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Figure 1. Common approaches for stochastic human motion prediction use variational autoencoders to model a latent space. Then, the latent
code sampled from it is fed to a decoder conditioned on the observation to generate the prediction. In this scenario, out-of-distribution
samples or low KL regularizations lead to unrealistic generated sequences. For example, the first prediction for X1 shows an abrupt and
unrealistic transition from walking to bending down. Instead, BeLFusion leverages latent diffusion models to conditionally sample from a
behavioral space. Then, samples codes are decoded into predictions that coherently and smoothly transition into a wide range of behaviors.

Abstract

Stochastic human motion prediction (HMP) has gener-
ally been tackled with generative adversarial networks and
variational autoencoders. Most prior works aim at predict-
ing highly diverse motion in terms of the skeleton joints’
dispersion. This has led to methods predicting fast and di-
vergent movements, which are often unrealistic and inco-
herent with past motion. Such methods also neglect scenar-
ios where anticipating diverse short-range behaviors with
subtle joint displacements is important. To address these
issues, we present BeLFusion, a model that, for the first
time, leverages latent diffusion models in HMP to sample
from a behavioral latent space where behavior is disentan-
gled from pose and motion. Thanks to our behavior coupler,
which is able to transfer sampled behavior to ongoing mo-
tion, BeLFusion’s predictions display a variety of behaviors
that are significantly more realistic, and coherent with past
motion than the state of the art. To support it, we introduce
two metrics, the Area of the Cumulative Motion Distribu-
tion, and the Average Pairwise Distance Error, which are
correlated to realism according to a qualitative study (126
participants). Finally, we prove BeLFusion’s generalization
power in a new cross-dataset scenario for stochastic HMP.

1. Introduction
Humans excel at inattentively predicting others’ ac-

tions and movements. This is key to effectively engaging
in social interactions, driving a car, or walking across a
crowd. Replicating this ability is imperative in many appli-
cations like assistive robots, virtual avatars, or autonomous
cars [3, 56]. Many prior works conceive Human Motion
Prediction (HMP) from a deterministic point of view, fore-
casting a single sequence of body poses, or motion, given
past poses, usually represented with skeleton joints [41].
However, humans are spontaneous and unpredictable crea-
tures by nature, and this deterministic interpretation does
not fit contexts where anticipating all possible outcomes is
crucial. Accordingly, recent works have attempted to pre-
dict the whole distribution of possible future motions (i.e., a
multimodal distribution) given a short observed motion se-
quence. We refer to this reformulation as stochastic HMP.

Most prior stochastic works focus on predicting a highly
diverse distribution of motions. Such diversity has been tra-
ditionally defined and evaluated in the coordinate space [70,
18, 45, 58, 42]. This definition biases research toward mod-
els that generate fast transitions into very different poses
coordinate-wise (see Fig. 1). Although there are scenar-
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ios where predicting low-speed diverse motion is impor-
tant, this is discouraged by prior techniques. For exam-
ple, in assistive robotics, anticipating behaviors (i.e., ac-
tions) like whether the interlocutor is about to shake your
hand or scratch their head might be crucial for preparing
the robot’s actuators on time [5, 51]. In a surveillance sce-
nario, a foreseen harmful behavior might not differ much
from a well-meaning one when considering only the poses
along the motion sequence. We argue that this behavioral
perspective is paramount to build next-generation stochastic
HMP models. Moreover, results from prior diversity-centric
works [45, 18] often suffer from a trade-off that has been
persistently overlooked: predicted motion does not look
coherent with respect to the latest observed motion. The
strong diversity regularization techniques employed often
produce abrupt speed changes or direction discontinuities.
We argue that consistency with the immediate past is a re-
quirement for prediction plausibility.

To tackle these issues, we present BeLFusion (Fig. 1).
By constructing a latent space that disentangles behavior
from poses and motion, diversity is no longer limited to the
traditional coordinate-based perspective. Instead, diversity
is viewed through a behavioral lens, allowing both short-
(e.g., hand-waving or smoking) and long-range motions
(e.g., standing up or sitting down) to be equally encouraged
and represented in the space. Our behavior coupler ensures
the predicted behavior is decoded into a smooth and plau-
sible continuation of any ongoing motion. Thus, our pre-
dicted motions look more realistic and coherent with the
near past than alternatives, which we assess through quan-
titative and qualitative analyses. In addition, BeLFusion is
the first approach that exploits conditional latent diffusion
models (LDM) [63, 55] for stochastic HMP, achieving state-
of-the-art performance. By combining the exceptional ca-
pabilities of LDMs to model conditional distributions with
the convenient inductive biases of recurrent neural networks
(RNNs) for motion modeling [41], BeLFusion represents a
powerful method for stochastic HMP.

