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Abstract

Recent progress in generative models has resulted in
models that produce both realistic as well as relevant im-
ages for most textual inputs. These models are being used
to generate millions of images everyday, and hold the po-
tential to drastically impact areas such as generative art,
digital marketing and data augmentation. Given their out-
sized impact, it is important to ensure that the generated
content reflects the artifacts and surroundings across the
globe, rather than over-representing certain parts of the
world. In this paper, we measure the geographical repre-
sentativeness of common nouns (e.g., a house) generated
through DALL·E 2 and Stable Diffusion models using a
crowdsourced study comprising 540 participants across 27
countries. For deliberately underspecified inputs without
country names, the generated images most reflect the sur-
roundings of the United States followed by India, and the
top generations rarely reflect surroundings from all other
countries (average score less than 3 out of 5). Specifying the
country names in the input increases the representativeness
by 1.44 points on average on a 5 − point Likert scale for
DALL·E 2 and 0.75 for Stable Diffusion, however, the over-
all scores for many countries still remain low, highlighting
the need for future models to be more geographically inclu-
sive. Lastly, we examine the feasibility of quantifying the
geographical representativeness of generated images with-
out conducting user studies.1

1. Introduction
Over the last year, the quality of text-to-image genera-

tion systems has remarkably improved [32, 61, 35, 37]. The
generated images are more realistic and relevant to the tex-
tual input. This progress in text-to-image synthesis is partly
fueled by the sheer scale of models and datasets used to train

1The generated images and human ratings for each country are
available at https://github.com/val-iisc/Geographical_
Representativeness.

Figure 1. An illustrative question from our study, where a partic-
ipant (in this case, from India) is presented with an image of a
common noun (a wedding), generated from the Stable Diffusion
model. The participant is asked to rate the generated image on
how well it reflects the weddings in their surroundings.

them, and partly by the architectural advancements includ-
ing Transformers [54] and Diffusion models [20]. Given
the impressive generation capabilities that these models dis-
play, such models have captured the interest of researchers
and general public alike. For instance, DALL·E 2 is being
used by over 1.5 million users to generate more than 2 mil-
lion images per day for applications including art creation,
image editing, digital marketing and data augmentation [1].

Despite the broad appeal of text-to-image models, there
are looming concerns about how these models may exhibit
and amplify existing societal biases. These concerns stem

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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from the fact that image generation models are trained on
large swaths of image-caption pairs mined from the inter-
net, which is known to be rife with toxic, stereotyping, and
biased content. Further, internet access itself is unequally
distributed, leading to underrepresentation and exclusion of
voices from developing and poor nations [6, 2].

There exists a wide body of work demonstrating biases
in large language and vision models [19, 57, 36, 48], and
some recent work investigates text-to-image models for bi-
ases related to representation of race, gender and occupa-
tion [8, 4]. Another important—and often overlooked—
aspect of inclusive representation is geographical represen-
tation. For such systems to be geographically representa-
tive, they should generate images that represent the objects
and surroundings of different nations in the world, and re-
frain from overrepresenting certain nations and contribut-
ing to their hegemony. For instance, a typical house in the
United States looks different from one in Japan. Often the
input descriptions to text-to-image models are underspec-
ified, leaving the models to fill in the missing details. In
such underspecified descriptions, there is an increasing risk
that models overrepresent certain demographics [21]. In ad-
dition to representational harms, biased image generation
systems can also cause allocational harms as such systems
are used to augment datasets, which run the risk of further
propagating existing biases. Further, the experience of us-
ing systems that underrepresent certain areas would likely
be unpleasant for the residents of those regions.

In this paper, we measure the degree to which the text-
to-image-generation systems produce images that reflect
the artifacts and surroundings of participants from different
parts of the world (§2). To answer this question, we con-
duct a user study involving 540 participants from 27 differ-
ent countries. We present each user 80 images of common
nouns generated from DALL·E 2 [32] and Stable Diffusion
(v 1.4) [35] models. Half of the presented images are gener-
ated by specifying the country of the participant in the input,
and the remaining images are deliberately underspecified
to examine the default generations. The users evaluate the
presented images based on a 5-point Likert scale indicating
how well do the generated images reflect the given entity
in their physical surroundings (see Figure 1). We also ask
respondents to score generated images on (i) how realistic
they look, and (ii) how the realism impacted their scores
about geographical representativeness.

