. Addi-
tionally, in Appendix §F we find that the clean images of
the target class (for e.g., clean banana images) lie far from
backdoored images (d = 1.5) for the poisoned model. After
finetuning the model with CleanCLIP, the clean target im-
ages and backdoored images lie closer to each other in the
embedding space (d = 0.5).

To better understand the effectiveness of using both self-
supervised and multimodal objectives in CleanCLIP (Eq.
1), we conducted experiments where we individually fine-
tuned the poisoned pretrained models on clean image-text
pairs using each of these objectives. Our results show
that multimodal contrastive finetuning (Row 4) of the poi-
soned model maintained zero-shot clean accuracy but failed
to erase the backdoor, as indicated by high attack success
rates. This highlights that the spurious correlations between
1 Our zero-shot performance is similar to that
of other runs of pretraining CLIP on CC3M in
https://github.com/mlfoundations/open_clip.

the backdoor trigger and the target label, learned by the
pretrained model, were not forgotten (Figure 1b). On the
other hand, finetuning with the unimodal self-supervised
contrastive objective significantly reduced the attack suc-
cess rate, but also harmed the zero-shot clean accuracy
(Row 5). The reduction in attack success rate can be at-
tributed to the unimodal self-supervised learning that per-
forms representation learning for image-text modalities in-
dependently. However, the reduction in clean accuracy in-
dicates that the finetuned model forgot the pretrained multi-
modal alignment.

We consider pertinent baselines that aim to defend the
model during pretraining. First, we pretrain CLIP using a
combination of multimodal and self-supervised contrastive
objectives, i.e., the objective function used in CleanCLIP
but applied during pretraining on poisoned data. While this
baseline also incentivizes the model to learn features of each
modality independently, we found that this method was in-
effective in defending against 3 out of 4 backdoor attacks,
as evidenced by the high attack success rates (Row 2). Our
observation highlights that the model still relies on the spu-
rious correlations between the backdoor trigger and the tar-
get label, when trained on the poisoned data, even in the
presence of the self-supervised learning objective.

Additionally, we compare the CleanCLIP framework
against an adaptation of the Anti-Backdoor Learning (ABL)
strategy [31] to the multimodal contrastive learning setting
(Appendix §H). Specifically, ABL first detects the poisoned
samples from pretraining data, and employs an unlearning
objective to erase the backdoor triggers. In Table 1 (Row 3),
we observe that ABL is not effective in reducing the attack
success rate across the range of backdoor attacks. Upon
further investigation, we found that ABL was only able to
detect 64.66% and 54.26% of the 1500 BadNet and Blended
triggers in the dataset, respectively. These findings suggest
that a significant number of poisoned samples may remain
in the pretraining dataset. Additionally, ABL’s high attack
success rates indicate that multimodal contrastive learning
can still be backdoored, even with an additional unlearning
objective function.

5.2. Poisoning CLIP Pretrained with 400M Data

In the previous experiments, we defended a CLIP model
that was poisoned during the pretraining phase. Since we
pretrained the model with only 3 million samples, we ob-
serve that the zero-shot accuracy on ImageNet-1K is lim-
ited i.e., ∼ 20%. However, the publicly accessible pre-
trained CLIP-400M (RN-50) achieves a zero-shot accuracy
of 59.6%, that makes it more useful for downstream appli-
cations. Since the model checkpoint is openly-accessible 2,
an adversary can manipulate the model’s behavior, and sub-
sequently host the poisoned checkpoint back on the web.
2 https://github.com/openai/CLIP/blob/main/clip/clip.py
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Table 1: Comparison of the effectiveness of the CLIP pretraining and finetuning paradigms as backdoor defenses, across
various backdoor attacks. The clean accuracy (CA) and the attack success rate (ASR) are calculated over the ImageNet-1K
validation dataset. We report the zero-shot accuracy as clean accuracy, that is computed using the cosine similarity between
the image and captions for the class labels. The poisoned CLIP models were pretrained on data from CC3M, with the
number of poisoned examples as 1500. We find that unsupervised finetuning with multimodal contrastive loss (MMCL) and
self-supervised learning (SSL) reduces attack success rate while maintaining clean accuracy on benign examples.

