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Abstract

Vision-Language Pretraining (VLP) has significantly im-
proved the performance of various vision-language tasks
with the matching of images and texts. In this paper, we
propose VL-Match, a Vision-Language framework with En-
hanced Token-level and Instance-level Matching. At the to-
ken level, a Vision-Language Replaced Token Detection task
is designed to boost the substantial interaction between text
tokens and images, where the text encoder of VLP works
as a generator to generate a corrupted text, and the mul-
timodal encoder of VLP works as a discriminator to pre-
dict whether each text token in the corrupted text matches
the image. At the instance level, in the Image-Text Match-
ing task that judges whether an image-text pair is matched,
we propose a novel bootstrapping method to generate hard
negative text samples that are different from the positive
ones only at the token level. In this way, we can force the
network to detect fine-grained differences between images
and texts. Notably, with a smaller amount of parameters,
VL-Match significantly outperforms previous SOTA on all
image-text retrieval tasks.

1. Introduction
The pretrain-then-finetune paradigm has achieved great

success in both natural language processing [7, 5, 24, 15]
and computer vision [14, 3, 2, 27]. Vision-Language Pre-
training (VLP) [22, 44, 18, 21, 39] has also attracted much
attention in recent years, which aims to pretrain a model
that can understand and align the semantics of images and
texts through a variety of pretraining tasks based on massive
image-text pairs. These models can be finetuned to adapt
to various downstream vision-language tasks such as visual
question answering [12] and image-text retrieval [30, 23].
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Figure 1. (a) Masked Language Modeling (MLM) predicts orig-
inal tokens of the masked positions with image and text repre-
sentations; (b) Vision-Language Replaced Token Detection (VL-
RTD) enhances token-level matching by discriminating whether
each token in the generated text aligns with the image and the
text context; (c) Image-Text Matching (ITM) predicts whether the
given texts match the image; (d) Fine-Grained Image-Text Match-
ing (FG-ITM) adds a fine-grained negative sample to enhance the
matching ability at instance level.

To learn the matching between images and texts in
vision-language pretraining, two pretraining tasks are com-
monly adopted to train a multimodal encoder [18, 9, 34]:
Masked Language Modeling [35] tries to learn the token-
level matching of different modalities by predicting orig-
inal tokens of the masked positions with the image and
text representations [22, 1]. The image and text represen-
tations are encoded with an image encoder and a text en-
coder respectively. Image-Text Matching attempts to match
vision and language at instance level in a binary classifica-
tion task, which predicts whether the given texts match the
images [18, 22].
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To further enhance vision-language matching at both to-
ken level and instance level, we propose VL-Match with
two novel objectives: Vision-Language Replaced Token
Detection (VL-RTD) to enhance the matching at the to-
ken level with a generator-discriminator structure, and Fine-
Grained Image-Text Matching (FG-ITM) to enhance the
Image-Text Matching task at instance level by introducing
more hard negative samples. Inspired by the Replaced To-
ken Detection task of ELECTRA [5] in natural language
pretraining, VL-RTD is designed to discriminate whether
each token in the text aligns with the image and the text con-
text, with a generator-discriminator structure. Specifically,
VL-RTD regards the multimodal encoder as a discriminator
and the text encoder as a generator. Given an original text
input, the generator outputs a corrupted text, and then the
discriminator learns to discriminate whether each token in
the corrupted text is replaced by the generator. Compared
with Masked Language Modeling which corrupts the orig-
inal text with [MASK], VL-RTD corrupts the text with to-
kens selected from the vocabulary, preserving more seman-
tic information of the original text. Different from Masked
Language Modeling which only predicts on the masked to-
kens, VL-RTD predicts on all text tokens, thus forcing more
text information to interact with the image. As shown in
Figure 1 (a) and (b), with the multimodal encoder predicting
on all tokens, VL-RTD can efficiently learn the connection
between the unmasked “dog” in the text with the “dog” in
the image.

Moreover, we also design FG-ITM to enhance the
Image-Text Matching task at the instance level, by introduc-
ing more fine-grained negative samples. Previously, nega-
tive text samples of the Image-Text Matching task are sam-
pled either randomly or according to instance-level similar-
ities [21]. To present the differences between the positive
and the negative samples in a fine-grained manner, we pro-
pose a novel data augmentation method named NegGen. In
our method, we synthesize a new text instance by apply-
ing a language generator on masked tokens. The generated
text is expected to be coherent in natural language, but has
some fine-grained differences with the corresponding im-
age. To ensure the synthesized pair to be negative, we fur-
ther adopt a vision-language discriminator to predict image-
text matching probabilities and to filter out potentially posi-
tive samples. For example, in Figure 1 (c) and (d), the term
“white” in the positive sample is replaced with “red”, for-
mulating a fine-grained negative sample. In this way, the
multimodal model is able to capture more fine-grained in-
formation for better image-text alignment.