To summarize, our main contributions are: (1) We pro-
pose BeLFusion, a method that generates predictions that
are significantly more realistic and coherent with the near
past than prior works, while achieving state-of-the-art ac-
curacy on Human 3.6M [32] and AMASS [43] datasets.
(2) We improve and extend the usual evaluation pipeline
for stochastic HMP. For the first time in this task, a cross-
dataset evaluation is conducted to assess the robustness
against domain shifts, where the superior generalization ca-
pabilities of our method are clearly depicted. This setup,
built with AMASS [43] dataset, showcases a broad range of
actions performed by more than 400 subjects. (3) We pro-
pose two new metrics that provide complementary insights
on the statistical similarities between a) the predicted and
the dataset averaged absolute motion, and b) the predicted

and the intrinsic dataset diversity. We show that they are
significantly correlated to our definition of realism.

2. Related work

2.1. Human motion prediction

Deterministic scenario. Prior works on HMP define the
problem as regressing a single future sequence of skeleton
joints matching the immediate past, or observed motion.
This regression is often modeled with RNNs [22, 33, 47, 26,
52, 39] or Transformers [2, 11, 48]. Graph Convolutional
Networks might be included as intermediate layers to model
the dependencies among joints [37, 46, 17, 36]. Some meth-
ods leverage Temporal Convolutional Networks [35, 49] or
a simple Multi-Layer Perceptron [28] to predict fixed-size
sequences, achieving high performance. Recently, some
works claimed the benefits of modeling sequences in the
frequency space [11, 46, 44]. However, none of these solu-
tions can model multimodal distributions of future motions.

Stochastic scenario. To fill this gap, other methods
that predict multiple futures for each observed sequence
were proposed. Most of them use a generative approach
to model the distribution of possible futures. Most popular
generative models for HMP are generative adversarial net-
works (GANs) [7, 34] and variational autoencoders (VAEs)
[64, 68, 12, 45]. These methods often include diversity-
promoting losses in order to predict a high variety of mo-
tions [45], or incorporate explicit techniques for diverse
sampling [70, 18, 67]. This diversity is computed with the
raw coordinates of the predicted poses. We argue that, as a
result, the race for diversity has promoted motions deriving
to extremely varied poses very early in the prediction. Most
of these predictions are neither realistic nor plausible in the
context of the observed motion. Also, prior works neglect
situations where a diversity of behaviors, which can some-
times be subtle, is important. We address this by implicitly
encouraging such diversity in a behavioral latent space.

Semantic human motion prediction. Few works have
attempted to leverage semantically meaningful latent spaces
for stochastic HMP [68, 38, 24]. For example, [24] ex-
ploits disentangled motion representations for each part of
the body to control the HMP. [68] adds a sampled latent
code to the observed encoding to transform it into a predic-
tion encoding. This inductive bias helps the network dis-
entangle a motion code from the observed poses. However,
the strong assumption that a simple arithmetic operation can
map both sequences limits the expressiveness of the model.
Although not specifically focused on HMP, [10] proposes an
adversarial framework to disentangle a behavioral encoding
from a sequence of poses. The extracted behavior can then
be transferred to any initial pose. In this paper, we propose
a generalization of such framework to transfer behavior to
ongoing movements. BeLFusion exploits this disentangle-
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Figure 2. BeLFusion’s architecture. A latent diffusion model conditioned on an encoding of the observation, hλ(X), progressively denoises
a sample from a zero-mean unit variance multivariate normal distribution into a behavior code. Then, the behavior coupler Bϕ decodes
the prediction by transferring the sampled behavior to the target motion, xm. In our implementation, fΦ is a conditional U-Net with
cross-attention, gα is a dense layer, and hλ, and Bϕ are one-layer recurrent neural networks.

ment to improve the behavioral coverage of HMP.

2.2. Diffusion models

Denoising diffusion probabilistic models aim at learn-
ing to reverse a Markov chain of M diffusion steps (usually
M > 100) that slowly adds random noise to the target data
samples [59, 31]. For conditional generation, a common
strategy consists in applying cross-attention to the condi-
tioning signal at each denoising step [19]. Diffusion models
have achieved impressive results in fields like video gener-
ation, inpainting, or anomaly detection [69]. In a more sim-
ilar context, [54, 62] use diffusion models for time series
forecasting. [25] recently presented a diffusion model for
trajectory prediction that controls the prediction uncertainty
by shortening the denoising chain. A few concurrent works
have explored them for HMP [57, 65, 14, 1, 16].