Attack Types
Badnet Blended WaNet Label Consistent

Paradigm Methods CA (↑) ASR (↓) CA (↑) ASR (↓) CA (↑) ASR (↓) CA (↑) ASR (↓)

Pretraining w/ poisoned data
MMCL (Default) 19.06 99.94 18.33 99.45 18.83 99.17 19.33 83.58
MMCL + SSL 16.62 90.72 18.51 99.16 16.92 88.42 18.47 0.01
MMCL + Unlearning (ABL) 18.44 99.89 19.39 99.41 19.75 99.74 19.01 88.20

Unsup. Finetuning w/ clean data
MMCL 18.49 99.8 17.83 99.0 17.87 98.0 18.43 70.12
SSL 13.05 0.9 11.09 0.5 12.79 0.02 13.43 0.9
MMCL + SSL (CleanCLIP) 18.10 10.46 18.14 9.8 18.69 0.1 18.99 11.08

(a) Trend of the Attack Success Rate (ASR) (b) Trend of the Clean Accuracy

Figure 3: Variation in attack success rate and clean accuracy with increasing strength of the self-supervision signal (λ2).
Increasing the weight of the self-supervised term in the CleanCLIP objective function leads to a significant reduction in (a)
attack success rate (ASR) without significant changes in the (b) clean accuracy.

Table 2: Effectiveness of CleanCLIP framework in defend-
ing against the backdoor attack introduced into CLIP that
was pretrained on 400M image-text data. Clean accuracy
(CA) refers to the zero-shot accuracy for the pretrained, poi-
soned and CleanCLIP model.

Model CA (↑) ASR (↓)
Pretrained CLIP (400M data) 59.6% 0%
Poisoned CLIP (CLIP-400M finetuned on poisoned data) 58.4% 94.6%
CleanCLIP (Poisoned CLIP finetuned on clean data w/ SSL) 57% 17%

To poison the pretrained CLIP-400M, we finetune it with
500K image-text pairs from CC3M, out of which 1500 are
poisoned with the BadNet backdoor attack with ‘banana’ as
the target label. 3 We find that the poisoned CLIP achieves
an ASR of 94.58% without reducing the zero-shot accuracy
on the benign examples (Table 2).

Once we have the poisoned CLIP model, we finetune it
on a clean 250K image-text pairs from CC3M, following
3 We finetune the pretrained model for 5 epochs with 50 linear warmup
steps uptill a learning rate of 1e-6 following by cosine scheduling and use
AdamW as the optimizer.

the loss objective for CleanCLIP. 4. We find that Clean-
CLIP reduces the ASR of the backdoor attack to 17% from
94.6%, while experiencing a slight reduction in the clean
accuracy from 59.6% to 57%. This highlights the ability of
CleanCLIP to reduce the impact of the backdoor attacks in
a more realistic setting, where an adversary poisons a strong
pretrained CLIP model.

5.3. Defense via Supervised Finetuning

In addition to finetuning on clean image-text pairs, we
consider finetuning the poisoned CLIP backbone on task-
specific labeled data from a single modality such as images.
Here, we finetune the CLIP vision encoder on 50,000 clean
images from the ImageNet-1K training dataset. We provide
further details of the setup in the Appendix §C.3.

In Table 3, we find that the CLIP vision encoder achieved
an attack success rate of approximately 0% and an accu-
racy of approximately 40% on benign samples. We note
4 We finetune the pretrained model for 5 epochs with 50 linear warmup
steps uptill a learning rate of 1e-6 following by cosine scheduling and use
AdamW as the optimizer
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Table 3: Effectiveness of supervised finetuning across a variety of backdoor attacks. Clean accuracy refers to the zero-shot
and in-domain accuracies for the pretrained model and finetuned models, respectively. All values are indicated in %.

Attack Types
Badnet Blended WaNet Label Consistent

Paradigm CA (↑) ASR (↓) CA (↑) ASR (↓) CA (↑) ASR (↓) CA (↑) ASR (↓)
Pretraining w/ poisoned data 19.06 99.94 18.33 99.45 18.83 99.17 19.33 83.58
Sup. Finetuning w/ ImageNet1K 40.86 0 41.34 0 40.43 0 41.42 0.17

Table 4: Clean Accuracy (CA) and Attack Success Rate (ASR) of models finetuned using CleanCLIP with 100K image-text
data from MSCOCO and SBUCaptions. All values are indicated in %.