Overall, we find that the geographical representativeness
of images for many countries is considerably low (§3). In
the unspecified case, i.e., without any country name in the
input, we find that the generated images most reflect ar-
tifacts from the United States (average geographical rep-
resentativeness score of 3.35 out of 5), followed by India
(score of 3.23) and Canada (score of 2.82), and least re-
flect the nouns from Greece, Japan and New Zealand (with

scores less than or around 2.0). Out of 27 countries, 25
countries have a score of less than 3 for both DALL·E 2
and Stable Diffusion models. When we specify the coun-
try name in the input prompt, the average score over all the
studied countries increases to 3.49 (from 2.39 in the unspec-
ified case). However, these scores suggest that there is room
for future text-to-image models to produce more geographi-
cally representative content. Between DALL·E 2 and Stable
Diffusion, we find DALL·E 2 to be better at generating geo-
graphically representative content when we specify country
names, but we observe no statistically significant difference
in the underspecified case.2 We find that the participants’
ratings about the realism of the images are correlated with
their scores about the geographical representativeness.

Finally, we examine the feasibility of automating the
process of quantifying the geographical representativeness
of text-to-image generation models through two different
ways (§4). First, we consider the similarity of a country-
specific textual prompt and the test image using CLIP, a pre-
trained text-image alignment model [29]. Second, we eval-
uate the viability of using user annotations for DALL·E 2 as
a means for estimating the geographical representativeness
for images generated through Stable Diffusion. We find
both these approaches to be inadequate in accurately eval-
uating the geographical representativeness of the images,
emphasizing the need for a user study. We conclude with a
discussion on limitations of our work, and suggestions for
future research in this area (§5).

2. Approach
Geographical Representativeness. We present crowd-
workers from different countries with several model-
generated images of common nouns, and for each image,
we ask them to rate on a scale of 1-5 about how well do
the generated images reflect their surroundings. Geograph-
ical representativeness (GR) of the model m for country c,
is then defined as the average rating participants from that
country provide to the model generated images of common
nouns (N ), using a corresponding set of input prompts (P).
Similarly, we define the realism, R(c,m, p), as the average
of realism ratings given by participants from country c to
images generated by model m using a prompt p.

Research Questions. Using the above notions of geo-
graphical representativeness and realism, we ask:

• RQ1: Are the images generated using DALL·E 2 and
Stable Diffusion geographically representative? Do
they over-represent rich or populous nations?

2Note that the scope and focus of our study is solely on measuring the
extent of geographical representativeness for both country-specified and
unspecified prompts, rather than finding better ways to prompt the model,
or improve the model to produce more geographically inclusive content.
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• RQ2: To what extent does specifying the country
name in the input improve the representativeness?

• RQ3: Does the realism of images impact participants’
ratings about the geographical representativeness?

• RQ4: How feasible is it to automatically assess the
geographical representativeness of generated images?

Selected Countries. We reach out to residents of 88 coun-
tries using Amazon Mechanical Turk (AMT)3 and Prolific4

crowdsourcing platforms. However, a large majority of
crowdworkers belong to only a few countries, and we even-
tually end up with sufficient responses only from 27 coun-
tries. We sample the 88 countries using weighted random
sampling where each nation was weighted by its population.
The final set of 27 countries (denoted by C) includes: the
United States of America, Canada, Mexico, Brazil, Chile,
the United Kingdom, Italy, Spain, Greece, Japan, Korea, In-
dia, Israel, Australia, South Africa, Belgium, Poland, Portu-
gal, Germany, France, Latvia, Hungary, the Czech Repub-
lic, Estonia, New Zealand, Finland, and Slovenia.

Chosen Artifacts. To curate a list of diverse but common
artifacts, we extract the most common nouns from the popu-
lar Conceptual Captions dataset [43] which contains image-
caption pairs, used for training various vision+language
systems [23, 50, 22, 33]. We use a POS-tagger from the
NLTK library to extract the nouns, and sort them by de-
creasing order of their frequency. We choose the 10 most
common nouns after manually excluding nouns that are uni-
versal in nature (e.g., sky, sun). The final list of 10 common
nouns, denoted by N , includes city, beach, house, festival,
road, dress, flag, park, wedding, and kitchen.

Input Prompts. As mentioned earlier, we use two types
of queries for image synthesis. For half of the queries, we
include the country name, and for the remaining half, we do
not specify any country name (to assess the default genera-
tions). When specifying the country name, we modify the
query to “high definition image of a typical [artifact]
in [country]”, where we include the word typical to gen-
erate the most common form of the concept in the specified
country. We denote such queries by pc, where c refers to
the country name in question. For the underspecified case,
our query is “high definition image of a [artifact]”,
which we denote by p. We use the same prompt for both
DALL·E 2 and Stable Diffusion models.

3https://www.mturk.com
4https://www.prolific.co

Figure 2. Agreement among participants. We plot the percent-
age of participants from each country that choose the most com-
mon option (for that country). We see that there is a considerable
agreement among respondents, as about half the participants in
many countries agree on one out of five options.