However, diffusion models have an expensive trade-off:
extremely slow inference due to the large number of denois-
ing steps required. Latent diffusion models (LDM) acceler-
ate the sampling by applying diffusion to a low-resolution
latent space learned by a VAE [63, 55]. Thanks to the KL
regularization, the learned latent space is built close to a nor-
mal distribution. As a result, the length of the chain that de-
stroys the latent codes can be greatly reduced, and reversed
much faster. In this work, we present the first approach that
leverages LDM for stochastic HMP, achieving state-of-the-
art performance in terms of accuracy and realism.

3. Methodology
In this section, we first characterize the HMP problem

(Sec. 3.1). Then, we present a straightforward adaptation of
conditional LDMs to HMP (Sec. 3.2). Finally, we describe
BeLFusion’s keystones (Fig. 2): our behavioral latent space,
the behavioral LDM, and its training losses (Sec. 3.3).

3.1. Problem definition

The goal in HMP consists in, given an observed se-
quence of B poses (observation window), predicting the fol-

lowing T poses (prediction window). In stochastic HMP, N
prediction windows are predicted for each observation win-
dow. Accordingly, we define the set of poses in the observa-
tion and prediction windows as X={pt−B , ..., pt−2, pt−1}
and Yi={pit, pit+1, ..., p

i
t+T−1}, where i∈{1, ..., N}1, and

pit∈Rd are the coordinates of the human joints at timestep t.

3.2. Motion latent diffusion

Here, we define a direct adaptation of LDM to HMP.
First, a VAE is trained so that an encoder E transforms
fixed-length target sequences of T poses, Y, into a low-
dimensional latent space V ⊂ Rv . Samples z ∈ V can
be drawn and mapped back to the coordinate space with a
decoder D. Then, an LDM conditioned on X is trained to
predict the corresponding latent vector z = E(Y) ∈ V 2.
The generative HMP problem is formulated as follows:

P (Y|X) = P (Y, z|X) = P (Y|z,X)P (z|X). (1)

The first equality holds because Y is a deterministic
mapping from the latent code z. Then, sampling from the
true conditional distribution P (Y|X) is equivalent to sam-
pling z from P (z|X) and decoding Y with D.

LDMs are typically trained to predict the perturbation
ϵt = fΦ(zt, t, hλ(X)) of the diffused latent code zt at each
timestep t, where hλ(X) is the encoded conditioning obser-
vation. Once trained, the network fΦ can reverse the diffu-
sion Markov chain of length M and infer z from a random
sample zM ∼ N (0, 1). Instead, we choose to use a more
convenient parameterization so that z0 = fΦ(zt, t, hλ(X))
[66, 40]. With this, an approximation of z is predicted in
every denoising step z0, and used to sample the input of
the next denoising step zt−1, by diffusing it t−1 times. We
use q(zt−1|z0) to refer to this diffusion process. With this
parameterization, the LDM loss (or latent loss) becomes:

Llat(X,Y)=

T∑
t=1

E
q(zt|z0)

∥fΦ(zt, t, hλ(X))−E(Y)∥1. (2)

1A sampled prediction Yi is hereafter referred as Y for intelligibility.
2For simplicity, we use E(Y) to refer to the expected value of E(z|Y).
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Figure 3. Framework for behavioral disentanglement. By adver-
sarially training the auxiliary generator, Aω , against the behavior
coupler, Bϕ, the behavior encoder, pθ , learns to generate a dis-
entangled latent space of behaviors, pθ(z|Ye). At inference, Bϕ

decodes a sequence of poses that smoothly transitions from any
target motion xm to performing the behavior extracted from Y.

Having an approximate prediction at any denoising step
allows us to 1) apply regularization in the coordinates space
(Sec. 3.3), and 2) stop the inference at any step and still have
a meaningful prediction (Sec. 4.3).

3.3. Behavioral latent diffusion

In HMP, small discontinuities between the last observed
pose and the first predicted pose can look unrealistic. Thus,
the LDM (Sec. 3.2) must be highly accurate in matching the
coordinates of the first predicted pose to the last observed
pose. An alternative consists in autoencoding the offsets be-
tween poses in consecutive frames. Although this strategy
minimizes the risk of discontinuities in the first frame, mo-
tion speed or direction discontinuities are still bothersome.

Our proposed architecture, Behavioral Latent difFusion,
or BeLFusion, solves both problems. It reduces the latent
space complexity by relegating the adaption of the motion
speed and direction to the decoder. It does so by learning a
representation of posture-independent human dynamics: a
behavioral representation. In this framework, the decoder
learns to transfer any behavior to an ongoing motion by
building a coherent and smooth transition. Here, we first de-
scribe how the behavioral latent space is learned, and then
detail the BeLFusion pipeline for behavior-driven HMP.

