
With a Little Help from your own Past:
Prototypical Memory Networks for Image Captioning

Manuele Barraco1 Sara Sarto1 Marcella Cornia1 Lorenzo Baraldi1 Rita Cucchiara1,2
1University of Modena and Reggio Emilia, Modena, Italy 2IIT-CNR, Pisa, Italy

{name.surname}@unimore.it

Abstract

Image captioning, like many tasks involving vision and
language, currently relies on Transformer-based architec-
tures for extracting the semantics in an image and trans-
lating it into linguistically coherent descriptions. Although
successful, the attention operator only considers a weighted
summation of projections of the current input sample, there-
fore ignoring the relevant semantic information which can
come from the joint observation of other samples. In this
paper, we devise a network which can perform attention
over activations obtained while processing other training
samples, through a prototypical memory model. Our mem-
ory models the distribution of past keys and values through
the definition of prototype vectors which are both discrimi-
native and compact. Experimentally, we assess the perfor-
mance of the proposed model on the COCO dataset, in com-
parison with carefully designed baselines and state-of-the-
art approaches, and by investigating the role of each of the
proposed components. We demonstrate that our proposal
can increase the performance of an encoder-decoder Trans-
former by 3.7 CIDEr points both when training in cross-
entropy only and when fine-tuning with self-critical se-
quence training. Source code and trained models are avail-
able at: https://github.com/aimagelab/PMA-Net.

1. Introduction

Connecting vision and natural language via descriptive
expressions is a fundamental human capability and its repli-
cation represents a crucial step towards machine intelli-
gence, with applications that range from better human-
machine interfaces [25] to accessibility [15]. The task of
image captioning [21, 55, 60], which defines such capabil-
ity, requires an algorithm to describe a visual input with a
natural language sentence. As such, it features unique chal-
lenges that span from a grounded and detailed understand-
ing of the visual input [8, 46], to the selection of visual ob-
jects and semantics that are worth mentioning [27] and their

D
e
co

d
e
r Prototypical 

Memory Attention

prototype keys

prototype values

A boy standing 
on a snowboard 
in front of snow-

covered 
mountains.

…

past iterations

E
n
co

d
e
r

c)

learnable vectors

Captioner with Learnable Keys/Values A boy on a 
snowboard 
standing in 
the snow.

b)

A person on a 
snowboard on 

a snow-
covered 
ground.

Transformer-based Captioner

a)

Figure 1. Comparison between (a) a standard Transformer-based
captioner; (b) a captioner with learnable memory vectors [10] and
(c) our prototypical memory network.

translation into a fluent and coherent sentence.
Image captioning architectures comprise an image en-

coding part and a language generation approach [49] and
focus on developing appropriate connections between the
visual and textual modality. Examples of such innovations
include the usage of attentive-like structures [4, 36], the in-
corporation of attributes [26, 66], objects [4, 64] or scene
graphs [62,65]. Regardless of the specific approach used to
connect the two modalities, though, almost all of the works
developed in the last years share the usage of the Trans-
former architecture [53]. Such architecture, indeed, is a
natural choice for the task, as it can connect two modalities
thanks to its encoder-decoder design and the cross-attention
operator, and provides unprecedented performance in se-
quence and set modeling and generation [10, 11, 40].

One of the key properties of attention layers is that the
output is computed as a weighted combination of linear pro-
jections of the inputs. While this provides an ideal context
for both visual understanding and sequence generation, it
also leaves the door open for injecting relevant informa-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3021



tion which can not be directly inferred from the current
input sample. An interesting attempt in this direction has
been made by the Meshed-Memory architecture [10], which
proposed to insert additional learnable key/value vectors in
the visual encoder with the objective of integrating a-priori
knowledge. While successful, learnable vectors can just
store information that is useful for the entire training set
and do not really act as a “memory” of past training items.
Instead, having access to past training samples at generation
time can be a powerful source of information that can ulti-
mately increase the description quality. For instance, given
an input image representing a boy snowboarding in a moun-
tain landscape, a model which has access to other training
items might retrieve similar images containing boy, snow-
board, and mountains even in a different context, and em-
ploy this knowledge in a compositional manner to aid the
generation of a correct and fluent sentence (Fig. 1).

Following this insight, we devise a prototypical mem-
ory network, which can recall and exploit past activations
generated during training. Our memory is built upon net-
work activations obtained during recent training iterations
so that the network has access to a vast set of activations
produced while processing other samples from the dataset.
In this sense, the memory represents past knowledge pro-
cessed by the network itself. From the point of view of the
architectural design, our memory is fully integrated into at-
tention layers through the addition of keys and values which
represents activations from the memory. To the best of our
knowledge, this is the first attempt of integrating a memory
of past training items into an image captioning network.

The key element of our proposal is the computation of
“prototypes” from a bank of past activations, which are ob-
tained by modeling the manifold of past activations and
clustering its content in a memory with a given fixed size.
This is done both at key and value level, by exploiting the
mapping between corresponding keys and values. We fur-
ther justify our prototype generation approach by investi-
gating the resulting attention distribution from a theoretical
point of view. Experimentally, we assess the performances
of the proposed design on the COCO dataset for image cap-
tioning, in comparison with state-of-the-art approaches and
carefully-designed ablations to study the role of each com-
ponent of the proposal. Further, we conduct experiments on
the nocaps dataset [1] for novel object captioning and on the
robust COCO split [32] for object hallucination.

We believe that the proposed approach can shed light on
the effectiveness of employing the space of training items as
an additional input to the network, which is currently under-
explored and could be in principle applied outside of image
captioning. To sum up, the main contribution of this work
is the proposal of a prototype memory network for image
captioning, which elegantly integrates past activations as an
additional input of attention layers. Extensive experiments

on COCO, nocaps, and the robust COCO split demonstrate
the effectiveness of the proposed approach.