In summary, our contributions include:

• We propose VL-Match to enhance the matching of im-
ages and texts at both token level and instance level, by
designing two novel VLP pretraining tasks.

• We introduce a generator-discriminator structure pre-
trained with a Vision-Language Replaced Token De-
tection task to enhance the matching at the token level
for vision-language pretraining.

• We are the first to bootstrap fine-grained negative sam-
ples in Image-Text Matching task to learn fine-grained
representations for efficient vision and language align-
ment.

• As shown in experiments, on multiple cross-modal
downstream tasks, VL-Match significantly outper-
forms previous SOTA on all retrieval tasks (up to 2.9%
absolute improvement on Flickr30K dataset, and 1.9%
on COCO dataset).

2. Related work
Inspired by the success of self-supervised representation

learning on uni-modal tasks, Vision-Language Pretraining
(VLP) has attracted much attention. VLP learns the repre-
sentation and understanding of images and texts based on
the training of massive image-text pairs. Model architec-
tures, pretraining objectives and data augmentation are crit-
ical to the effectiveness of vision-language models.

Model Architectures Initial VLP methods [35, 25, 22,
44] adopt object detection models like Faster RCNN [32]
to extract image region embeddings, which is expensive
in both computation and data annotation. ViLT [18] re-
moves the detector and leverages a Transformer encoder
to encode both images and texts. Although these meth-
ods succeed in fusing vision and language information, a
large computational effort on cross-modal retrieval tasks is
resulted from the insufficiency in feature alignment of im-
ages and texts. Benefiting from the development of con-
trastive learning, dual-encoder models such as CLIP [31]
and ALIGN [17] encode images and texts separately and try
to align features of different modalities in the Image-Text
Contrastive Learning task. However, these dual-encoder
structure does not hold a fusion layer to enable the inter-
action between images and texts. Then ALBEF [21] pro-
poses to align representations of vision and language first,
and then uses a fusion layer to understand different modal-
ities. Recent works [9, 10, 42] follow the idea of align-
ment before fusion and achieve superior performance. Our
method shares similar spirits with ALBEF, but introduces a
generator-discriminator structure to enhance the image and
text matching at both token level and instance level.

Pretraining Objectives Multiple vision-language pre-
training objectives have been proposed [1], including
Masked Language Modeling [35, 37, 18], Image-Text
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Figure 2. (A) Overview of VL-Match pretraining. The entire model includes an image encoder, a text encoder and a multimodal encoder.
Pretraining objectives include ITC, MLM, VL-RTD, and FG-ITM. Some of the negative cases of FG-ITM are the output of (B). (B)
Framework of NegGen. A masked text is fed into a language generator to generate a synthesized text that differs from the original text
at the token level. To ensure the generated text is negative, we adopt a vision-language discriminator to predict image-text matching
probabilities and to filter out potentially positive samples.

Matching [37, 18, 21, 39], Image-Text Contrastive Learn-
ing [31, 17], Prefix Language Modeling [40], Masked Re-
gion Classification [37], and Word-Patch/Region Align-
ment [4, 18]. SimVLM [40] proposes to train the vision-
language model using Prefix Language Modeling on image-
text pairs and text-only data. FLAVA [34] combines
Masked Image Modeling with Masked Language Mod-
eling, and uses Image-Text Contrast and Matching with
a dual encoder + multimodal encoder structure. In this
paper, we design two pretraining objectives based on
our generator-discriminator structure, including Vision-
Language Replaced Token Detection and Fine-Grained
Image-Text Matching. Compared with Masked Language
Modeling, Vision-Language Replaced Token Detection en-
hances token-level matching by capturing pure language
priors in corrupted text input and involving more text tokens
to interact with the image. And Fine-Grained Image-Text
Matching supplements more fine-grained negative texts
with a generate-then-filter bootstrapping method, to en-
hance the instance-level Image-Text Matching.