Questionnaire Details. For each of the 10 nouns, we gen-
erate 8 images, 4 using DALL·E 2 and 4 from Stable Dif-
fusion. Overall for a given country, our survey comprises
80 images. Participants are not privy to the details of the
models, and do not know which images were generated
from which model. For each image, we ask each partici-
pant: “How well does the automatically generated image of
this [artifact] reflect the [artifact] in your sur-
roundings in [country]?”. (See Figure 1). For each
question, participants mark their responses using a 5-point
Likert scale, where where 1 indicates “not at all”, and 5 rep-
resents “to a great extent”. After the 80 questions, we ask
the users to rate the photo-realism of the generated images
on a scale of 1-5, and how it impacted their scores about
geographical representativeness. We pay AMT participants
based on the estimated hourly income of crowdworkers in
their respective countries. For participants from Prolific, we
pay them a platform-set minimum of 6.91 USD per hour.

Validating Responses. To verify if the participants an-
swered the questions earnestly, we include 4 trick questions
which are presented in the same format. Two of these trick
questions inquire about apples and milk, whereas the cor-
responding images are of mangoes and water. Therefore,
we expect participants to mark a low score for these two
questions. For the other two trick questions, we ask about
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a pen and sun, and include images of the same, and expect
the users to mark a high score. We discard the responses
from participants who do not pass these checks. While
the crowdsourcing platforms allow us to target users from
a given country, we re-confirm with participants if they in-
deed reside (or have lived) in the specified countries.

Inter-rater Agreement. We compute (for each country)
the percentage of participants who opted for the most se-
lected option. We observe a high agreement among partic-
ipants; for 19 out of the 27 studied countries we see that
the most common option is picked by over 50% of the re-
spondents (Figure 2). The agreement would be (on an av-
erage) 20% if participants marked options arbitrarily. The
percentages in Figure 2 demonstrate some degree of con-
sensus among participants. Further, we observe the highest
agreement for images of flags (81%) and the least agree-
ment for kitchens (41%).

3. Results
In this section, we share the findings of our study. First,

we discuss the metrics of interest, and then answer the four
research questions posed in Section 2.

3.1. Metrics

Below, we define a few notations that we use for eval-
uating the user ratings. Remember from Section 2 that we
defined GR(c,m, n, p) as the geographical representative-
ness score assigned by participants from country c to images
generated for noun n from model m using prompt p.

• GR(c,m, ·, pc): Average ratings that participants of a
country c assign for geographical representativeness of
images generated by model m across all nouns in N .
Here, we use a country-specific prompt (pc).

• GR(c,m, ·, p): Average ratings that participants of a
country c assign for geographical representativeness of
images generated by model m across all nouns. The
prompt p does not specify the country name.

• GR(·,m, n, pc): Average ratings that participants for
all countries in C assign for geographical representa-
tiveness (GR) of images of noun n, generated by model
m. Here, we use a country-specific prompt (pc).

• GR(·,m, n, p): Average ratings that participants from
all countries in C assign for geographical representa-
tiveness of images of noun n, generated by model m.
The prompt p does not specify the country name.

Analogously, we define R(c,m, n, pc) and R(c,m, n, p)
as the average realism score for generated images using
country specific (pc) and unspecific prompt (p) respectively.

3.2. Geographical Representativeness

Here, we elaborate on the extent to which the generated
artifacts are geographically representative (RQ1 in Section
2). We compute the geographical representativeness scores
for each country, averaged over the two models for the im-
ages generated by prompts that do not specify the country
name, i.e., GR(c, ·, ·, p). We present these results in Table 1.
From the table, we can see that out of the 27 countries, 25
have a score lower than 3 (on a scale of 1 to 5), indicating
that participants from most of the studied countries do not
feel that the generated images reflect their surroundings to
a large extent. The only countries to obtain scores higher
than 3 are the United States (3.35) and India (3.23). In-
terestingly, for DALL·E 2, India obtains the highest score
(3.44) followed by the United States (3.24). The overall
least scores are assigned by participants from Greece (1.94),
Japan (1.95) and Finland (2.03). The average score across
the studied 27 countries is 2.39.

To answer the follow up questions posed in the RQ1,
about whether the artifacts generated are more representa-
tive of richer and populous nations:

1. We find no correlation between the degree of geo-
graphical representativeness of the generated images
for the studied countries and their per-capita GDP. The
Pearson correlation coefficient, ρ, is −0.03. More-
over, after separating the country pool into the “Rich
West” countries5 and others, we evaluate if average
GR scores of the two groups are different, but we find
no statistically significant difference. We acknowledge
and speculate that we may observe different trends if
the study included participants from many other devel-
oping countries. However, significantly improving the
coverage of the study is challenging (see Section 5).