2. Related Work

Image Captioning. Early captioning approaches were con-
structed by filling pre-defined templates after detecting rel-
evant objects inside of the image [48, 63]. The advent of
deep learning then made the use of RNNs and LSTMs a
popular choice for the task, and in analogy to the sequence
modeling used in machine translation [51], the basic RNN-
based encoder-decoder scheme was employed in conjunc-
tion with CNNs for encoding the visual content [24,42,55].
This approach was later augmented with the addition of at-
tention [31, 60, 66]. Nowadays, attentive and Transformer-
based architectures [12, 39, 52, 53] are often employed both
in the visual encoding stage, usually applied to refine fea-
tures from a CNN [69] or ViT [12], and as language mod-
els [10, 16]. Other solutions [33, 35], instead, exploit
self-attention to effectively combine visual features com-
ing from multiple backbones (i.e. typically a CNN and an
object detector), in some cases also finetuning the visual
backbones to improve final performances [35].

The introduction of Transformer-based models in image
captioning has also brought to the development of effective
variants of the self-attention operator [10, 14, 16, 19, 30, 36]
and to that of vision-and-language early-fusion architec-
tures [18, 26, 70] based on BERT-like models [11]. Re-
cently, a common strategy is that of employing visual
features extracted from large-scale cross-modal architec-
tures [6, 9, 34, 47] like CLIP [39]. As done in [27] and
other contemporary works [9, 41, 45], these multimodal ar-
chitectures can also enable the enrichment of predicted tex-
tual sentences, by means of retrieval components that can
be added to the captioning model.

Memory-Augmented Transformers. External memories
have been used in different ways in Transformer-based ar-
chitectures, mainly in NLP. Khandelwal et al. [22] con-
structed a memory for language generation as a large table
of (key, token) pairs, while Sukhbaatar et al. [50] replace
feed-forward layers with differentiable memory slots. Re-
cently, Wu et al. propose a Memorizing Transformer [59]
architecture in which they retrieve activations produced
over long documents. In vision-and-language, learnable ex-
ternal memories have been successfully employed for im-
age captioning [10], visual relationship recognition [7], and
story generation [61].

Summary. Our proposal is different from all the aforemen-
tioned approaches, as it employs network activations com-
ing from other training samples as a source of additional
knowledge. This research direction might also be seen as an
alternative to retrieving information from external knowl-
edge bases, as it represents additional knowledge through

3022



Image

Encoder

Multi-Head 

Attention

Feed 

Forward
Multi-Head Attention

Multi-Head 

Cross-Attention

Feed 

Forward

A city street with a bus, a bike and cars.

Prototypical Memory Attention

Prototypical

Memory Attention

Notation

visual tokens word tokens

prototype keys prototype values

key/value memory bank

prototype generation

Figure 2. Overview of our approach with Prototypical Memory Attention.

network activations rather than with raw data, and further
devises a compression step so that the additional informa-
tion can be stored directly into the network and avoid the
usage of external databases.

3. Proposed Method
3.1. Preliminaries: Memory-augmented Attention

Attention layers operate on triplets of queries, keys and
values (Q,K,V), which are obtained by linearly project-
ing items from the same input sequence (self-attention) or
from a pair of different input sequences (cross-attention).
We are interested in breaking the constraint of operating ex-
clusively on input-dependent data and letting the attention
operator consider quantities which are not derived from the
current input [10,59]. In memory-augmented attention [10],
this is achieved by extending the set of keys and values to in-
clude additional memory vectors. As a result, the attention
operation can employ both input-dependent and memory-
specific keys and values, as follows:

K̃ = [MK;K(x)] , Ṽ = [MV;V(x)]

Attention(Q, K̃, Ṽ) =
QK̃⊺

√
d

Ṽ
(1)

where, for convenience, the exclusive dependency between
regular keys and values and the current input sample x has
been made explicit, [·; ·] indicates concatenation, MK the
set of memory keys and MV the set of memory values.

Previous works which employed memory augmenta-
tion [7, 10, 38, 50, 61] have treated MK and MV as learn-
able parameters and, thus, optimized them directly through
SGD during the learning process. Importantly, this imposes
a constraint on what can be stored in memory vectors, as
memories will be the result of accumulating gradient av-
eraged over sequential mini-batches. This encourages the
storage of information which is averagely beneficial to the

entire training set and prevents focusing on the peculiarities
of the single training items. As a consequence, learning a
proper set of disentangled memory vectors turns out to be
non-trivial and initialization-dependent [50].

3.2. Memories as banks of past activations

We redefine memory keys and values as a means to let
the network attend previous activations produced while pro-
cessing other training samples. The network, at test time,
will be able to attend to its own (past) activations produced
while processing similar samples, thus aiding the genera-
tion process. Conceptually speaking, we might see this as
a more principled design of a memory, as in our case mem-
ory vectors will be actually storing past experiences of the
network instead of being plain learnable parameters.

In our architecture, which we name PMA-Net, we ap-
ply memories in a core position of the encoder-decoder
structure, i.e. inside each self-attention layer of the cap-
tioner. This is different from what has been done in previous
works (e.g. [10] considered only the Transformer encoder),
and also represents a privileged placement for vision-and-
language architectures, as the self-attention layer is in
charge of modeling the temporal consistency of the gen-
eration and of integrating it with the result of the previous
cross-attention layer, which connects with the visual modal-
ity. Figure 2 (left) presents an overview of this design.

Considering a stream of mini-batches [x0,x1, ...,xt, ...]
containing randomly sampled training items, for each layer
we define two memory banks BK, BV which store all keys
and values produced from past training samples, up to a
maximum temporal distance of T iterations. Intuitively, the
two memory banks model the manifold of keys and values
seen over past training iterations. We then define the set of
memory keys and values to be employed at the t-th train-
ing iteration as a function of the vectors contained in the

3023



respective memory banks:

BK = [K(xt−1),K(xt−2), ...,K(xt−T)] ,

BV = [V(xt−1),V(xt−2), ...,V(xt−T)] ,

MK = f (BK) , MV = f (BV) .

(2)

In the equations above, for ease of notation, we denote with
K(x) the set of keys produced by a layer while processing
all items contained in a mini-batch x. In practice, the tem-
poral window T should be chosen to be sufficiently large
to reasonably model the training set distribution (as shown
in Sec. 4.3). Also, memory banks need to be updated fre-
quently and in a sufficiently smooth manner, so to follow the
evaluation of the keys and values manifold and not to alter
the training process, as will be discussed in the following.