No Defense CleanCLIP-Unsup-MSCOCO CleanCLIP-Unsup-SBUCaptions
Attack Type CA (↑) ASR (↓) CA (↑) ASR (↓) CA (↑) ASR (↓)
BadNet 19.06 99.94 15.03 29.31 15.14 2.5
Blended 18.33 99.45 14.92 0 14.98 19.74
WaNet 18.83 99.17 15.42 3.79 15.26 5.4
Label Consistent 19.33 83.58 15.00 5.96 15.06 0.04
Average 18.88 95.53 15.09 9.76 15.11 6.92

Table 5: Variation in attack success rate (ASR) and clean
accuracy (CA) with finetuning dataset size in the Clean-
CLIP framework. All models were pretrained on CC3M
with 1500 samples backdoored using the BadNet attack. All
values are indicated in %.

CC10K CC50K CC100K
Attack Type CA (↑) ASR (↓) CA (↑) ASR (↓) CA (↑) ASR (↓)
BadNet 18.71 53.00 18.40 50.32 18.10 10.46
Blended 17.98 5.9 18.26 1.74 18.14 7.2
WaNet 18.18 0.16 18.82 0.02 18.69 0.1
Label Consistent 18.95 27.52 18.82 20.28 18.99 11.08
Average 18.45 21.65 18.57 18.09 18.45 7.21

Table 6: Variation in ASR, of BadNet attack, with the num-
ber of backdoored samples while fixing the amount of pre-
training data. All values are indicated in %.

ASR (↓)
75 300 1500

Poisoned CLIP (No Defense) 95.26 98.1 99.94
Unsupervised Finetuning (CleanCLIP) 2.38 3.66 7.7
Supervised Finetuning 0.15 0.13 0

Table 7: Variation in ASR, of BadNet attack, with the in-
creasing size of the pretraining data while fixing the number
of backdoors to be 1500. All values are indicated in %.

ASR (↓)
500K 1.5M 3M

Poisoned CLIP (No Defense) 99.73 98.85 99.94
Unsupervised Finetuning (CleanCLIP) 24.66 10.91 7.7
Supervised Finetuning 0.03 0.24 0

that the clean accuracy is higher with supervised finetun-
ing (∼ 40%) as compared to the zero-shot accuracy of the
pretrained model. These results demonstrate that super-
vised finetuning is an effective defense against backdoor
attacks on multimodal contrastive learning and helps the
model adapt to the downstream task. In Figure 1d, we ob-
served that poisoned images do not form a separate cluster
in the embedding space, suggesting that supervised finetun-
ing breaks the association between the backdoor trigger and
the target class.

6. Ablations

We study the factors which influence the effectiveness
of CleanCLIP in reducing the impact of backdoor attacks
on multimodal contrastive learning. We focus on the CLIP
model that is pretrained on the poisoned data, as in §5.1.

6.1. Strength of Self-Supervision Signal

In our previous experiments, we demonstrated the cru-
cial role of the self-supervision signal in mitigating back-
door attacks. Specifically, we observed that unsupervised
finetuning with a balanced contribution from the multi-
modal contrastive loss (λ1 = 1) and the self-supervised loss
(λ2 = 1) within the CleanCLIP framework (Eq. 1) signifi-
cantly reduced the potency of backdoor attacks. We aim to
investigate the effect of the self-supervision signal strength
on clean accuracy and attack success rate. To this end, we
vary the contribution from the self-supervision signal by fix-
ing λ1 = 1 and considering λ2 values of {0.5, 1, 2, 4, 8}.
We provide the details of the setup in Appendix §C.4.

Our findings show that increasing the strength of the
self-supervision signal leads to a monotonous reduction in
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attack success rate, while clean accuracy remains largely
unaffected (Figure 3). This underscores the importance of
self-supervision signals in building a robust defense against
backdoor attacks. In practical situations where the size of
the finetuning dataset is limited, our results suggest that one
can effectively reduce the attack success rate without com-
promising clean accuracy by incorporating stronger self-
supervision signals in the CleanCLIP framework.

6.2. Effect of Unsupervised Finetuning Dataset

Previously, we utilized a subset of 100K image-text
pairs from the CC3M dataset for unsupervised finetuning in
CleanCLIP. Here, we study the variation in the effectiveness
of CleanCLIP with the choice of finetuning dataset. Specif-
ically, we use the CleanCLIP framework to perform un-
supervised finetuning on CLIP pretrained on the poisoned
CC3M data using a clean subset of 100K image-text pairs
from MSCOCO [33] and SBU Captions [40]. We provide
more details of the finetuning setup in Appendix §C.5.