2. We observe that the geographical representativeness
scores of the 27 countries is positively correlated with
their population (ρ = 0.64). This may suggest that the
datasets used to pre-train the chosen models contain
many images from residents of populous countries.

3.3. Effect of Country-specific Prompts

In this subsection, we analyse the geographical repre-
sentativeness of images generated by including the country
name (RQ2 in Section 2). From Table 1, we observe that for
each nation, mentioning its name in the prompt increases
the average GR score for that country as compared to the
under-specified case. We conduct a paired sample t-test to
confirm this, and find that indeed there is a statistically sig-
nificant increase with p-value < 0.05. Specifically, adding
the country name in the textual query increases the average
geographical representativeness score by over 1.44 points

5As defined per: https://worldpopulationreview.com/
country-rankings/western-countries
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Table 1. Geographic Representativeness. We tabulate the geographical representativeness scores for DALL·E 2 (D2), Stable Diffusion
(SD) and combination of both the models (Overall) for different countries, both for the case when the model is prompted using the country
name and without it. In the unspecified case, we observe that the scores is highest for United States, followed by India (scores greater than
3.2 out of 5), but low for many other countries. We observe a consistent improvement in the scores when we include the country names.

Countries
Overall DALL·E 2 Stable Diffusion

w/ country Unspecified w/ country Unspecified w/ country Unspecified
GR(c, ·, ·, p) GR(c, ·, ·, pc) GR(c,D2, ·, p) GR(c,D2, ·, pc) GR(c,SD, ·, p) GR(c,SD, ·, pc)