Building memory prototypes. Naively placing all keys
and values produced during a given time window in the
memory (i.e. setting f(·) to the identity in Eq. 2) would re-
quire, approximately, T · B · h · τ memory slots per layer,
where T represents the number of iterations executed in-
side the time window, B the mini-batch size, h the number
of heads, and τ the average ground-truth sequence length.
Under this setting, storing an entire COCO epoch would
require storing around 96M memory vectors to both key
and value sequences1, which would make the problem in-
tractable in terms of memory occupation and computational
complexity, because of the additional memory required to
store vectors and because of the resulting growth of the at-
tention matrix size. Further, as keys and values have been
trained to summarize the information contained in a token
with respect to other tokens of the same sequence, multi-
ple elements in the memory bank could produce similar at-
tention scores, thus increasing the entropy of the resulting
attention distributions.

For this reason, we instead build synthetic key/value
pairs as prototypical memory vectors which are representa-
tive of the distribution of the entire memory bank. In doing
this, we satisfy two design requirements: (1) building pro-
totypes should be fast, as we will be performing this on ev-
ery layer of the architecture and several times during train-
ing; (2) memory prototypes should evolve during training
to adapt to the changing distribution of keys and values.

In our method, prototype key memory vectors are ob-
tained by clustering the manifold identified by the memory
bank of keys and taking the resulting centroids. Value mem-
ory vectors are, instead, computed by interpolating between
the values corresponding to the keys that lie in each clus-
ter. Formally, being m the target size of the memory, key
memory vectors are obtained as follows:

MK =
[
M1

K,M2
K, ...,Mm

K

]
= K-Meansm(BK), (3)

1Considering a network with 8 heads, and BPE tokenization.

where function K-Meansm(·) returns the m centroids ob-
tained by performing a K-Means clustering over the key
memory bank. Value memory vectors are computed by tak-
ing a linear combination of vectors in the value manifold
that correspond to keys that lie close to key prototypes Mi

K,
according to a distance function d(·) which compares items
in the key manifold:

MV =
[
M1

V,M2
V, ...,Mm

V

]
,

Mi
V =

∑
(Kj ,Vj)∈top-k(Mi

K)

e−d(Mi
K,Kj)Vj , (4)

where, here, function top-k(Mi
K) returns the closest

(key, value) pairs in the memory bank with respect to Mi
K.

It shall be noted that the top-k operation can be imple-
mented by fitting a k-NN index on the keys memory bank
(BK) and using the centroid Mi

K as query. The resulting
list of keys close to Mi

K can then be paired with their cor-
responding values to compute Eq. 4. In practice, we use
the L2 distance as distance function inside both the key and
value manifolds, as we found it to perform favorably com-
pared to the inner product during preliminary experiments.
Discussion. With the strategy defined above, we obtain a set
of m memory keys and values, where m can be controlled
a-priori. Taking prototypes as centroids ensures, when m
is sufficiently high, that memory keys model the memory
bank distribution properly. Further, the distance between
centroids and cluster members in the key manifold is small,
which has a positive effect on the resulting attention distri-
bution, compared to the one obtainable by setting f(·) to
the identity – i.e., when storing all keys and values from the
memory bank in the self-attention layer. Similar keys in an
L2 space, indeed, result in similar attention distributions, as
we show in the following.
Proposition – Given a query q and a set of keys K, if a key
k ∈ K is replaced with k̃ such that ∥k − k̃∥2 ≤ ε to form
K̃, then ∥softmax(qK⊺)− softmax(qK̃⊺)∥2 ≤ ε∥q∥2.
Proof. As the softmax operator has Lipschitz constant less
than 1 [13, 56] and because the L2 matrix norm is sub-
ordinate, ∥softmax(qK⊺) − softmax(qK̃⊺)∥2 ≤ ∥qK⊺ −
qK̃⊺∥2 ≤ ∥q∥2∥(K − K̃)⊺∥2. Recalling that, for any ma-
trix A, ∥A∥2 ≤ ∥A∥F , ∥(K − K̃)⊺∥2 ≤ ∥k − k̃∥2, from
which the thesis follows. □

Memory bank update. To ensure that memories are re-
freshed during training while lowering the total cost of pro-
totypes generation, we adopt a strided sliding window ap-
proach to update the memory banks, which is visually de-
picted in Fig. 3. Having defined a maximum length T for
the banks (Eq. 2), at regular intervals we take the last T
batches from the key/value stream produced by a layer, cre-
ate a memory bank with those and generate prototype vec-
tors to be placed in MK and MV (Eq. 3, 4). In practice,
the process is repeated twice per epoch and memory banks

3024



key stream

time

memory bank 

update and

prototype

generation

value stream

Figure 3. Memory bank update approach.

store around two epochs of samples, so to have a significant
overlap between the memory banks obtained at two con-
secutive update steps, which helps to stabilize the training.
This is also illustrated in pseudo-code in Algorithm 1.

Segment embeddings. As the final set of keys of the layer
is a concatenation of memory-specific and input-specific
keys (Eq. 1), we add two different, learnable, segment em-
beddings to K and MK, to help the network distinguish
between the two key types.

Computational complexity. Computing memory proto-
types requires executing a K-Means clustering over the key
memory bank (T ·B ·h ·τ datapoints, m clusters) and a kNN
search over the key memory bank (which contains the same
number of items) and is executed every s training steps, be-
ing s the stride employed over the key/value stream to up-
date the memory banks (Fig. 3). Further, the addition of the
m memory vectors to a mini-batch having a sequence length
of T implies growing the attention matrix from T × T to
(T +m) × T . As prototype generation is only required at
training time, the latter is the only cost that is added at test
time with respect to a standard attention layer.

In practice, adding prototypical memories does not in-
crease inference times significantly with respect to a naive
Transformer as the increase of the attention matrix is well
amortized by the GPU parallelism. During training, com-
puting the K-Means clustering and the k-NN index for solv-
ing Eq. 4 requires around 10s with a V100 GPU every time
the memory needs to be refreshed. As the memory occu-
pied for this can be de-allocated after prototypes computa-
tion, we did not need to decrease the batch size with respect
to a baseline with learnable memory vectors.