Behavioral Latent Space (BLS). The behavioral rep-
resentation learning is inspired by [10], which presents a
framework to disentangle behavior from motion. Once dis-
entangled, such behavior can be transferred to any static ini-
tial pose. We propose an extension of their work to a general
and challenging scenario: behavioral transference to ongo-
ing motions. The proposed architecture is shown in Fig. 3.

First, we define the last C observed poses as the target
motion, xm = {pt−C , ..., pt−2, pt−1} ⊂ X, and Ye =
xm ∪Y. xm informs us about the motion speed and direc-
tion of the last poses of X, which should be coherent with
Y3. The goal is to disentangle the behavior from the motion
and poses in Ye. To do so, we adversarially train two gener-
ators, the behavior coupler Bϕ, and the auxiliary generator
Aω , such that a behavior encoder pθ learns to generate a dis-

3In practice, decoding xm also helped stabilize the BLS training.

entangled latent space of behaviors pθ(z|Ye). Both Bϕ and
Aω have access to such latent space, but Bϕ is additionally
fed with an encoding of the target motion, gα(xm). During
adversarial training, Aω aims at preventing pθ from encod-
ing pose and motion information by trying to reconstruct
poses of Ye directly from pθ(z|Ye). This training allows
Bϕ to decode a sequence of poses that smoothly transitions
from xm to perform the behavior extracted from Ye. At
inference time, Aω is discarded.

More concretely, the disentanglement is learned by al-
ternating two objectives at each training iteration. The first
objective, which optimizes the parameters ω of the auxiliary
generator, forces it to predict Ye given the latent code z:

max
ω

Laux = max
ω

Epθ(z|Ye)(logAω(Ye|z)). (3)

The second objective acts on the parameters of the target
motion encoder, α, the behavior encoder, θ, and the behav-
ior coupler, ϕ. It forces Bϕ to learn an accurate Ye recon-
struction through the construction of a normally distributed
intermediate latent space:
max
α,θ,ϕ

Lmain = max
α,θ,ϕ

Epθ(z|Ye)[logBϕ(Ye|z, gα(xm))]

−DKL(pθ(z|Ye)||p(z)))− Laux.

(4)

Note that the parameters ω are not optimized when training
with Eq. 4, and α, θ, ϕ with Eq. 3. The prior p(z) is a multi-
variate N (0, I). The inclusion of −Laux in Eq. 4 penalizes
any accurate reconstruction of Ye through Aω , forcing pθ
to filter any postural information out. Since Bϕ has access to
the target posture and motion provided by xm, it only needs
pθ(z|Ye) to encode the behavioral dynamics. One could ar-
gue that a valid alternative strategy for pθ would consist in
disentangling motion from postures. However, motion dy-
namics can still be used to extract a good pose approxima-
tion. See supp. material Sec. C for more details and visual
examples of behavioral transference to several motions xm.

Behavior-driven HMP. BeLFusion’s goal is to sample
the appropriate behavior code given the observation X, see
Fig. 2. To that end, a conditional LDM is trained to opti-
mize Llat(X,Ye) (Eq. 2), with E = pθ, so that it learns to
predict the behavioral encoding of Ye: the expected value
of pθ(z|Ye). Then, the behavior coupler, Bϕ, transfers the
predicted behavior to the target motion, xm, to reconstruct
the poses of the prediction. However, the reconstruction of
Bϕ is also conditioned on xm. Such dependency cannot be
modeled by the Llat objective alone. Thanks to our param-
eterization (Sec. 3.2), we can also use the traditional MSE
loss in the reconstruction space:

Lrec(X,Ye) =

T∑
t=1

E
q(zt|z0)

∥Bϕ(fΦ(zt, t, hλ(X)), gα(xm))

−Bϕ(pθ(Ye), gα(xm))∥2.
(5)

The second term of Eq. 5 is the reconstructed Ye. Op-
timizing the objective within the solutions space upper

2320



bounded by Bϕ’s reconstruction capabilities helps stabilize
the training. Note that only the future poses Y ⊂ Ye form
the prediction. The observation encoder, hλ, is pretrained in
an autoencoding framework that reconstructs X. We found
experimentally that hλ does not benefit from further train-
ing, so its parameters λ are frozen when training the LDM.
The target motion encoder, gα, and the behavior coupler,
Bϕ, are also pretrained as described before and kept frozen.
fΦ is conditioned on hλ(X) with cross-attention.