US 3.54 ±0.23 3.35 ±0.18 3.56 ±0.29 3.24 ±0.27 3.51 ±0.25 3.46 ±0.27

India 3.74 ±0.26 3.24 ±0.41 4.00 ±0.22 3.44 ±0.49 3.48 ±0.49 3.03 ±0.41

Canada 3.62 ±0.40 2.82 ±0.51 3.78 ±0.55 2.73 ±0.59 3.47 ±0.52 2.91 ±0.66

South Africa 3.25 ±0.30 2.74 ±0.40 3.49 ±0.57 2.70 ±0.44 3.02 ±0.52 2.78 ±0.58

Brazil 3.70 ±0.26 2.69 ±0.55 4.00 ±0.38 2.65 ±0.78 3.40 ±0.23 2.72 ±0.56

UK 3.82 ±0.38 2.65 ±0.49 4.14 ±0.53 2.41 ±0.61 3.48 ±0.56 2.88 ±0.80

Mexico 3.83 ±0.26 2.59 ±0.56 4.18 ±0.30 2.74 ±0.72 3.49 ±0.57 2.45 ±0.64

Spain 3.44 ±0.29 2.46 ±0.44 3.62 ±0.38 2.29 ±0.65 3.26 ±0.53 2.63 ±0.66

Portugal 3.73 ±0.29 2.46 ±0.47 4.02 ±0.40 2.47 ±0.73 3.44 ±0.61 2.45 ±0.54

Italy 3.58 ±0.47 2.40 ±0.49 3.66 ±0.66 2.40 ±0.70 3.50 ±0.66 2.39 ±0.63

Belgium 3.49 ±0.43 2.40 ±0.52 3.76 ±0.71 2.28 ±0.57 3.21 ±0.61 2.52 ±0.80

France 3.32 ±0.34 2.34 ±0.44 3.54 ±0.67 2.38 ±0.70 3.09 ±0.47 2.30 ±0.52

Poland 3.62 ±0.30 2.29 ±0.44 4.14 ±0.39 2.23 ±0.59 3.10 ±0.66 2.35 ±0.70

Germany 3.64 ±0.35 2.26 ±0.45 4.03 ±0.30 2.04 ±0.46 3.26 ±0.70 2.49 ±0.78

Australia 3.35 ±0.45 2.26 ±0.46 3.55 ±0.74 2.10 ±0.49 3.15 ±0.66 2.41 ±0.65

Czech Republic 3.43 ±0.48 2.25 ±0.52 3.68 ±0.50 2.18 ±0.64 3.18 ±0.79 2.31 ±0.66

Hungary 3.41 ±0.49 2.24 ±0.55 3.65 ±0.59 2.06 ±0.52 3.18 ±0.74 2.42 ±0.76

New Zealand 3.10 ±0.44 2.23 ±0.36 3.10 ±0.76 2.24 ±0.70 3.11 ±0.49 2.22 ±0.39

Estonia 3.36 ±0.25 2.22 ±0.33 3.89 ±0.58 2.18 ±0.51 2.84 ±0.49 2.26 ±0.49

Slovenia 3.29 ±0.46 2.21 ±0.43 3.48 ±0.49 2.19 ±0.45 3.10 ±0.69 2.23 ±0.65

Chile 3.12 ±0.40 2.15 ±0.42 3.62 ±0.64 2.26 ±0.69 2.62 ±0.57 2.04 ±0.58

Israel 3.14 ±0.39 2.15 ±0.49 3.62 ±0.67 2.10 ±0.67 2.66 ±0.59 2.19 ±0.64

South Korea 3.49 ±0.24 2.10 ±0.39 3.92 ±0.45 2.24 ±0.66 3.06 ±0.47 1.96 ±0.44

Latvia 3.52 ±0.34 2.10 ±0.49 4.11 ±0.44 1.87 ±0.52 2.93 ±0.46 2.32 ±0.67

Finland 3.62 ±0.30 2.03 ±0.34 3.93 ±0.54 1.95 ±0.44 3.30 ±0.59 2.10 ±0.48

Japan 3.55 ±0.32 1.95 ±0.40 3.97 ±0.37 1.97 ±0.49 3.13 ±0.59 1.94 ±0.48

Greece 3.43 ±0.46 1.94 ±0.49 3.65 ±0.48 1.92 ±0.66 3.22 ±0.69 1.97 ±0.48

Average 3.49 ±0.06 2.39 ±0.08 3.78 ±0.09 2.34 ±0.10 3.19 ±0.10 2.44 ±0.10

for DALL·E 2 and 0.75 for Stable Diffusion. Overall, for
14 out of 27 countries (despite the increase upon includ-
ing country names), the geographical representation scores
were between 3 to 3.5, indicating a considerable headroom
for future models to generate more representative artifacts.

We show illustrative examples of images generated by
the unspecified and country-specific prompts in Figure 3.
Specifically, we show images for 5 countries: Brazil, Mex-
ico, Italy, Japan and South Korea, and 4 nouns: house, city,
flag and wedding. The images generated by DALL·E 2
are surrounded by green boxes, whereas those generated
by Stable Diffusion are surrounded by yellow boxes. For
each of the nouns, we show images generated by the under-
specified prompts first, followed by the ones generated
through country specific prompts. In the supplementary
material, we show images generated separately by both

DALL·E 2 [32] and Stable Diffusion [35] for all the 10
nouns, whereas we choose one country from each continent:
US, Chile, UK, Japan, South Africa, and Australia.

3.4. Photo-realism of Generated Images

We seek to answer if, and to what degree, does the
photo-realism of images impact participants’ perceptions
of geographical representativeness of a given artifact (RQ3
in Section 2). We believe that there may be an effect,
as unrealistic-looking images might be perceived less ge-
ographically appropriate (in the extreme case, unrealistic-
looking photos might be hard to even interpret). To an-
swer this question, we ask participants to rate the realism
of images generated by DALL·E 2 and Stable Diffusion re-
spectively (for both the under-specified and country-specific
prompts) on a Likert-scale of 1 to 5. Additionally, in the exit
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Figure 3. Qualitative examples of images of four common nouns generated by DALL·E 2 (images surrounded by green boxes) and Stable
Diffusion models (images surrounded by yellow boxes). Through these examples and others, we see that the default generations often
reflect artifacts from US and Canada. For example, the average score (in unspecified case) for the images of houses generated through
DALL·E 2 is 3.95 for US and Canada, and 2.09 for the remaining countries.

survey, we ask participants to self assess the impact that the
realism of images had on the scores they assigned for geo-
graphical representativeness of images.

First, we find that geographical representativeness and
realism scores are correlated, with a Pearson correlation of
0.62 for Stable Diffusion (unspecified case), and 0.47 for
the case with country names. For DALL·E 2 the correlation
is not as large (0.21 and 0.57 for unspecified and country-
specific prompts respectively). This is also concordant with
the self-evaluation provided by participants, where we note
that participants, on average, indicate that the realism in-
fluenced their ratings on geographical representativeness to
a moderate extent (average score of 3.5 on a scale of 1-5).
Interestingly, we find that that the average realism score as-
signed by participants is lower (averaged over all countries)
when the prompt excludes the country name (this differ-
ence is statistically significant with p value < 0.05). Albeit,
we do see that for some countries, e.g., the United States
and Brazil, the realism scores decreases upon including the
country names in the prompt. More details and countrywise
statistics on the realism values (for all 27 countries) can be
found in the supplementary material.