4. Experimental Evaluation
4.1. Datasets and evaluation protocol

We analyze the effectiveness of our PMA-Net on the
widely used COCO benchmark [29] employing the splits
defined in [21]. We also evaluate on the COCO online
test server composed of more than 40k images for which
ground-truth captions are not publicly available.

Additionally, we perform experiments on robust COCO,

Algorithm 1 PMA-Net pseudocode
# m: number of prototypes
# T: maximum length of the memory bank
# stride: memory bank update stride
# bank_k, bank_v: key/value memory banks
bank_k = [], bank_v = []
for img, caption in dataloader:

output, act_k, act_v = net(img, caption)
bank_k.append(act_k)
bank_v.append(act_v)
if len(bank_k) == T:

compute_prototypes(m, bank_k, bank_v) # Eq. 3, 4
bank_k = bank_k[stride:]
bank_v = bank_v[stride:]
loss = loss_fn(output, caption)
loss.backward()

a different split of the COCO dataset introduced in [32] to
verify sensitivity to object hallucination and nocaps [1] for
novel object captioning. The former dataset guarantees that
object pairs mentioned in captions of different sets do not
overlap (with 110,234, 3,915, and 9,138 images for train-
ing, validation, and test), while the latter contains images
annotated with 10 human-written captions, that can be fur-
ther divided in in-domain, near-domain and out-of-domain
pairs depending on their nearness to COCO.

To evaluate our results, we employ all standard cap-
tioning metrics, namely BLEU [37], METEOR [5],
ROUGE [28], CIDEr [54], and SPICE [2], and some more
recent evaluation scores like BERT-S [68], CLIP-S [17],
and PAC-S [44] in both their reference-free and reference-
based versions. When evaluating our results on robust
COCO, we also employ the CHAIR metric [43] that mea-
sures which fraction of objects mentioned in the generated
sentences is hallucinated (CHi) and the portion of sentences
that includes a hallucinated object (CHs).

4.2. Implementation details

Both the encoder and decoder are constructed with L =
6 Transformer layers, with a hidden size of 512 and 8 atten-
tion heads. Unless otherwise specified, we employ 1,024
memory vectors and a size of the memory banks T equal
to 1,500. We use a CLIP [39] ViT-L/14 image encoder
over the input image. The rationale behind this choice is
that they have higher quality, adaptability to different tasks,
and lower computational load compared to detection-based
ones. To ensure fair comparison, we re-train recent and
publicly-available models using the same features.

Our source code is based on Huggingface [57], using the
GPU-based implementations of K-Means and k-NN search
from FAISS [20]. At training stage, the overall objective
of PMA-Net is the typical cross-entropy loss for sentence
generation. Next, following [42], PMA-Net can be fur-
ther optimized with sentence-level reward, using the CIDEr
score. Specifically, we first pre-train with the LAMB op-
timizer [67], a batch size of 1,024 and for 20,000 steps.
We use the following learning rate schedule: we linearly

3025



m T B-4 M R C S

Transformer [53] - - 37.4 30.3 58.9 127.8 23.3
Transformer (w/ learnable mem.) 64 - 37.7 30.2 58.1 127.9 23.4
Transformer (w/ learnable mem.) 1024 - 37.2 30.1 58.3 127.6 23.3

PMA-Net 256 1500 38.8 30.1 59.4 129.4 23.5
PMA-Net 512 1500 39.0 30.1 59.5 130.0 23.5
PMA-Net 1024 500 37.8 30.3 59.0 128.6 23.5
PMA-Net 1024 1000 38.2 30.5 59.5 129.4 23.5

PMA-Net (w/o mem. in 1st layer) 1024 1500 38.3 30.2 59.0 129.2 23.3
PMA-Net (w/o segment emb.) 1024 1500 38.6 30.4 59.4 130.1 23.4
PMA-Net 1024 1500 39.5 30.4 59.6 131.5 23.6

Table 1. Ablation study (m is the number of memory vectors and
T is the size of the memory banks).

warmup for 1,000 steps, then keep a constant learning rate
of 2.5 · 10−4 until 10,000 steps, then sub-linearly decrease
until 15,000 steps to 10−5 and keep the value constant for
the rest of the training. For the second stage, we further op-
timize PMA-Net using the Adam optimizer [23] and with
1 · 10−6 as learning rate, for 50,000 steps using a batch size
of 64. We employ a beam size equal to 5.

4.3. Comparisons and ablation studies

We firstly conduct an ablation study to investigate how
each design choice in our PMA-Net influences the overall
performances on COCO dataset. Table 1 details the perfor-
mance comparisons among different ablated runs. Note that
all the results reported here are without self-critical training
strategy. We start from a base Transformer encoder-decoder
architecture, which is also a degraded version of PMA-
Net without memory banks and prototype vectors. Subse-
quently, we compare by adding learnable memory vectors
as defined in [10, 50] but in the same position of PMA-Net,
i.e. in place of the self-attention layer in the sentence de-
coder instead of the visual encoder. Then, we add memory
banks and prototype vectors and vary the number of clusters
and the size of the memory banks.

Firstly, we notice that the basic learnable memory vec-
tors do not give a significant contribution when placed in the
sentence decoder, outlining that in this core position of the
captioner, in which activations coming from both modalities
are merged, learning appropriate memory vectors becomes
more complex. Instead, the proposed prototype vectors in-
crease caption quality significantly, up to 3.7 CIDEr points,
highlighting the appropriateness of the proposed strategy.
We notice that increasing the number of clusters and the
size of the memory banks exhibits better performances, as
we hypothesize that this provides a better estimation of the
key and value manifold and more fine-grained prototypes.

In our architecture, the sliding window contains the last
T·B captions seen, which in our best configuration amounts
to 1.5M samples. Being COCO 0.6M image-text pairs, this
models the training set distribution and its evolution across
more than two epochs. We notice that increasing T further

0 2 4 6 8 10 12 14 16 18
Caption Length

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

M
ea

n 
M

em
or

y 
At

te
nt

io
n 

Sc
or

e

Figure 4. Average magnitude of attention on prototype memories
over time on the COCO Karpathy validation split.

does not enhance performance; reducing it, especially to
less than one epoch, is instead detrimental.