Data Augmentation Data Augmentation (DA) is widely
applied in computer vision, especially in visual self-
supervised pretraining [14, 2]. In recent years, DA is also
helpful for visual-language pretraining: FILIP [43] uses
back-translation to rewrite the original text to augment pos-

itive text samples. BLIP [20] introduces a decoder to gen-
erate synthetic positive captions for images. Different from
these methods which focus on augmenting dataset with pos-
itive samples, our method demonstrates the advantage of
fine-grained negative captions. We introduce NegGen that
includes a language generator and a vision-language dis-
criminator, where the generator outputs potentially nega-
tive texts that are different from the positive texts in a fine-
grained manner, then the discriminator filters out the non-
negatives according to the image-text matching probabili-
ties.

3. Method

In this section, we first introduce our model structure,
then elaborate on the proposed Vision-Langauge Replaced
Token Detection task. Next, we briefly introduce the
Image-Text Contrastive learning and Fine-Grained Image-
Text Matching. Finally, we explain how the NegGen is de-
signed.

3.1. Model Architecture

As shown in Figure 2, VL-Match contains a text en-
coder, an image encoder and a multimodal encoder. The
text encoder and the multimodal encoder are both 6-layer
transformers. We use a 12-layer vision transformer [8]
as the image encoder. Given an image-text pair (I,T ),
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the input image I is encoded into a sequence of embed-
dings: {vcls, v1, . . . , vN}, where vcls is the embedding of
the [CLS] patch and N is the number of the image patches.
The input text T is encoded into a sequence of embed-
dings {tcls, t1, . . . , tM}, where tcls is the embedding of the
[CLS] token and M is the maximum sequence length. The
two different modal representations are fused by cross atten-
tion [38] of the multimodal encoder. Details of each com-
ponent will be elaborated in the following sections.

3.2. Vision-Language Replaced Token Detection

Vision-Language Replaced Token Detection (VL-RTD)
is divided into a generative process and a discriminative pro-
cess. The two processes are described respectively as fol-
lows.

Generative Process In the generative process, we re-
gard the text encoder as a generator to learn text repre-
sentations according to the text context and generate cor-
rupted texts (red arrow in Figure 2). Similar to Masked
Language Modeling, the tokens in the selected positions
are replaced with a [MASK] token, we denote this as
REPLACE(T ,m,[MASK]), where T is the original text
tokens and m is the selected positions. Given the masked
text Tmasked, the text encoder learns to predict original to-
kens of the masked-out tokens. pG(T

masked) denotes the
predicted probability. Each token is sampled based on this
probability to get a corrupted text T corrupt without [MASK].
The generative process is formalized as follows. Typically
k = ⌈0.15M⌉.

mi ∼ unif{1,M} for i = 1 to k

Tmasked = REPLACE(T ,m,[MASK])

T̂i ∼ pG

(
Ti | Tmasked

)
for i ∈ m

T corrupt = REPLACE(T ,m, T̂ )

(1)

The text encoder (which works as the generator) is
trained to minimize a cross-entropy loss defined as H:

LG = E(T masked)∼DH
(
ymasked,pG(T

masked)
)

(2)

where ymasked is the ground-truth of Masked Language
Modeling: a one-hot vocabulary distribution where the orig-
inal tokens at the masked positions are ones and the rest of
the tokens are zeros.

Discriminative Process In the discriminative process, we
regard the multimodal encoder as a discriminator to dis-
criminate whether each token in the text aligns with the im-
age and the text context (green arrow in Figure 2). Given
the corrupted text T corrupt, the text encoder transforms the
text into a corrupted text representation {tccls, tc1, . . . , tcM},
which is fed into the multimodal encoder to learn inter-
actively with the image representation {vcls, v1, . . . , vN}

through cross attention [38]. Finally, the output of the
multimodal encoder passes through a classification layer to
obtain the binary probability distribution pD(I,T

corrupt) of
each token.

The multimodal encoder is trained to minimize a binary
cross-entropy loss defined as F:

LD = E(I,T corrupt)∼DF
(
ycorrupt,pD(I,T

corrupt)
)

(3)

where ycorrupt is the ground-truth: a two-dimensional one-
hot distribution formulated as

ycorruptj = 1 if T corrupt
j ̸= Tj else 0 for j = 1 to M

(4)
The training objective of VL-RTD is

Lrtd = LG + λLD (5)

where λ is the weight of the discriminator loss.