3.5. Comparison of DALL·E 2 and Stable Diffusion

We compare DALL·E 2 vs Stable Diffusion models to
see which model produces more geographically represen-
tative images (Figure 4). We find that (i) for country-
specific prompts, the geographical representativeness of im-

Figure 4. DALL-E 2 vs Stable Diffusion: Average geographical
representativeness scores for images generated by DALL·E 2 and
Stable Diffusion, with and without country-specific prompts.

ages generated through DALL·E 2 are higher than those
from Stable Diffusion by about 0.6 points (and this differ-
ence is statistically significant as per a paired t-test with a
p-value < 0.05); and (ii) for country agnostic prompts, the
differences are not statistically significant (see Figure 4).

4. Feasibility of Automating the Evaluation
Evaluating geographical representativeness of text-to-

image models through user studies is labor intensive, expen-
sive and not easily reusable (for future models). It would be
ideal to automatically quantify the geographical representa-
tiveness of unseen test images. In this section, we analyse
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the feasibility of such automatic evaluation (RQ4 in Sec-
tion 2). Particularly, we explore automatically estimating
the geographical representativeness using two different ap-
proaches: (i) using CLIP (a text-image alignment model)
to obtain the similarity between the country-specific textual
prompt and the test image; and (b) using the similarity of the
test image to already annotated images, i.e., via a k-nearest
neighbor model. We elaborate these schemes below:

4.1. CLIP-based Similarity

One of the common techniques used to automatically
quantify biases in the text-to-image models is to use CLIP-
based similarity as a proxy [29]. For instance, CLIP sim-
ilarity scores have been previously used to evaluate gen-
der, racial, ethnic and cultural biases in text-to-image mod-
els [8, 3, 49]. Further, it has also been used to evaluate
cross-lingual coverage of a concept in text-to-image mod-
els [39]. To assess if the CLIP model could be a useful
tool for automatically estimating the geographical represen-
tativeness scores for a given country-noun pair, we use it to
obtain the un-normalized similarity score between the im-
age and a query of the form “high definition image of a typ-
ical [noun] in [country]”, and compare it to the geo-
graphical representativeness score assigned by participants
from our study. We evaluate if we could reach the same
findings (as in §3) by using the CLIP similarity scores.
Results. Overall, we find that the images generated
through country-specific prompts have higher CLIP-based
similarity scores than those generated by country-agnostic
prompts (p-value < 0.001), for both DALL·E 2 and Stable
Diffusion. Of all the cases where DALL·E 2 images gen-
erated using country-specific prompts have a higher score
than images generated without country names, 98.7% of
the times the CLIP similarity scores are also higher. For
the Stable Diffusion model, the corresponding percentage
is 96.4%. These high-level findings are consistent with
the user study. However, when we compare the scores of
DALL·E 2 and Stable Diffusion models, CLIP-based sim-
ilarity suggests that there is no statistically significant dif-
ference in the geographical representativeness of images
generated with country name, which contradicts the re-
sults from the participants (they find images generated from
DALL·E 2 with country-specific prompts to be more geo-
graphically representative than ones from Stable Diffusion).
Moreover, for images generated without the country name,
the CLIP similarity scores are higher for Stable Diffusion
than DALL·E 2 unlike the human ratings, for which there is
no statistically significant difference.

Next, we study if we could obtain finer-grained findings
similar to what we observe through a human study. We
first compute the Pearson’s correlation coefficient, ρ, be-
tween country-wise geographical representativeness scores
and CLIP similarity scores. We find no correlation across all

nouns for images generated with country names (ρ = 0.01),
and weak correlation for images with country-agnostic
prompts (ρ = 0.34). Further, we curate a benchmark com-
prising pairs of images, and evaluate how often do human
preferences (about which of the two images is more ge-
ographically representative) match with the one selected
through CLIP-based similarity. We note that the agreement
is merely 52.4% (random chance agreement is 50%). These
results indicate that the CLIP-based similarity is an inade-
quate proxy for the geographical representativeness.

4.2. Estimation using Nearest Neighbors

We further explore the viability of estimating the geo-
graphical representativeness of a given test image (possibly
generated by a future text-to-image generation model) us-
ing the existing ratings collected for images from DALL·E 2
and Stable Diffusion. For a test image XT

n of a given noun
n, we define X c

n as the set of images of n annotated by
participants of country c. Since a given image may be re-
flective of surroundings in multiple countries, we attempt
to estimate the GR scores corresponding to all the studied
countries. For XT

n , we find its k nearest neighbors by ex-
tracting the feature vectors of XT

n and the images in X c
n

from the vision model used by CLIP, and then computing
the cosine similarities between the corresponding features.
The predicted GR score of XT

n for country c is the average
of the human ratings corresponding to the obtained near-
est neighbors. Specifically, we use the participant ratings of
DALL·E 2 as the training data and those of Stable Diffusion
for testing. Therefore, for noun n and country c, |X c