In the lower part of Table 1, we run additional ablations
on two design choices: the use of segment embeddings to
distinguish prototypes from input-dependent keys, and the
incorporation of prototypical vectors in the first layer of
the captioner. The second experiment arises from the fact
that the first layer is not influenced by cross-attention re-
sults and, therefore, by multimodal connections with the in-
put image. It can be observed that the segment embeddings
provide a relevant contribution, and that memory prototypes
have an impact both on the first layer and on the other lay-
ers, outlining that its advantage is inherently multimodal.
Memory attention visualization. We show how the pro-
totype memories are employed during the generation of the
captions. To this aim, we compute a memory attention score
that represents the percentage of the attention that is applied
on the memories when the model has to decide which token
to generate. For each generated token and a layer l, we look
at the attention scores with respect to past keys (al

p) and
the memory (al

m). We then compute the memory attention
score for the layer as mean(al

m)/(mean(al
m)+mean(al

p)),
then average across layers. Figure 4 shows the average at-
tention scores over the COCO test set. As can be seen, the
memory is employed during the generation of the entire sen-
tence. Specifically, we observe a strong peak in the initial
part of the generation, in which we speculate that the net-
work retrieves a-priori information from the memory. At-
tention scores further increase in the final part, while the
network describes details and less relevant objects which
can benefit from the retrieval of additional knowledge.

4.4. Comparison with the State-of-the-Art

We then compare PMA-Net with different state-of-
the-art approaches. The models we compare to include
the classic Up-Down [4] approach, GCN-LSTM [65] that
uses graph convolutional networks to encode visual rela-
tionships, SGAE [62] which is based on scene graphs,
AoANet [19], X-Transformer [36] and RSTNet [69] that
propose attention variants, DLCT [33], DIFNet [58] that

3026



Cross-Entropy Loss CIDEr Optimization

B-1 B-2 B-3 B-4 M R C S B-1 B-2 B-3 B-4 M R C S

Up-Down [4] 77.2 - - 36.2 27.0 56.4 113.5 20.3 79.8 - - 36.3 27.7 56.9 120.1 21.4
GCN-LSTM [65] 77.3 - - 36.8 27.9 57.0 116.3 20.9 80.9 - - 38.3 28.6 58.5 128.7 22.1
SGAE [62] 77.6 - - 36.9 27.7 57.2 116.7 20.9 81.0 - - 39.0 28.4 58.9 129.1 22.2
AoANet [19] 77.4 - - 37.2 28.4 57.5 119.8 21.3 80.2 - - 38.9 29.2 58.8 129.8 22.4
M2 Transformer [10] - - - - - - - - 80.8 - - 39.1 29.2 58.6 131.2 22.6
X-Transformer [36] 77.3 61.5 47.8 37.0 28.7 57.5 120.0 21.8 80.9 65.8 51.5 39.7 29.5 59.1 132.8 23.4
DLCT [33] - - - - - - - - 81.4 - - 39.8 29.5 59.1 133.8 23.0
RSTNet [69] - - - - - - - - 81.8 - - 40.1 29.8 59.5 135.6 23.3
DIFNet [58] - - - - - - - - 81.7 - - 40.0 29.7 59.4 136.2 23.2
CaMEL [6] 78.3 - - 39.1 29.4 58.5 125.7 22.2 82.8 - - 41.3 30.2 60.1 140.6 23.9
COS-Net [27] 79.2 63.8 50.2 39.2 29.7 58.9 127.4 22.7 82.7 68.2 54.0 42.0 30.6 60.6 141.1 24.6
GRIT∗ [35] - - - - - - - - 84.2 - - 42.4 30.6 60.7 144.2 24.3

Transformer† 76.4 61.0 47.9 37.4 30.3 58.9 127.8 23.3 83.4 68.6 54.2 42.0 30.0 60.6 140.3 23.5
M2 Transformer† [10] 78.8 63.3 49.5 38.7 29.6 58.9 127.8 23.3 83.7 69.2 54.8 42.3 30.5 61.0 141.2 23.6
CaMEL† [6] 78.8 63.5 50.3 39.2 30.0 59.3 129.9 23.4 83.6 69.0 54.7 42.4 30.6 60.9 142.4 23.6
PMA-Net 79.0 64.2 50.7 39.5 30.4 59.6 131.5 23.6 83.8 69.3 55.0 43.0 30.6 61.1 144.1 24.0

Table 2. Comparison with the state of the art on the Karpathy test. The † marker indicates models re-trained with the same visual features
used by our approach, while ∗ indicates finetuning of the visual backbone.

Training BERT-S CLIP-S RefCLIP-S PAC-S RefPAC-S

Transformer† XE 0.947 0.741 0.804 0.819 0.865
M2 Transformer† [10] XE 0.946 0.744 0.806 0.815 0.864
CaMEL† [6] XE 0.947 0.745 0.807 0.818 0.865
PMA-Net XE 0.948 0.754 0.812 0.821 0.868

Transformer† SCST 0.947 0.749 0.807 0.818 0.864
M2 Transformer† [10] SCST 0.946 0.749 0.809 0.817 0.865
CaMEL† [6] SCST 0.945 0.751 0.810 0.818 0.865
PMA-Net SCST 0.946 0.755 0.814 0.821 0.869

Table 3. Comparison with additional metrics. † indicates models
re-trained with the same visual features used by our approach.

combine features extracted from multiple backbones, COS-
Net [27] which retrieves knowledge from an external base,
and GRIT [35] that uses a DETR-based detector and a
grid feature network for image encoding, which are both
finetuned during training. For fairness, we also compare
with methods re-trained using our visual features, namely
CaMEL [6] which employs a mean teacher learning ap-
proach, and the M2 Transformer [10].