3.3. Image-Text Contrastive learning

We follow the same settings of Image-Text Contrastive
learning (ITC) loss in ALBEF [21]. ITC loss aims to learn
the alignment of image and text representations. Specifi-
cally, the similarity between image and text is calculated
by the similarity function s(I,T ) = gv (vcls)

⊤
gt (tcls),

where gv and gt are linear transformations that map vcls

and tcls to normalized low-dimensional representations.
Two queues are maintained to cache the most recently ob-
tained Q image and text representations, which are cal-
culated by a momentum text encoder and a momentum
image encoder respectively [14]. The normalized fea-
tures obtained from the momentum model are denoted as
g′v (v

′
cls) and g′t (t

′
cls). s(I,Tmom) = gv (vcls)

⊤
g′t (t

′
cls)

and s(T , Imom) = gt (tcls)
⊤
g′v (v

′
cls) define the similar-

ity functions between the positive representations from the
pretraining encoders and the negative representations from
the momentum encoders. For each image and text, we
compute the softmax-normalized image-to-text and text-to-
image similarities as:

pi2t(I) =
exp (s (I,Tmom) /τ)∑Q
q=1 exp (s (I,T

mom) /τ)
(6)

pt2i(T ) =
exp (s (T , Imom) /τ)∑Q
q=1 exp (s (T , Imom) /τ)

(7)

where τ is a learnable temperature parameter. The
ground-truths yi2t

one-hot(I) and yt2i
one-hot(T ) are similarity ma-

trices with the same shape as pi2t and pt2i, with ones on
the diagonal and zeros on the rest. Momentum Distillation
[21] leverages the momentum model to distill current train-
ing model, which is adopted to learn from pseudo-targets
generated by the momentum model. The final targets are:

yi2t(I) = (1− α)yi2tone-hot(I) + αpi2t(Imom) (8)
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yt2i(T ) = (1− α)yt2ione-hot(T ) + αpt2i(Tmom) (9)

The image-text contrastive loss is defined as the cross-
entropy H between p and y:

Litc =
1

2
E(I,T )∼D [ H

(
yi2t(I),pi2t(I)

)
+H

(
yt2i(T ),pt2i(T )

)
]

(10)

3.4. Fine-Grained Image-Text Matching

Image-Text Matching (ITM) predicts whether a given
image-text pair is positive (matched) or negative (not
matched), which is a binary classification task. Based
on ITM, the proposed Fine-Grained Image-Text Match-
ing (FG-ITM) aims to capture fine-grained differences of
image-text pairs. For each input image-text pair, we use
two types of negative samples: an in-batch hard nega-
tive sample selected according to Equation 6 or 7, and a
fine-grained negative sample generated by NegGen (Sec-
tion 3.5). We use the multimodal encoder’s output embed-
ding of the [CLS] token as the joint representation of the
image-text pair, and append a classification layer to predict
the image-text matching probability pitm(I ′,T ′). The FG-
ITM loss is:

Litm = E(I,T )∼DH(yitm,pitm(I ′,T ′)) (11)

where yitm is the ground-truth of ITM, which is a 2-
dimensional one-hot vector. (I ′,T ′) includes (I,T ),
(I,T neg), (Ineg,T ) and (I,T fine-grained), where Ineg is the
negative image, T neg is the negative text, and T fine-grained is
the fine-grained negative text.

The overall pretraining objective for ELECREA-VL is:

L = Lrtd + Litm + Litc (12)

3.5. NegGen

NegGen is a novel data augmentation strategy to gener-
ate negative texts that only have token-level differences with
the positive texts, thus enabling the multimodal encoder to
capture more fine-grained information for better image-text
alignment.

As shown in Figure 2 (B). The original text is masked
and then fed into a language model to generate fine-grained
negative samples. In order to mask tokens with rich seman-
tic information, we employ a simple part-of-speech tagger
to identify nouns and adjectives in the original text, and
randomly mask 50% of them. The process of generating
fine-grained negative samples is formalized as follows and
q = ⌈0.5(Mnoun + Madj)⌉, where Mnoun and Madj are the
numbers of nouns and adjectives respectively.

mi ∼ unif{1,Mnoun +Madj} for i = 1 to q

Tmasked = REPLACE(T ,m,[MASK])

T̂i ∼ pG

(
Ti | Tmasked

)
for i ∈ m

T fine-grained = REPLACE(T ,m, T̂ )

(13)

Furthermore, to ensure the generated text sample to be
negative, we adopt a vision-language model trained with
ITM as a discriminator to predict image-text matching prob-
abilities and filter out potential positive samples. For exam-
ple, in Figure 2 (B), although “kitten” and “cat” are differ-
ent tokens, their semantic differences are negligible. There-
fore, we use the discriminator to evaluate whether the text
T fine-grained matches the image I , and then discard the pairs
that match.