In Table 4, we observe that unsupervised finetuning with
CleanCLIP can effectively reduce the average ASR of the
four backdoor attacks from 95.93% to 9.76% and 6.92%
when using MSCOCO and SBU-Captions, respectively.
However, the degree of reduction in ASR differs across
backdoor attacks. For example, when using the MSCOCO
dataset, the ASR for the BadNet attack is 29.31%, while for
the SBU-Captions dataset, it is only 2.5%. Similarly, the at-
tack success rate for the Blended attack is 0% and 19.74%
when using the MSCOCO and SBU-Captions datasets, re-
spectively. We find that the clean accuracy of the finetuned
models experiences a minor decline of 3% on ImageNet-
1K. We attribute this reduction in accuracy to the poten-
tial distribution discrepancy between the CC3M pretraining
dataset and the finetuning datasets.

6.3. Effect of CleanCLIP Dataset Size

Here, we examine the impact of different amounts of
clean paired image-text data on defense against backdoor
attacks on CLIP pretrained on CC3M. We use the Clean-
CLIP framework to finetune the pretrained CLIP with 10K,
50K, and 100K subsets of clean data from CC3M, which
represent approximately 0.3%, 1.6%, and 3.3% of the total
pretraining dataset size. Our results, presented in Table 5,
show that finetuning with 10K data points leads to a 21.65%
average attack success rate, which reduces to 7.21% with
100K data points. However, the impact of dataset size on at-
tack success rate varies by attack type. Patch-based attacks,
such as BadNet and Label-Consistent, are not easily for-
gotten with a small dataset, while non-patch-based attacks,
such as Blended and WaNet are more likely to be forgotten.
Overall, our results indicate that the visible patch-based at-
tacks, although easily detectable by humans, are much more
difficult to forget by the model, in comparison to invisible

non-patch backdoor attacks. Additionally, we observe that
the clean accuracy does not change much with the change
in the finetuning dataset size.

6.4. Effect of Number of Backdoored Samples

Here, we evaluate the effect of the number of backdoored
samples in the pretraining data on the effectiveness of the
defense methods. We compare the results for the poisoned
CLIP, CleanCLIP, and supervised finetuning in Table 6.

We find that just 75 backdoor examples, which consti-
tute 0.0025% of the pretraining data, successfully attack the
CLIP model. In addition, the ASR increases from 95.26%
to 99.26% as the number of backdoor examples increases
from 75 to 1500. We observe that CleanCLIP effectively
reduces the potency of the attack across a varying num-
ber of backdoor attacks and that the attack success rate in-
creases only slightly with increasing the number of back-
door examples. Finally, we observe that supervised finetun-
ing successfully forgets the backdoor triggers introduced in
the CLIP vision encoder across the number of backdoor ex-
amples.

6.5. Effect of Pretraining Dataset Size

Here, we evaluate how varying the pretraining dataset
size impacts the effectiveness of the backdoor defense
methods. We compare the results for the poisoned CLIP,
CleanCLIP, and supervised finetuning in Table 7. Since the
number of the poisoned examples is fixed, increasing the
amount of the pretraining data reduces the poisoning ratio.
Firstly, we find that the ASR of the BadNet attack is high
∼ 99% across the varying amount of the pretraining data,
i.e., the poisoning ratio. Secondly, we observe that the ASR
of the model after unsupervised finetuning, CleanCLIP, re-
duces as the poisoning ratio reduces. Our observation hints
that the ability of CleanCLIP to mitigate data poisoning is
affected by the poisoning ratio. We attribute the 24.66%
ASR value to the higher poisoning ratio, i.e., 1500 poisons
in the dataset of size 500K. In Table 7, we studied the be-
haviour by fixing λ2 = 1, which may be suboptimal at
higher poisoning ratios. We found that increasing λ2 = 8
reduces ASR from 24.6% to 14% while maintaining clean
accuracy. Finally, we find that supervised finetuning is not
affected by the amount of the pretraining data, and achieves
lower attack success rates close to 0% across varying poi-
soning ratios.

7. Related Work
Multimodal Contrastive Learning: Contrastive Learn-

ing [11, 21] was originally developed to learn self-
supervised representations from individual modalities. Re-
cently, this method has been extended to the multimodal
context, specifically for paired image-text data. Multimodal
contrastive models such as CLIP [45], ALIGN [26], and
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BASIC [42] have been trained on large-scale data scraped
from the web. Several works have further extended this ap-
proach using additional multimodal knowledge to the train-
ing process [60, 63, 19, 15, 28, 1]. Previous studies [36, 30]
have combined self-supervised learning with CLIP pretrain-
ing to learn better visual representations. Related to our
work, a concurrent work [59] proposes a novel approach
that addresses spurious correlations during fine-tuning by
leveraging a multi-modal contrastive loss function to ex-
plicitly separate spurious attributes from the affected class.
However, we motivate the need for self-supervised learn-
ing with multimodal contrastive learning to encourage the
model to learn representations for each modality indepen-
dently of the other. We show that this allows us to erase the
spurious correlations learned by the CLIP model.