Karpathy test split. In Table 2 we report results on the
standard Karpathy test split, in a single-model setting. The
upper part of the table shows the results reported by the
compared approaches, using their original features. In the
lower part, instead, we re-train different approaches on the
same CLIP grid features we employ for training PMA-Net.
Specifically, in addition to a Transformer, we re-train the
M2 Transformer [10] and CaMEL [6], which both rep-
resent recent and complementary approaches which could
also be integrated with our proposal. With respect to a stan-
dard Transformer, PMA-Net exhibits a margin of 3.8 CIDEr
points also under CIDEr optimization, similarly to the XE
training setting. Further, when compared with recent ap-
proaches using the same features, PMA-Net also provides
better performance. As shown in the table, with the excep-
tion of GRIT [35] that differently from us finetunes the vi-

GT: A group of horse mounted police standing in
front of a crowd.
Transformer: A group of police officers standing
in a street.
PMA-Net: A group of police officers on horses in
a street.

GT: A man takes a picture of snowy mountains
with his cell phone.
Transformer: A man taking a picture of the
mountains.
PMA-Net: A man taking a picture of mountains
with a cell phone.

GT: A Subway sandwich with chips raisins and a
coffee cup.
Transformer: A sandwich and a bag of chips on a
table.
PMA-Net: A table with a sandwich and chips and
a cup of coffee.

Figure 5. Qualitative results on COCO sample images.

sual backbone, PMA-Net consistently outperforms all the
state-of-the-art approaches according to all metrics. No-
tably, our model is still competitive even compared to GRIT,
despite the latter uses more powerful visual features. In Ta-
ble 3, we also compare against baselines trained on the same
features using more recent learnable metrics, i.e. BERT-S,
CLIP-S and, PAC-S. To qualitatively validate the effective-
ness of our solution, we report sample images and corre-
sponding predicted captions in Fig. 5.

COCO Test Server. We also report the performances of our
approach obtained on the official COCO test split, through
the online test server2. Table 4 reports the performance with
respect to 5 reference captions (c5) and 40 reference cap-
tions (c40). Following previous literature [10, 27], we re-
port the results using an ensemble of four models. As it can

2https://codalab.lisn.upsaclay.fr/competitions/7404

3027



BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Up-Down [4] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
SGAE [62] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
AoANet [19] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
M2 Transformer [10] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
X-Transformer [36] 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5
RSTNet [69] 82.1 96.4 67.0 91.3 52.2 83.0 40.0 73.1 29.6 39.1 59.5 74.6 131.9 134.0
DLCT [33] 82.4 96.6 67.4 91.7 52.8 83.8 40.6 74.0 29.8 39.6 59.8 75.3 133.3 135.4
COS-Net [27] 83.3 96.8 68.6 92.3 54.2 84.5 42.0 74.7 30.4 40.1 60.6 76.4 136.7 138.3
CaMEL [6] 83.2 97.3 68.3 92.7 53.6 84.8 41.2 74.9 30.2 39.7 60.2 75.6 137.5 140.0

PMA-Net 84.7 97.9 70.2 93.8 55.7 86.5 43.4 77.1 30.5 40.3 61.3 76.8 141.5 143.4

Table 4. Leaderboard of various methods on the online COCO test server.

B-1 B-4 M R C S CHs CHi

Att2In [42] - - 24.0 - 85.8 16.9 14.1 10.1
Up-Down [4] - - 24.7 - 89.8 17.7 11.3 7.9
Transformer [27] 76.9 36.3 27.4 56.1 109.3 20.5 7.9 5.1
COS-Net [27] 78.0 37.3 27.9 56.8 112.1 21.2 6.2 3.9

Transformer† 77.4 37.8 29.4 58.1 119.6 22.3 4.6 2.8
PMA-Net 79.5 39.3 29.4 58.7 122.0 22.5 4.3 2.6

Table 5. Results on robust COCO test set. The † marker indicates
a model re-trained with the same visual features of our approach.

be seen, also in this setting PMA-Net surpasses the com-
pared approaches by a large margin, further demonstrating
its effectiveness on the COCO dataset.

Robust COCO split and sensitivity to hallucination. As
our approach relies on the memorization of other training
samples, we verify whether the proposed strategy has an im-
pact in terms of object hallucination. We perform this anal-
ysis by employing the robust COCO splits defined in [32]
and report the results in Table 5, comparing with state-of-
the-art approaches and with a Transformer trained with the
same visual features. Both PMA-Net and the Transformer
baseline are re-trained from scratch on this dataset using
cross-entropy loss only. In addition to standard evaluation
metrics, we employ the CHAIR score, in its variants CHi
and CHs, to measure object hallucination. From this anal-
ysis, it can be seen that the addition of prototypes mem-
ory vectors reduces the hallucination rate with respect to
a Transformer, and that PMA-Net performs favorably with
respect to previous approaches also in this case.

Novel object captioning. We also evaluate PMA-Net on
the nocaps dataset [1] for novel object captioning. It shall
be noted that our approach does not leverage components
which are explicitly designed to deal with the naming of
novel objects, still the nocaps dataset provides a relevant test
bed to compare PMA-Net with other approaches from the
literature. To conduct this analysis, we employ our model
and the Transformer-based baseline trained on the standard
COCO dataset. Results are reported in Table 6, both in
the in-domain and out-of-domain splits of the datasets and
without employing constrained beam search [3]. We ob-

In Out Overall

C S C S C S

NBT [1] 62.1 10.1 62.4 8.9 60.2 9.5
Up-Down [1] 80.0 12.0 66.4 9.7 73.1 11.1
Transformer [10] 78.0 11.0 29.7 7.8 54.7 9.8
M2 Transformer [10] 85.7 12.1 38.9 8.9 64.5 11.1
GRIT∗ [35] 105.9 13.6 72.6 11.1 90.2 12.8

Transformer† 105.9 13.3 73.9 11.3 90.9 12.6
PMA-Net 107.5 13.7 75.9 11.4 92.6 12.8

Table 6. Results on nocaps validation set. The † marker indicates
a model re-trained with the same visual features of our approach,
while ∗ indicates finetuning of the visual backbone.

serve that PMA-Net achieves the best performance among
all the compared approaches and with respect to the base
Transformer which does not employ memory prototypes. In
this setting, PMA-Net also outperforms the results of GRIT,
which employs a finetuned visual backbone. This highlights
that the addition of prototypes memory vectors improves the
description of novel objects.