4. Experiments
4.1. Pretraining Setup

Following previous benchmarks [21, 20], we use COCO
[23], Visual Genome (VG) [19], Conceptual Captions (CC)
[33], and SBU Captions [28] as our pretraining datasets,
which have a total of 4M unique images and 5.1M image-
text pairs.

For the NegGen, we adopt BERTBASE [7] as the lan-
guage generator and ALBEF [21] as the vision-language
discriminatorm, and inference all pretraining datasets. In
our model, the text encoder is initialized from the first 6
layers of BERTBASE, the multimodal encoder is initialized
from the last 6 layers of BERTBASE, and the image en-
coder is initialized from CLIP-ViT-224/16. During the pre-
training phase, the model is trained for 30 epochs using a
batch size of 512. We adopt the mini-batch AdamW opti-
mizer with a weight decay of 0.02. In the first 1000 itera-
tions, the learning rate is warmed-up to 1e−4, and decayed
to 1e−5 following a cosine schedule. Each image is ran-
domly cropped to 256 × 256 resolution as input, and Ran-
dAugment [6] is adopted (color changes are not included
because text descriptions often contain color information).
During the finetuning stage, the resolution of an image is
up-scaled to 384 × 384, and the positional encoding of the
image patches is interpolated. The momentum parameter
for updating the momentum model is 0.995, and the queue
length of cached features for image-text contrastive learn-
ing is set to Q = 65, 536. All experiments are performed
on 8 NVIDIA A100 GPUs and take around 3 days to train.
The weight λ of the discriminator loss is set as 10.

4.2. Vision-Language Downstream Tasks

Image-Text Retrieval includes two subtasks: image-to-
text retrieval (TR) and text-to-image retrieval (IR). The
pretrained model is evaluated on Flickr30K [30] and
COCO [23], including finetuning and zero-shot settings.
For the finetuning setting, the pretrained model is finetuned
on the training set and then evaluated on the validation/test
set. For the zero-shot setting, the pretrained model is di-
rectly evaluated on the test set without finetuning. Follow-
ing [21], the zero-shot retrieval is conducted on Flickr30K,
and the finetuning is conducted on Flickr30K and COCO.
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Method Pretrain
Images

Flickr30K (1K test set) MSCOCO (5K test set)
Text Retrieval Image Retrieval Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

UNITER [4] 4M 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
VILLA [11] 4M 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
OSCAR [22] 4M - - - - - - 70.0 91.1 95.5 54.0 80.8 88.5
ViLT [18] 4M 83.5 96.7 98.6 64.4 88.7 93.8 61.5 86.3 92.7 42.7 72.9 83.1
ALIGN [17] 1.2B 95.3 99.8 100.0 84.9 97.4 98.6 77.0 93.5 96.9 59.9 83.3 89.8
ALBEF [21] 4M 94.3 99.4 99.8 82.8 96.7 98.4 73.1 91.4 96.0 56.8 81.5 89.2
METER-CLIP [9] 4M 94.3 99.6 99.9 82.2 96.3 98.3 76.1 93.1 96.8 57.0 82.6 90.0
VL-Match 4M 96.4 99.8 100.0 86.0 97.5 99.0 76.6 93.8 97.1 60.2 83.6 90.1

Table 1. Finetuned image-text retrieval results on Flickr30K and COCO.

Method
Flickr30K (1K test set)

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

UNITER [4] 83.6 95.7 97.7 68.7 89.2 93.9
ViLT [18] 73.2 93.6 96.5 55.0 82.5 89.8
CLIP [31] 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN [17] 88.6 98.7 99.7 75.7 93.8 96.8
ALBEF [21] 90.5 98.8 99.7 76.8 93.7 96.7
METER-CLIP [9] 90.9 98.3 99.5 79.6 94.9 97.2
VL-Match 93.3 99.3 99.8 82.0 95.1 97.4
Table 2. Zero-shot image-text retrieval results on Flickr30K.

Visual Entailment (VE) [41] predicts the semantic re-
lationship of a given image-text pair, which is a three-
classification task where the categories include: entailment,
neutral and contradictory. This task focuses on examining
the model’s fine-grained understanding of images and texts.