n| = 4,
as we have 4 annotated images per noun for a given coun-
try, 2 generated with country-specific prompts, the other 2
generated without the country-specific prompts. For ex-
ample, to evaluate the GR score of an image of a house
in India generated by Stable Diffusion, we find its k near-
est neighbors among the images that are generated through
DALL·E 2 and annotated by Indians. The estimated score
is then compared to the true ratings of Indian participants.
Results. Given that |X c

n| = 4, we set k = 1 for all our ex-
periments. We find that the average correlation coefficient,
the correlation between the human marked scores and the
estimated scores is moderate (ρ = 0.46) over all the coun-
tries in the unspecified case, however, we find no correlation
(ρ = 0.01) in the case of country-specific prompts. Fur-
ther, the mean squared error (MSE) between the human and
estimated scores is 1.39 for images with country-agnostic
prompts and 1.56 for images with country-specific prompts.
As a reference, we also check the MSE for a baseline value
of 3.0 for all the test images across all countries (as 3 falls in
the middle of 1-5 scale). For this reference, the MSE is 1.18
for unspecified case and 0.83 for country specific case—
both these error values are lower than the corresponding val-
ues obtained using the estimates from the k nearest neighbor
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Table 2. Evaluating the estimated geographical representativeness
using k-nearest neighbor approach. We find the the Mean Squred
Errors (MSE) for all the feature extractors are too high to be useful.

Approach w/o country w/ country

Reference (= 3.0) 1.18 0.83
Feature extractors:

VGG16 [46] 1.55 1.52
ResNet18 [18] 1.67 1.77
ResNet50 [18] 2.04 1.62
ViT [12] 1.81 1.51
CLIPVision [29] 1.38 1.56

model. These values point to the infeasibility of using this
approach for automatically estimating the geographical rep-
resentativeness, at least in the current form. We believe that
this is partly due to the fact that we only have a few anno-
tated images in the training corpus to match with. We also
speculate that the image feature extractors (used for simi-
larity computation) may not extract features that differenti-
ate images along the geographical lines. We further present
the MSE scores of the nearest neighbor method by varying
the underlying pretrained feature extractor in Table 2. We
note that for both the country unspecified and the country
specific cases, the MSE values for the predicted GR scores
with respect to all the feature extractors are higher than that
of values obtained using the baseline score of 3.0. This fur-
ther underscores that automatically estimating geographical
representativeness of images is challenging.

Both the investigated approaches for estimating geo-
graphical representativeness turn out to be inadequate. We
are able to reach similar high-level conclusions using CLIP-
based similarity, but the similarity scores contradict finer-
grained findings. Overall, it is fundamentally challenging
to automatically estimate the representativeness of images.

5. Limitations & Future Directions

There are several important limitations of our work. De-
spite our efforts to reach out to participants from 88 coun-
tries, we received sufficient responses from users only in 27
countries, and hence our study is limited to only 27 coun-
tries. We received less than 5 responses from participants
in Nepal (1), Bangladesh (2), Malaysia (2), Turkey (5), Sin-
gapore (2), Argentina (1), Kenya (3), Venezuela (1), Pak-
istan (1), Indonesia (2), Nigeria (2), Romania (2), Colom-
bia (3), Namibia (1), and zero responses from Laos, Ar-
menia, Yemen, Thailand, Vietnam, Sri Lanka, Kazakhstan,
Ukraine, Sierra Leone, Burkina Faso, Morocco, Senegal,
Philippines, Egypt, Peru, Ethiopia, Mozambique, Kyrgyz
Republic, Tanzania, Mali, Ecuador, Myanmar, Cambodia,
Russia, Andorra, Finland, Tunisia, Gabon, Angola, Alge-
ria, Libya, Botswana, and Seychelles. As past surveys note,

internet is not uniformly accessible across the globe [6, 2].
The lack of access disproportionately impacts marginalized
and poor nations, which further limits the voice residents
of marginalized countries have on the internet. Systems
trained on the internet data run the risk of excluding such
communities. Perhaps due to internet access issues, crowd-
sourcing platforms have few (or no) participants from many
developing countries, which further exacerbates inclusive
development and evaluation of machine learning models
(country-wise details can be found in Figure 5).

Figure 5. The number of participants available for research studies
on Prolific are heavily skewed, and have few (or no) participants
from many poor and developing nations. Such disparity is a seri-
ous challenge for inclusive model development and evaluation.

Another weakness of our work is that we evaluate gen-
erated images for only 10 common nouns. As we evaluate
two different models with two different kinds of prompts
and use multiple images per noun, we end up with a survey
comprising 80 images per participant. Including additional
nouns would have resulted in longer (or more) surveys and
likely lower participation. However, we will open-source
the code and required tools for future work to reproduce
and extend similar studies. An interesting future direction
is to examine techniques to aggregate images (for a given
noun and a country) to speed and scale up the evaluation.