5. Conclusion
We presented PMA-Net, a novel architecture for image

captioning that is based on novel prototypical memory vec-
tors which are integrated into standard attention layers to
summarize activations produced during recent training iter-
ations. Noticeably, the exploitation of past activations and
the construction of memory prototypes is unprecedented
in vision-and-language architectures. Experimental results
demonstrate the effectiveness of PMA-Net on the COCO
dataset and show that it can alleviate hallucination effects
and describe novel objects better than competitors.

Acknowledgments
We thank CINECA for providing computational resources.

This work has been supported by the PNRR-M4C2 project
(PE00000013) “FAIR - Future Artificial Intelligence Research”
funded by the European Commission and the PRIN “CREATIVE:
CRoss-modal understanding and gEnerATIon of Visual and tEx-
tual content” co-funded by the Italian Ministry of University and
Research (CUP B87G22000460001).

3028



References
[1] Harsh Agrawal, Karan Desai, Xinlei Chen, Rishabh Jain,

Dhruv Batra, Devi Parikh, Stefan Lee, and Peter Anderson.
nocaps: novel object captioning at scale. In ICCV, 2019. 2,
5, 8

[2] Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. SPICE: Semantic Propositional Image Cap-
tion Evaluation. In ECCV, 2016. 5

[3] Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. Guided open vocabulary image captioning
with constrained beam search. In EMNLP, 2017. 8

[4] Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In CVPR, 2018. 1, 6, 7, 8

[5] Satanjeev Banerjee and Alon Lavie. METEOR: An auto-
matic metric for MT evaluation with improved correlation
with human judgments. In ACL Workshops, 2005. 5

[6] Manuele Barraco, Matteo Stefanini, Marcella Cornia, Silvia
Cascianelli, Lorenzo Baraldi, and Rita Cucchiara. CaMEL:
Mean Teacher Learning for Image Captioning. In ICPR,
2022. 2, 7, 8

[7] Jun Chen, Aniket Agarwal, Sherif Abdelkarim, Deyao Zhu,
and Mohamed Elhoseiny. Reltransformer: A transformer-
based long-tail visual relationship recognition. In CVPR,
2022. 2, 3

[8] Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara.
Show, Control and Tell: A Framework for Generating Con-
trollable and Grounded Captions. In CVPR, 2019. 1

[9] Marcella Cornia, Lorenzo Baraldi, Giuseppe Fiameni, and
Rita Cucchiara. Universal Captioner: Inducing Content-
Style Separation in Vision-and-Language Model Training.
arXiv preprint arXiv:2111.12727, 2022. 2

[10] Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and
Rita Cucchiara. Meshed-Memory Transformer for Image
Captioning. In CVPR, 2020. 1, 2, 3, 6, 7, 8

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. NAACL, 2018. 1, 2

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is
Worth 16x16 Words: Transformers for Image Recognition at
Scale. In ICLR, 2021. 2

[13] Bolin Gao and Lacra Pavel. On the Properties of the Softmax
Function with Application in Game Theory and Reinforce-
ment Learning. arXiv preprint arXiv:1704.00805, 2017. 4

[14] Longteng Guo, Jing Liu, Xinxin Zhu, Peng Yao, Shichen
Lu, and Hanqing Lu. Normalized and Geometry-Aware Self-
Attention Network for Image Captioning. In CVPR, 2020. 2

[15] Danna Gurari, Yinan Zhao, Meng Zhang, and Nilavra Bhat-
tacharya. Captioning Images Taken by People Who Are
Blind. In ECCV, 2020. 1

[16] Simao Herdade, Armin Kappeler, Kofi Boakye, and Joao
Soares. Image Captioning: Transforming Objects into
Words. In NeurIPS, 2019. 2

[17] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. CLIPScore: A Reference-free Evaluation
Metric for Image Captioning. In EMNLP, 2021. 5

[18] Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang,
Zicheng Liu, Yumao Lu, and Lijuan Wang. Scaling Up
Vision-Language Pre-training for Image Captioning. In
CVPR, 2022. 2

[19] Lun Huang, Wenmin Wang, Jie Chen, and Xiao-Yong Wei.
Attention on Attention for Image Captioning. In ICCV, 2019.
2, 6, 7, 8

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. IEEE Transactions on Big
Data, 7(3):535–547, 2019. 5

[21] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In CVPR, 2015. 1,
5

[22] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettle-
moyer, and Mike Lewis. Generalization through Memoriza-
tion: Nearest Neighbor Language Models. In ICLR, 2020.
2

[23] Diederik P Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In ICLR, 2015. 6

[24] Federico Landi, Lorenzo Baraldi, Marcella Cornia, and Rita
Cucchiara. Working Memory Connections for LSTM. Neu-
ral Networks, 144:334–341, 2021. 2

[25] Xinghang Li, Di Guo, Huaping Liu, and Fuchun Sun.
Robotic indoor scene captioning from streaming video. In
ICRA, 2021. 1

[26] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei
Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu
Wei, et al. Oscar: Object-Semantics Aligned Pre-training for
Vision-Language Tasks. In ECCV, 2020. 1, 2

[27] Yehao Li, Yingwei Pan, Ting Yao, and Tao Mei. Compre-
hending and ordering semantics for image captioning. In
CVPR, 2022. 1, 2, 7, 8

[28] Chin-Yew Lin. Rouge: A package for automatic evaluation
of summaries. In ACL Workshops, 2004. 5

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common Objects in Context. In
ECCV, 2014. 5

[30] Fenglin Liu, Xuancheng Ren, Xian Wu, Shen Ge, Wei Fan,
Yuexian Zou, and Xu Sun. Prophet Attention: Predicting
Attention with Future Attention. In NeurIPS, 2020. 2

[31] Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher.
Knowing when to look: Adaptive attention via a visual sen-
tinel for image captioning. In CVPR, 2017. 2

[32] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh.
Neural Baby Talk. In CVPR, 2018. 2, 5, 8