Visual Question Answering (VQA) [12] aims to predict
the answer to a given image and query (in textual form),
which requires the model to understand the image and the
text, and to obtain information about their interactions. Fol-
lowing [21], the task is regarded as a generative task, where
a decoder is added during finetuning to sample answers
from 3192 candidates.

Natural Language for Visual Reasoning (NLVR2) [36]
judges whether a text description matches a pair of images,
which is a binary classification task. We use NLVR2 dataset
to evaluate the pretrained model. Following [21], we extend
the multimodal encoder to receive two images, where the
cross-attention layers of the extended part and the original
part share parameters.

4.3. Evaluation on Image-Text Retrieval

In the evaluation on image-text retrieval, the loss func-
tion ITC + ITM is adopted for finetuning, and a re-rank
mechanism is used for inference [21]. First, images and
texts are encoded separately, and their similarity matrices
are calculated to obtain top-k candidates. Then, representa-

tions of the candidates are fed into the multimodal encoder
for re-ranking.

Table 1 and Tabel 2 show the comparative results of
our method with previous works [4, 18, 31, 17, 21, 9]
on two benchmarks: zero-shot retrieval and finetuned re-
trieval. VL-Match achieves state-of-the-art performance on
all retrieval tasks. For the zero-shot retrieval, our method
outperforms METER-CLIP by 2.4% (TR) and 2.4% (IR)
on R@1. For the finetuned retrieval, our method outper-
forms METER-CLIP by 2.1% (TR) and 3.8% (IR) on R@1
of Flickr30K, and 0.5% (TR) and 2.8% (IR) on R@1 of
COCO.

4.4. Evaluation on VQA, NLVR2, and VE

Table 3 shows the performance on VQA, NLVR2, and
VE, which requires joint input of image + text. METER [9]
performs successfully on these tasks, but it includes two
multimodal encoders and uses tricks such as hierarchical
learning rates and larger image resolution in the finetun-
ing stage. Our model includes only one multimodal en-
coder and achieves competitive performance with only 55%
of METER parameters. For VQA, many existing meth-
ods [4, 11, 9] regard it as a classification task and use Binary
CrossEntropy Loss for finetuning, while our method regards
it as a generative task and adopts an encoder-decoder struc-
ture. Compared to ALBEF [21] with the same settings, we
achieve an improvement of 0.78%.

4.5. Ablations on Pretraining Tasks

We perform ablation experiments in the finetuned text-
retrieval tasks on Flickr30K and NLVR2, the results are
shown in Table 4. Meta-sum is the sum of results on NLVR2
and Flickr30k. Compared with the first row, the second
row adds MLM task, and can be observed that this addi-
tion does not provide any significant improvement, which
demonstrates that the gains achieved by our method do
not stem from the MLM task to the text encoder. The
third row introduces the generator-discriminator structure
(G-D), where the generator outputs a corrupted text without
[MASK], and the discriminator takes as input the represen-
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Method Params VQA NLVR2 VE
Generative test-dev test-std dev test-P val test

Include two multimodal encoders
METER-Swin [9] 380M % 76.43 76.42 82.23 82.47 80.61 80.45
METER-CLIP [9] 380M % 77.68 77.64 82.33 83.05 80.86 81.19
Include one multimodal encoder
UNITER [4] 300M % 73.82 74.02 79.12 79.98 79.39 79.38
VILLA [11] 300M % 74.69 74.87 79.79 81.47 80.18 80.02
ViLT [18] 87M % 71.26 - 75.70 76.13 - -
ALBEF [21] 210M ! 74.54 74.40 80.24 80.50 80.14 80.30
VL-Match 210M ! 75.11 75.18 81.96 82.23 80.44 81.26

Table 3. Finetuned results on vision+language tasks. For fair comparison, we divide the existing methods into two categories: including
two multimodal encoders and including one multimodal encoder.