Implicit diversity loss. Although training BeLFusion
with Eqs. 2 and 5 leads to accurate predictions, their diver-
sity is poor. We argue that this is due to the strong regular-
ization of both losses. Similarly to [21, 29], we propose to
relax them by sampling k predictions at each training itera-
tion and only backpropagating the gradients through the two
predictions that separately minimize the latent or the recon-
structed loss (further discussion in supp. material Sec. D.2):

min
k

Llat(X,Yk
e ) + λ min

k
Lrec(X,Yk

e ), (6)

where λ controls the trade-off between the latent and
the reconstruction errors. Regularization relaxation usu-
ally leads to out-of-distribution predictions [45]. This is
often solved by employing additional complex techniques
like pose priors, or bone-length losses that regularize the
other predictions [45, 9]. BeLFusion can dispense with it
due to mainly two reasons: 1) Denoising diffusion models
are capable of faithfully capturing a greater breadth of the
training distribution than GANs or VAEs [19]; 2) The varia-
tional training of the behavior coupler makes it more robust
to errors in the predicted behavior code.

4. Experimental evaluation
Our experimental evaluation is tailored toward two ob-

jectives. First, we aim at proving BeLFusion’s generaliza-
tion capabilities for both seen and unseen scenarios. For
the latter, we propose a challenging cross-dataset evalua-
tion setup. Second, we want to demonstrate the superiority
of our model with regard to the realism of its predictions
compared to state-of-the-art approaches. In this sense, we
propose two metrics and perform a qualitative study.

4.1. Evaluation setup

Datasets. We evaluate our proposed methodology on
Human3.6M [32] (H36M), and AMASS [43]. H36M con-
sists of clips where 11 subjects perform 15 actions, total-
ing 3.6M frames recorded at 50 Hz, with action class labels
available. We use the splits proposed by [70] and adopted
by most subsequent works [45, 58, 42, 18] (16 joints). Ac-
cordingly, 0.5s (25 frames) are used to predict the following
2s (100 frames). AMASS is a large-scale dataset that, as
of today, unifies 24 extremely varied datasets with a com-
mon joints configuration, with a total of 9M frames when

downsampled to 60Hz. Whereas latest deterministic HMP
approaches already include a within-dataset AMASS con-
figuration in their evaluation protocol [44, 2, 49], the dataset
remains unexplored in the stochastic context yet. To deter-
mine whether state-of-the-art methods can generalize their
learned motion predictive capabilities to other contexts (i.e.,
other datasets), we propose a new cross-dataset evaluation
protocol with AMASS. The training, validation, and test
sets include 11, 4, and 7 datasets, and 406, 33, and 54 sub-
jects (21 joints), respectively. We set the observation and
prediction windows to 0.5s and 2s (30 and 120 frames af-
ter downsampling), respectively. AMASS does not provide
action labels. See supp. material Sec. B for more details.

Baselines. We include the zero-velocity baseline, which
has been proven very competitive in HMP [47, 6], and a
version of our model that replaces the LDM with a GAN,
BeGAN [23]. We train three versions with k = 1, 5, 50. We
also compare against state-of-the-art methods for stochastic
HMP (referenced in Tab. 1). For H36M, we took all eval-
uation values from their respective works. For AMASS,
we retrained state-of-the-art methods with publicly avail-
able code that showed competitive performance for H36M.

Implementation details. We trained BeLFusion with
N=50, M=10, k=50, a U-Net with cross-attention [19]
as fΦ, one-layer RNNs as hλ, and Bϕ, and a dense layer
as gα. For H36M, λ=5, and for AMASS, λ=1. At infer-
ence, we use an exponential moving average of the trained
model with a decay of 0.999. Sampling was conducted with
a DDIM sampler [60]. As explained in Sec. 3.2, our im-
plementation of LDM can be early-stopped at any step of
the chain of length M and still have access to an approxi-
mation of the behavioral latent code. Thus, we also include
BeLFusion’s results when inference is early-stopped right
after the first denoising step (i.e., x10 faster): BeLFusion D.
Further details are included in the supp. material Sec. A.

4.2. Evaluation metrics

To compare BeLFusion with prior works, we follow the
well-established evaluation pipeline proposed in [70]. The
Average and the Final Displacement Error metrics (ADE,
and FDE, respectively) quantify the error on the most simi-
lar prediction compared to the ground truth. While the ADE
averages the error along all timesteps, the FDE only does it
for the last predicted frame. Their multimodal versions for
stochastic HMP, MMADE and MMFDE, compare all pre-
dicted futures with the multimodal ground truth of the ob-
servation. To obtain the latter, each observation window X
is grouped with other observations Xi with a similar last
observed pose in terms of L2 distance. The corresponding
prediction windows Yi form the multimodal ground truth
of X. The Average Pairwise Distance (APD) quantifies the
diversity by computing the L2 distance among all pairs of
predicted poses at each timestep. Following [27, 53, 18, 9],
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Human3.6M [32] AMASS [43]