[33] Yunpeng Luo, Jiayi Ji, Xiaoshuai Sun, Liujuan Cao,
Yongjian Wu, Feiyue Huang, Chia-Wen Lin, and Rongrong
Ji. Dual-Level Collaborative Transformer for Image Cap-
tioning. In AAAI, 2021. 2, 6, 7, 8

[34] Ron Mokady, Amir Hertz, and Amit H Bermano. Clip-
Cap: CLIP Prefix for Image Captioning. arXiv preprint
arXiv:2111.09734, 2021. 2

3029



[35] Van-Quang Nguyen, Masanori Suganuma, and Takayuki
Okatani. GRIT: Faster and Better Image captioning Trans-
former Using Dual Visual Features. In ECCV, 2022. 2, 7,
8

[36] Yingwei Pan, Ting Yao, Yehao Li, and Tao Mei. X-Linear
Attention Networks for Image Captioning. In CVPR, 2020.
1, 2, 6, 7, 8

[37] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. BLEU: a method for automatic evaluation of machine
translation. In ACL, 2002. 5

[38] Mengshi Qi, Jie Qin, Di Huang, Zhiqiang Shen, Yi Yang, and
Jiebo Luo. Latent memory-augmented graph transformer for
visual storytelling. In ACM Multimedia, 2021. 3

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
Transferable Visual Models From Natural Language Super-
vision. In ICML, 2021. 2, 5

[40] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language Models are Unsuper-
vised Multitask Learners, 2019. 1

[41] Rita Ramos, Bruno Martins, Desmond Elliott, and Yova Ke-
mentchedjhieva. SmallCap: Lightweight Image Captioning
Prompted With Retrieval Augmentation. In CVPR, 2023. 2

[42] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jarret
Ross, and Vaibhava Goel. Self-Critical Sequence Training
for Image Captioning. In CVPR, 2017. 2, 5, 8

[43] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor
Darrell, and Kate Saenko. Object Hallucination in Image
Captioning. In EMNLP, 2018. 5

[44] Sara Sarto, Manuele Barraco, Marcella Cornia, Lorenzo
Baraldi, and Rita Cucchiara. Positive-Augmented Con-
trastive Learning for Image and Video Captioning Evalua-
tion. In CVPR, 2023. 5

[45] Sara Sarto, Marcella Cornia, Lorenzo Baraldi, and Rita Cuc-
chiara. Retrieval-augmented transformer for image caption-
ing. In CBMI, 2022. 2

[46] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural
Machine Translation of Rare Words with Subword Units. In
ACL, 2016. 1

[47] Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal,
Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and Kurt
Keutzer. How Much Can CLIP Benefit Vision-and-Language
Tasks? In ICLR, 2022. 2

[48] Richard Socher and Li Fei-Fei. Connecting modalities:
Semi-supervised segmentation and annotation of images us-
ing unaligned text corpora. In CVPR, 2010. 2

[49] Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Silvia
Cascianelli, Giuseppe Fiameni, and Rita Cucchiara. From
Show to Tell: A Survey on Deep Learning-based Image Cap-
tioning. IEEE Trans. PAMI, 45(1):539–559, 2022. 1

[50] Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample,
Herve Jegou, and Armand Joulin. Augmenting self-attention
with persistent memory. arXiv preprint arXiv:1907.01470,
2019. 2, 3, 6

[51] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. In NeurIPS, 2014.
2

[52] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 2

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1,
2, 6

[54] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. CIDEr: Consensus-based Image Description Eval-
uation. In CVPR, 2015. 5

[55] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. In CVPR, 2015. 1, 2

[56] Apoorv Vyas, Angelos Katharopoulos, and François Fleuret.
Fast transformers with clustered attention. In NeurIPS, 2020.
4

[57] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Trans-
formers: State-of-the-Art Natural Language Processing. In
EMNLP, 2020. 5

[58] Mingrui Wu, Xuying Zhang, Xiaoshuai Sun, Yiyi Zhou,
Chao Chen, Jiaxin Gu, Xing Sun, and Rongrong Ji. DIFNet:
Boosting Visual Information Flow for Image Captioning. In
CVPR, 2022. 6, 7

[59] Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Chris-
tian Szegedy. Memorizing Transformers. In ICLR, 2022. 2,
3

[60] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhutdinov, Richard S Zemel, and
Yoshua Bengio. Show, attend and tell: Neural image cap-
tion generation with visual attention. In ICML, 2015. 1, 2

[61] Dizhan Xue, Shengsheng Qian, Quan Fang, and Changsheng
Xu. Mmt: Image-guided story ending generation with mul-
timodal memory transformer. In ACM Multimedia, 2022. 2,
3

[62] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai.
Auto-Encoding Scene Graphs for Image Captioning. In
CVPR, 2019. 1, 6, 7, 8

[63] Benjamin Z Yao, Xiong Yang, Liang Lin, Mun Wai Lee, and
Song-Chun Zhu. I2t: Image parsing to text description. Pro-
ceedings of the IEEE, 98(8), 2010. 2

[64] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Incorporat-
ing Copying Mechanism in Image Captioning for Learning
Novel Objects. In CVPR, 2017. 1

[65] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring
Visual Relationship for Image Captioning. In ECCV, 2018.
1, 6, 7

[66] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and
Jiebo Luo. Image captioning with semantic attention. In
CVPR, 2016. 1, 2

[67] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv
Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Dem-

3030



mel, Kurt Keutzer, and Cho-Jui Hsieh. Large Batch Opti-
mization for Deep Learning: Training BERT in 76 minutes.
In ICLR, 2020. 5

[68] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. BERTScore: Evaluating Text Gen-
eration with BERT. In ICLR, 2020. 5

[69] Xuying Zhang, Xiaoshuai Sun, Yunpeng Luo, Jiayi Ji, Yiyi
Zhou, Yongjian Wu, Feiyue Huang, and Rongrong Ji. RST-
Net: Captioning With Adaptive Attention on Visual and
Non-Visual Words. In CVPR, 2021. 2, 6, 7, 8

[70] Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Ja-
son J Corso, and Jianfeng Gao. Unified Vision-Language
Pre-Training for Image Captioning and VQA. In AAAI, 2020.
2

3031