Text encoder Multimodal encoder G-D NLVR2 Flickr30k Meta-suminstance-level token-level instance-level token-level dev test-P TR IR

ITC % ITM MLM % 79.95 80.20 95.4 84.7 340.25
ITC MLM ITM MLM % 79.80 80.77 95.2 84.7 340.47
ITC MLM ITM MLM ! 80.97 80.77 95.3 85.1 342.41
ITC MLM ITM VL-RTD ! 81.59 82.08 95.6 85.1 344.37
ITC MLM FG-ITM VL-RTD ! 81.96 82.23 96.4 86.0 346.59

Table 4. Ablation studies of pretraining tasks. We report R@1 on Flickr30k. G-D means whether to use the generator-discriminator
structure, where the generator generates a corrupted text and the discriminator takes as input the representation of the corrupted text. When
using the G-D structure, the difference between VL-RTD and MLM for the multimodal encoder is that VL-RTD is a binary-classification
task and MLM is a vocabulary-size-classification. Meta-sum is the sum of results on NLVR2 and Flickr30k

tation of the corrupted text, achieving +1.94% in the Meta-
sum. The fourth row replaces MLM with VL-RTD in the
multimodal encoder, significantly improving the Meta-sum
by 1.96%. Finally, the last row introduces FG-ITM to en-
hance the instance-level matching, bringing significant ben-
efits, especially on cross-modal retrieval tasks. In summary,
VL-Match enhances vision-language matching at both to-
ken and instance levels, substantially improving the perfor-
mance in the downstream vision-language tasks (Meta-sum
increases from 340.25 to 346.59).

Method NLVR2 Flickr30k
dev test-P TR IR

NegGen 81.96 82.23 96.4 86.0

w/o mask noun. and adj. 81.24 81.29 96.3 85.9
w/o filter 80.67 81.34 95.8 85.6

Table 5. Ablation studies of NegGen.

4.6. Ablations on NegGen

We also conduct an ablation study to investigate the
masking and filtering mechanisms of NegGen. As shown in
Table 5, “w/o mask noun. and adj.” uses the typical random
masking mechanism and the result shows the importance of
masking nouns and adjectives that have rich semantic mean-

ings. Besides, “w/o filter” does not filter out the matched
pairs, resulting in performance degradation. Figure 3 shows
cases of the generated-then-filtered negative texts and their
corresponding images, which qualitatively demonstrate the
effectiveness of NegGen to generate fine-grained negatives.

𝑇p: “a young child 
that is sitting in front 
of a birthday cake”

𝑇𝑓: "a young child 
that is sitting in front 
of a white phone”

𝑇p: “a white plastic 
fork”

𝑇𝑓: "a silver plastic 
fork”

𝑇p: “students studying 
in the library”

𝑇𝑓: "students studying 
in the bar”

𝑇p: “several people 
on a beach flying kites 
on a clear day”

𝑇𝑓: "two people on a 
beach flying a kite on 
a sunny day”

𝑇p: “two men one 
painted gold standing 
beside of a horse”

𝑇𝑓: "two men one 
painted gold standing 
outside of a building”

𝑇p: “female teacher 
smiling in in front of a 
blackboard”

𝑇𝑓: "male teacher 
smiling in in front of a 
black board”

Figure 3. Examples of the positive text T p and the fine-grained
negative text T f generated by NegGen.

4.7. Analysis of Fine-grained Matching

For the qualitative analysis, in Figure 4, the cross-modal
retrieval cases show the superiority of FG-ITM, which force
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Two people are 
on top of the 
bed of a truck

A brown and white 
dog jumping in the 
air near a wooden 
fence  

A brown and white 
dog jumps on the 
sidewalk

A man is making 
his girlfriend 
laugh by playing 
with his nose

A boy stands 
on a rocky 
mountain

A woman in a 
brown jacket is 
standing on a 
rock

Text-to-image Retrieval Image-to-text Retrieval

Two small children 
in Asian type 
costumes on a 
stage dancing

Three people are 
playing near the 
ocean as the waves 
crest near them

A man with a 
bucket and a girl in 
a hat on the beach

Input

ITM

FG-ITM

Figure 4. Cross-modal retrieval cases. The first, second and third rows are the inputs, results of ITM and FG-ITM respectively.

Model Existence Plurality Counting Sp.rel. Action Coreference Foil-it! Avg.quantifiers number balanced sns. adv. relations repl. actant swap standard clean

ALBEF 71.29 78.73 61.98 64.89 59.62 73.08 73.30 57.74 52.68 53.85 95.55 68.91
VL-Match* 69.30 80.26 62.10 62.44 56.73 82.06 72.22 60.17 52.96 50.96 96.39 69.34
VL-Match 72.67 78.96 62.21 65.50 60.78 83.93 73.91 61.01 57.34 57.69 97.99 71.22

Table 6. Results on the VALSE benchmark, where * means “without FG-ITM”.