APD APDE ADE FDE MMADE MMFDE CMD FID* APD APDE ADE FDE MMADE MMFDE CMD

Zero-Velocity 0.000 8.079 0.597 0.884 0.683 0.909 22.812 0.606 0.000 9.292 0.755 0.992 0.814 1.015 39.262
BeGAN k=1 0.675 7.411 0.494 0.729 0.605 0.769 12.082 0.542 0.717 8.595 0.643 0.834 0.688 0.843 24.483
BeGAN k=5 2.759 5.335 0.495 0.697 0.584 0.718 13.973 0.578 5.643 4.043 0.631 0.788 0.667 0.787 24.034
BeGAN k=50 6.230 2.200 0.470 0.637 0.561 0.661 8.406 0.569 7.234 2.548 0.613 0.717 0.650 0.720 22.625

HP-GAN [7] 7.214 - 0.858 0.867 0.847 0.858 - - - - - - - - -
DSF [71] 9.330 - 0.493 0.592 0.550 0.599 - - - - - - - - -
DeLiGAN [30] 6.509 - 0.483 0.534 0.520 0.545 - - - - - - - - -
GMVAE [20] 6.769 - 0.461 0.555 0.524 0.566 - - - - - - - - -
TPK [64] 6.723 1.906 0.461 0.560 0.522 0.569 6.326 0.538 9.283 2.265 0.656 0.675 0.658 0.674 17.127
MT-VAE [68] 0.403 - 0.457 0.595 0.716 0.883 - - - - - - - - -
BoM [8] 6.265 - 0.448 0.533 0.514 0.544 - - - - - - - - -
DLow [70] 11.741 3.781 0.425 0.518 0.495 0.531 4.927 1.255 13.170 4.243 0.590 0.612 0.618 0.617 15.185
MultiObj [42] 14.240 - 0.414 0.516 - - - - - - - - - - -
GSPS [45] 14.757 6.749 0.389 0.496 0.476 0.525 10.758 2.103 12.465 4.678 0.563 0.613 0.609 0.633 18.404
Motron [58] 7.168 2.583 0.375 0.488 0.509 0.539 40.796 13.743 - - - - - - -
DivSamp [18] 15.310 7.479 0.370 0.485 0.475 0.516 11.692 2.083 24.724 15.837 0.564 0.647 0.623 0.667 50.239

BeLFusion D 5.777 2.571 0.367 0.472 0.469 0.506 8.508 0.255 7.458 2.663 0.508 0.567 0.564 0.591 19.497
BeLFusion 7.602 1.662 0.372 0.474 0.473 0.507 5.988 0.209 9.376 1.977 0.513 0.560 0.569 0.585 16.995

Table 1. Comparison of BeLFusion D (single denoising step) and BeLFusion (all denoising steps) with state-of-the-art methods for stochas-
tic human motion prediction on Human3.6M and AMASS datasets. Bold and underlined results correspond to the best and second-best
results, respectively. Lower is better for all metrics except APD. *Only showed for Human3.6M due to lack of class labels for AMASS.

we also include the Fréchet Inception Distance (FID), which
leverages the output of the last layer of a pretrained action
classifier to quantify the similarity between the distributions
of predicted and ground truth motions.

Area of the Cumulative Motion Distribution (CMD).
The plausibility and realism of human motion are difficult
to assess quantitatively. However, some metrics can pro-
vide an intuition of when a set of predicted motions are not
plausible. For example, consistently predicting high-speed
movements given a context where the person was stand-
ing still might be plausible but does not represent a statis-
tically coherent distribution of possible futures. We argue
that prior works have persistently ignored this. We propose
a simple complementary metric: the area under the cumu-
lative motion distribution. First, we compute the average
of the L2 distance between the joint coordinates in two con-
secutive frames (displacement) across the whole test set, M̄ .
Then, for each frame t of all predicted motions, we compute
the average displacement Mt. Then:

CMD =

T−1∑
i=1

i∑
t=1

∥Mt − M̄∥1 =

T−1∑
t=1

(T − t)∥Mt − M̄∥1. (7)

Our choice to accumulate the distribution is motivated
by the fact that early motion irregularities in the predic-
tions impact the quality of the remaining sequence. Intu-
itively, this metric gives an idea of how the predicted av-
erage displacement per frame deviates from the expected
one. However, the expected average displacement could ar-
guably differ among actions and datasets. To account for
this, we compute the total CMD as the weighted average
of the CMD for each H36M action, or each AMASS test
dataset, weighted by the action or dataset relative frequency.

Average Pairwise Distance Error (APDE). There are
many elements that condition the distribution of future
movements and, therefore, the appropriate motion diversity

levels. To analyze to which extent the diversity is properly
modeled, we introduce the average pairwise distance error.
We define it as the absolute error between the APD of the
multimodal ground truth and the APD of the predicted sam-
ples. Samples without any multimodal ground truth are dis-
missed. See supp. material Fig. E for a visual illustration.