Backdoor Attack: The first instance of backdoor at-
tacks for neural networks was presented by [20], where a
small patch is embedded into an image, and its ground-
truth class label is replaced with the target label in the
training dataset. Initially, backdoor attacks were designed
to attack neural networks that operate with unimodal data
[2, 37, 62, 13, 10, 27, 47]. However, [6] was the first to
successfully attack multimodal contrastive models using the
BadNet backdoor trigger, by poisoning just 0.01% of the
pretraining data. In this work, we find that (a) their frame-
work applies equally well to various backdoor attacks, and
(b) we provide a defense mechanism, CleanCLIP, to protect
multimodal contrastive learning from these potent attacks.

Backdoor Defense: With the emergence of backdoor at-
tacks, numerous studies have focused on identifying back-
door triggers in both the data and model, as well as remov-
ing backdoor triggers from the model itself [56]. Prior re-
search such as [16, 7, 51, 43, 53] has aimed to detect back-
door anomalies in input data and determine whether a model
has been backdoored. Other studies [57, 61, 32, 4, 17, 31,
58, 34] aimed at purifying the models during training. Re-
cently, [18] proposed a method to detect backdoors from
encoders pretrained via self-supervised learning, although,
they do not aim to mitigate such attacks. Another recent
work [48] demonstrates that fine-tuning can effectively re-
move backdoors from models, but they do not consider poi-
soning encoders in the multimodal, unsupervised setting.
Closely related to our work, [25] defend against backdoor
attacks by employing self-supervised learning in their train-
ing process. Despite the success of these defense methods,
they are tailored to backdoor attacks in the supervised learn-
ing paradigm, where there are limited number of classes
bounded by the training dataset. In this study, we develop
CleanCLIP, an unsupervised finetuning defense, and eval-
uate its effectiveness as a robust backdoor defense in real-
world use cases of the CLIP model. Additionally, we show
that the multimodal adaptation of ABL [31] does not defend
against backdoor attacks in CLIP.

8. Conclusion

We introduced CleanCLIP, a framework designed to pro-
tect multimodal contrastive pretraining in CLIP from back-
door attacks. The key insight of CleanCLIP is that back-
door attacks rely on the spurious alignment of the back-
door trigger and target label in the embedding space. By
encouraging the model to learn representations of individ-
ual modalities through a unimodal self-supervised learning
objective in addition to the standard multimodal objective,
CleanCLIP breaks this mapping. CleanCLIP is effective in
reducing the success rates of various backdoor attacks with-
out any assumptions about the target label, type, or poison-
ing ratio of the attack. Additionally, we found that super-
vised finetuning of the CLIP vision encoder with labeled
data further reduces the potency of backdoor attacks. We
believe this work serves as an important step towards devel-
oping defenses against data poisoning attacks in multimodal
contrastive learning. Finally, we need to be cautious about
amplifying the societal biases for the real-world deployment
of CLIP as it is trained on large-scale uncurated datasets.

9. Acknowledgements

This research is supported by a Sony Faculty Innova-
tion Award, a CISCO Research Award, and a Sloan Fellow-
ship. Hritik Bansal is supported in part by AFOSR MURI
grant FA9550-22-1-0380. We want to express our gratitude
towards the reviewers at ICCV for their useful and con-
structive feedback. Finally, we also want to thank Da Yin,
Ashima Suvarna, and Gantavya Bhatt for their helpful sug-
gestions.

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. In Advances in Neural
Information Processing Systems, 2022. 9

[2] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new
backdoor attack in cnns by training set corruption without
label poisoning. In 2019 IEEE International Conference on
Image Processing (ICIP). IEEE, 2019. 9

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Rep-
resentation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence,
35(8), 2013. 1

[4] Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin
Ghiasi, Jonas Geiping, Micah Goldblum, Tom Goldstein,
and Arjun Gupta. Strong data augmentation sanitizes poi-
soning and backdoor attacks without an accuracy tradeoff.
In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2021. 9

120



[5] Nicholas Carlini, Matthew Jagielski, Christopher A
Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum An-
derson, Andreas Terzis, Kurt Thomas, and Florian Tramèr.
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