our model sensitive to fine-grained differences. In the first
case, FG-ITM successfully captures the fine-grained match
between the number “two” in the image and text, whereas
ITM fails to do so. This can partly be attributed to the
model being exposed to such negatives with numerical mis-
matches via FG-ITM (e.g., the case in Figure 3). In Fig-
ure 5, the Grad-CAM visualization is applied to a visual
grounding task on RefCOCO+, and the result 68.21% out-
performs ALBEF by 2.32%. The visualization and the com-
petitive results demonstrate that our method achieves fine-
grained matching between text tokens and image patches.
For the quantitative comparison, we add experiments on
two multimodal fine-grained understanding benchmarks:
VALSE [29] and SVO-Probes [16]. They require models
to predict a matching score for a given image–text pair in a
zero-shot setting, and we use pairwise ranking accuracy to
evaluate the models. The results are shown in Table 6 and
Table 7.

“bird” “feathers” “tree”

“A bird with blue feathers in a tree at the zoo”

“Brown teddy bear with glasses sitting on blue couch in front of a laptop”

“Brown teddy bear ” “glasses” “blue couch” “laptop”

“zoo”

Figure 5. Grad-CAM visualization on cross-attention maps.

Model Overall Subj. Negative Verb Negative Obj. Negative

ALBEF 87.54 89.09 85.21 93.51
VL-Match* 87.96 90.97 85.30 93.84
VL-Match 89.38 94.68 85.96 95.87

Table 7. Results on SVO-Probes for sub., verb, and obj. negatives,
where * means “without FG-ITM”.

4.8. Analysis of Discriminator Loss Weight

Table 8 studies effect of the discriminator loss weight λ
in the VL-RTD loss. We search for the best loss weight λ
using Meta-sum as a general measure. Comprehensively,
the loss weight λ of the discriminator should be higher
than the loss weight of the generator, where λ = 10 is the
best. As the discriminator is trained with the binary clas-
sification task instead of the generator’s multi-classification
task, the discriminator’s loss was typically much lower than
the generator’s. Besides, we need to prevent the generator
from achieving too high accuracy, resulting in very few re-
placed tokens [5]. Therefore, we need to assign a higher
loss weight to the discriminator, thus balancing abilities of
the generator and the discriminator [13, 26].

Loss
weight

NLVR2 Flickr30k Meta-sumdev test-P TR IR

λ = 1 79.64 79.89 96.3 84.7 340.53
λ = 5 80.47 80.71 95.5 85.4 342.08
λ = 10 81.59 82.08 95.6 85.1 344.37
λ = 15 81.20 80.94 96.1 84.5 342.74
λ = 20 81.67 81.16 96.4 84.4 343.63

Table 8. Comparison of discriminator loss weights λ in the VL-
RTD loss
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4.9. Analysis of Computation Cost

As shown in Table 9, our NegGen need little time to gen-
erate fine-grained negative samples for FG-ITM. Moreover,
replacing MLM with VL-RTD increases the pre-training
FLOPs by only 2.8%, due to one more forward pass of the
text encoder. The FG-ITM further increases the FLOPs by
1.6% to train on the augmented negatives. Overall, our ap-
proach has a slight increase in computation cost, but deliv-
ers significant gains.

FLOPs(1e19) Time Memory(MB)

NegGen 0.882 1h 4296
baseline 1.898 3d 18h 35702
+ VL-RTD 1.952 3d 19h 36062
+ FG-ITM 1.984 3d 23h 37294

Table 9. Computation cost. The input length of image/text is
256/25.

5. Conclusion
In this paper, we propose VL-Match, a generator-

discriminator framework that enhances vision-language
pretraining with token-level and instance-level matching.
At the token level, we propose Vision-Language Replaced
Token Detection task for the multimodal encoder, which in-
troduces more language prior knowledge and involves more
text tokens to match the image, improving the matching ef-
ficiency. Moreover, we propose Fine-Grained Image-Text
Matching at the instance level, which adds fine-grained neg-
atives generated by a novel bootstrapping method NegGen.
This method can improve the model’s ability to recognize
fine-grained differences between images and texts. Exper-
imental results on widely-used benchmarks show that VL-
Match outperforms existing SOTA methods by a large mar-
gin. Theoretically, our method can be easily generalized
to any VLP architectures which is trained with MLM and
ITM. For future work, training the image encoder to gen-
erate a corrupted image, and then guiding the multimodal
encoder to discriminate whether each patch of the corrupted
image is replaced may be worth studying.
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