4.3. Results

Comparison with the state of the art. As shown in
Tab. 1, BeLFusion achieves state-of-the-art performance in
all accuracy metrics for both datasets. The improvements
are especially important in the cross-dataset AMASS con-
figuration, proving its superior robustness against domain
shifts. We hypothesize that such good generalization ca-
pabilities are due to 1) the exhaustive coverage of behav-
iors modeled in the disentangled latent space, and 2) the
potential of LDMs to model the conditional distribution
of future behaviors. In fact, after a single denoising step,
our model already achieves state-of-the-art uni- and multi-
modal ADE and FDE (BeLFusion D) in return for less di-
versity and realism. When going through all denoising steps
(BeLFusion), our method also excels at realism-related met-
rics like CMD and FID (see the Implicit diversity section
below for a detailed discussion on the topic). By contrast,
Fig. 5 shows that predictions from GSPS and DivSamp con-
sistently accelerate at the beginning, presumably toward di-
vergent poses that promote high diversity values. As a re-
sult, they yield high CMD values, especially for H36M. The
predictions from methods that leverage transformations in
the frequency space freeze at the very long-term horizon.
Motron’s high CMD depicts an important jitter in its predic-
tions, missed by all other metrics. BeLFusion’s low APDE
highlights its good ability to adapt to the observed context.
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Figure 4. Qualitative results show the adaption of BeLFusion’s diversity to the observation context in both within- (H36M, top) and cross-
dataset (AMASS, bottom). At each future timestep, 10 predicted samples are superimposed below the thicker ground truth.
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Figure 5. Left. Average predicted motion of state-of-the-art meth-
ods in H36M. Right. Cumulative distribution function (CDF) of
the weighted absolute errors in the left with respect to the ground
truth. CMD is the area under this curve.

This is achieved thanks to 1) the pretrained encoding of the
whole observation window, and 2) the behavior coupling
to the target motion. In contrast, higher APDE values of
GSPS and DivSamp are caused by their tendency toward
predicting movements more diverse than those present in
the dataset. Action- (H36M) and dataset-wise (AMASS)
results are included in supp. material Sec. D.1.

Fig. 4 displays 10 overlaid predictions over time for three
actions from H36M (sitting down, eating, and giving di-
rections), and three datasets from AMASS (DanceDB [50],
HUMAN4D [13], and GRAB [61]). The purpose of this vi-
sualization is to confirm the observations made by the CMD
and APDE metrics. First, the acceleration of GSPS and Di-
vSamp at the beginning of the prediction leads to extreme
poses very fast, abruptly transitioning from the observed
motion. Second, it shows the capacity of BeLFusion to
adapt the diversity predicted to the context. For example,
the diversity of motion predicted while eating focuses on
the arms, and does not include holistic extreme poses. In-

terestingly, when just sitting, the predictions include a wider
range of full-body movements like laying down, or bending
over. A similar context fitting is observed in the AMASS
cross-dataset scenario. For instance, BeLFusion correctly
identifies that the diversity must target the upper body in
the GRAB dataset, or the arms while doing a dance step.
Examples in motion can be found in supp. material Sec. E.

Ablation study. Here, we analyze the effect of each of
our contributions in the final model quantitatively. This in-
cludes the contributions of Llat and Lrec, and the benefits
of disentangling behavior from motion in the latent space
construction. Results are summarized in Tab. 2. Although
training is stable and losses decrease similarly in all cases,
solely considering the loss at the coordinate space (Lrec)
leads to poor generalization capabilities. This is especially
noticeable in the cross-dataset scenario, where models with
both latent space constructions are the least accurate among
all loss configurations. We observe that the latent loss (Llat)
boosts the metrics in both datasets, and can be further en-
hanced when considered along with the reconstruction loss.
Overall, the BLS construction benefits all loss configura-
tions in terms of accuracy on both datasets, proving it a very
promising strategy to be further explored in HMP.

Implicit diversity. As explained in Sec. 3.3, the param-
eter k regulates the relaxation of the training loss (Eq. 6) on
BeLFusion. Fig. 6 shows how metrics behave when 1) tun-
ing k, and 2) moving forward in the reverse diffusion chain
(i.e., progressively applying denoising steps). In general,
increasing k enhances the samples’ diversity, accuracy, and
realism. For k≤5, going through the whole chain of de-
noising steps boosts accuracy. However, for k>5, further
denoising only boosts diversity- and realism-wise metrics

2323



k=1 k=2 k=3 k=4 k=5 k=10 k=20 k=50

denoising step denoising step denoising step denoising step denoising step denoising step denoising step

6.0

8.0

10.0

12.0

Figure 6. Evolution of evaluation metrics (y-axis) along denoising steps (x-axis) at inference time, for different values of k. Early stopping
can be applied at any time, between the first (•) and the last step (⋆). Accuracy saturates at k = 50, with gains for all metrics when
increasing k, especially for diversity (APD). Qualitative metrics (CMD, FID) decrease after each denoising step across all k values.