To improve the models, and the geographical represen-
tativeness of the generated images, we believe that more
work is required to better document the sources of image-
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text pairs in the training data so as to understand the dis-
tributions of different objects and countries. For exam-
ple, an interesting future work could be studying the train-
ing data of Stable Diffusion, i.e. the open-source LAION-
5B [40] to understand how the image-caption pairs depict-
ing some objects co-occur with the different demographic
regions of the world. Further, we need to collect and
augment more data from the under-represented countries—
there have been some past attempts at scraping more diverse
image data [31]. Lastly, we call for improving the participa-
tion from under-represented countries in development and
evaluation of machine learning models.

6. Related Work
Text-to-image Generation. Over the last few years,

models that convert any input text to images have gained
significant traction. Initial text-to-image generation model
used Generative Adversarial Networks [62, 34, 52, 65] and
Generative RNNs [25]. Recent advancements in transform-
ers [54] and diffusion models [35], and their application to
text-to-image generation, has improved the quality of gen-
erated images. Autoregressive models encode the image as
a grid of latent codes and train a multimodal transformer
language model to generate the image tokens [33, 7, 61].
Another line of work employs diffusion models for image
generation [37, 32, 28, 38, 15]. A different line of work
fuses the diffusion models with autoregressive transform-
ers [17]. For our study, we pick DALL·E 2 [32], a diffu-
sion based model released by OpenAI, and Stable Diffusion
[35], an open-source latent text-to-image diffusion model,
as there are increasing concerns that generated images from
these models exhibit and amplify societal biases [4, 32, 61],
since they are trained on a large number of text-image pairs
scrapped from the web and other sources.

Societal Biases. There is a growing body of work that
critically analyzes the outputs of deep learning models in
an attempt to discover and measure societal biases for var-
ious downstream applications including image classifica-
tion [53, 30, 63, 66], image captioning [64, 19], language
and image generation [45, 44, 58], face recognition [5, 10],
image search [26, 51], and art creation [47]. Infact, such bi-
ases are rampant in state-of-the-art vision-language models
as well [56]. Multiple studies investigate generated images
from DALL·E 2 and Stable Diffusion for stereotypes associ-
ated with gender, race and ethnicity. [8, 4, 14, 24, 27, 9, 13].
Bianchi et. al. [4] showcase several instances of danger-
ous biases exhibited by these models, and cautions against
widespread adoption of such models. Garcia et. al. [16]
annotate and study the Conceptual Captions dataset [43]
to understand the representation of different demographic
groups. Another study [41] focuses on the capability of
these models in generating images pertaining to the built
environment. Our study is similar in spirit to prior stud-

ies that aim to measure societal biases in text-to-image
models but analyzes—an oft-overlooked aspect of inclusive
representation—geographical representation.

Geographical Inclusivity. Many AI tasks have been
shown to suffer from geographical biases, leading to per-
formance gaps in understanding objects coming from dif-
ferent socio-economic parts of the world. Such gaps have
been observed in object recognition and image classifica-
tion [11, 42], as well as vision-language tasks [59, 60]. Re-
cent works find that such biases may be caused by imbal-
ances in the training data [55]. Nevertheless, geographi-
cal representativeness in the domain of generative models
is still an under-studied problem. While some works [27]
investigate similar biases for events like birthday party, fes-
tival, etc., they use the CLIP embeddings to evaluate the
extent of the same. Our study, on the contrary, reaches to
human annotators from different parts of the world for this
evaluation, and shows that the CLIP embeddings may not
be entirely accurate in determining the geographical repre-
sentativeness of the generated images.

7. Conclusion

In this work, we investigated how well the images gen-
erated by two popular text-to-image models (DALL·E 2
and Stable Diffusion) reflect surroundings across the world.
We conducted a user study involving 540 participants from
27 countries, wherein we asked participants the degree to
which generated images of common nouns reflect their sur-
roundings. We found that when the input prompt does not
include any specific country name, users from 25 out of 27
countries felt that the generated images were less represen-
tative of the artifacts, with an average score of 2.39. How-
ever, ratings increased to 3.49 on an average when we in-
cluded the country name in the text prompts. These results
also highlight how there is considerable room for models to
generate more geographically representative content. When
comparing DALL·E 2 with the Stable Diffusion model, we
found that DALL·E 2 outperformed Stable Diffusion when
using country specific inputs, but in other cases, these two
models received similar scores. We also explored the feasi-
bility of automating our study, and noted that the explored
approaches were inadequate. Lastly, we highlighted key
limitations and discussed ideas for future work to scale up
the study and improve the geographical representativeness.
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