Human3.6M [32] AMASS [43]

BLS Llat Lrec APD APDE ADE FDE CMD FID APD APDE ADE FDE CMD

✓ 7.622 1.276 0.510 0.795 5.110 2.530 10.788 3.032 0.697 0.881 16.628
✓ ✓ 6.169 2.240 0.386 0.505 8.432 0.475 9.555 2.216 0.593 0.685 17.036

✓ 7.475 1.773 0.388 0.490 4.643 0.177 8.688 2.079 0.528 0.572 18.429
✓ ✓ 6.760 1.974 0.377 0.485 6.615 0.233 8.885 2.009 0.516 0.565 17.576

✓ ✓ 7.301 2.012 0.380 0.484 4.870 0.195 8.832 2.034 0.519 0.568 17.618
✓ ✓ ✓ 7.602 1.662 0.372 0.474 5.988 0.209 9.376 1.977 0.513 0.560 16.995

Table 2. Results from the ablation analysis of BeLFusion. We assess the contribution of the latent (Llat) and reconstruction (Lrec) losses,
as well as the benefits of applying latent diffusion to a disentangled behavioral latent space (BLS).

Human3.6M[32] AMASS[43]

Avg. rank Ranked 1st Avg. rank Ranked 1st

GSPS 2.246 ± 0.358 17.9% 2.003 ± 0.505 30.5%
DivSamp 2.339 ± 0.393 13.4% 2.432 ± 0.408 14.0%
BeLFusion 1.415 ± 0.217 68.7% 1.565 ± 0.332 55.5%

Table 3. Qualitative study. 126 participants ranked sets of samples
from GSPS, DivSamp, and BeLFusion by their realism. Lower
average rank (± std. dev.) is better.

(APD, CMD, FID), and makes the fast single-step infer-
ence very accurate. With large enough k values, the LDM
learns to cover the conditional space of future behaviors to
a great extent and can therefore make a fast and reliable first
prediction. The successive denoising steps refine such ap-
proximations at expenses of larger inference time. Thus,
each denoising step 1) promotes diversity within the latent
space, and 2) brings the predicted latent code closer to the
true behavioral distribution. Both effects can be observed in
the latent APD and FID plots in Fig. 6. The latent APD is
equivalent to the APD in the latent space of predictions and
is computed likewise. Note that these effects are not favored
by neither the loss choice nor the BLS (see supp. material
Fig. G). Concurrent works have also highlighted the good
performance achievable by single-step denoising [4, 15].

Qualitative assessment. We performed a qualitative
study to assess the realism of BeLFusion’s predictions com-
pared to those of the most accurate methods: DivSamp and
GSPS. For each method, we sampled six predictions for 24
randomly sampled observation segments from each dataset
(48 in total). We then generated a gif that showed both the
observed and predicted sequences of the six predictions at
the same time. Each participant was asked to order the three

sets according to the average realism of the samples. Four
questions from either H36M or AMASS were asked to each
participant (see supp. material Sec. F). A total of 126 peo-
ple participated in the study. The statistical significance of
the results was assessed with the Friedman and Nemenyi
tests. Results are shown in Tab. 3. BeLFusion’s predictions
are significantly more realistic than both competitors’ in
both datasets (p<0.01). GSPS could only be proved signif-
icantly more realistic than DivSamp for AMASS (p<0.01).
Interestingly, the participant-wise average realism ranks of
each method are highly correlated to each method’s CMD
(r=0.730, and r=0.601) and APDE (r=0.732, and r=0.612),
for both datasets (H36M, and AMASS, respectively), in
terms of Pearson’s correlation (p<0.001).

5. Conclusion

We presented BeLFusion, a latent diffusion model that
exploits a behavioral latent space to make more realistic,
accurate, and context-adaptive human motion predictions.
BeLFusion takes a major step forward in the cross-dataset
AMASS configuration. This suggests the necessity of fu-
ture work to pay attention to domain shifts. These are
present in any on-the-wild scenario and therefore on our
way toward making highly capable predictive systems.

Limitations and future work. Although sampling with
BeLFusion only takes 10 denoising steps, this is still slower
than sampling from GANs or VAEs (see supp. material Sec.
D.3.). This may limit its applicability to a real-life scenario.
Future work includes exploring our method’s capabilities
for exploiting a longer observation time-span, and for being
auto-regressively applied to predict longer-term sequences.
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