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Abstract

Self-Supervised Learning (SSL) has emerged as the so-
lution of choice to learn transferable representations from
unlabeled data. However, SSL requires to build sam-
ples that are known to be semantically akin, i.e. posi-
tive views. Requiring such knowledge is the main lim-
itation of SSL and is often tackled by ad-hoc strategies
e.g. applying known data-augmentations to the same in-
put. In this work, we formalize and generalize this princi-
ple through Positive Active Learning (PAL) where an ora-
cle queries semantic relationships between samples. PAL
achieves three main objectives. First, it unveils a theoreti-
cally grounded learning framework beyond SSL, based on
similarity graphs, that can be extended to tackle supervised
and semi-supervised learning depending on the employed
oracle. Second, it provides a consistent algorithm to em-
bed a priori knowledge, e.g. some observed labels, into
any SSL losses without any change in the training pipeline.
Third, it provides a proper active learning framework yield-
ing low-cost solutions to annotate datasets, arguably bring-
ing the gap between theory and practice of active learning
that is based on simple-to-answer-by-non-experts queries of
semantic relationships between inputs.

1. Introduction
Learning representations of data that can be used to

solve multiple tasks, out-of-the-box, and with minimal post-
processing is one of the main goals of current AI research
[39, 35, 24]. Such representations are generally found
by processing given inputs through Deep neural Networks
(DNs). The main question of interest around which con-
temporary research focuses on deals with the choice of the
training setting that is employed to tune the DN’s parame-
ters. A few different strategies have emerged such as lay-
erwise [6], reconstruction based [48], and more recently,
based on Self-Supervised Learning (SSL) [14, 37]. In fact,

*Equal contribution.

due to the cost of labeling and the size of datasets constantly
growing, recent methods have tried to drift away from tra-
ditional supervised learning [42]. From existing training
solutions, joint-embedding SSL has emerged as one of the
most promising ones [34]. It consists in learning represen-
tations that are invariant along some known transformations
while preventing dimensional collapse of the representa-
tion. Such invariance is enforced by applying some known
Data-Augmentation (DA), e.g. translations for images, to
the same input and making sure that their corresponding
representations are the same.

Despite tremendous progress, several limitations remain
in the way of a widespread deployment of SSL. In particu-
lar, it is not clear how to incorporate a priori knowledge into
SSL frameworks beyond the usual tweaking of the loss and
DAs being employed, although some efforts are being made
[16, 53, 52]. Indeed, it is not surprising that vision-language
pre-training has replaced SSL as the state-of-the-art to learn
image representation [26], as those models are better suited
to incorporate information stemming from captions that of-
ten come alongside images collected on the Internet.

In this study, we propose to redefine existing SSL losses
in terms of a similarity graph –where nodes represent data
samples and edges reflect known inter-sample relationships.
Our first contribution stemming from this formulation pro-
vides a generic framework to think about learning in terms
of similarity graph: it yields a spectrum on which SSL and
supervised learning can be seen as two extremes. Within
this realm, those two extremes are connected through the
similarity matrix, and in fact can be made equivalent by
varying the similarity graph. Our second contribution natu-
rally emerges from using such a similarity graph, unveiling
an elegant framework to reduce the cost and expert require-
ment of active learning summarized by:

Tell me who your friends are,
and I will tell you who you are.

Active learning, which aims to reduce supervised learning
cost by only asking an oracle for sample labels when needed
[41, 20, 27, 31], can now be formulated in term of relative
sample comparison, rather than absolute sample labeling.
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Figure 1. Active Self-Supervised Learning introduces PAL (right box), an alternative to active learning (left box) where the oracle is asked
if a collection of inputs are semantically related or not. As opposed to active learning, expert knowledge is reduced as one need not to
know all the possible classes but only how to distinguish inputs from different classes. PAL querying is flexible, as an illustrative example
we exhibit an à la captcha version where a given input is presented along with a collection of other inputs, and the oracle can select among
those inputs the positive ones.

This much more efficient and low-cost approach is exactly
the active learning strategy stemming from our framework:
rather than asking for labels, one rather asks if two (or more)
inputs belong to the same classes or not, as depicted in
Fig. 1. We coin such a strategy as Positive Active Learning
(PAL), and we will present some key analysis on the bene-
fits of PAL over traditional active learning. We summarize
our contributions below:

• We provide a unified learning framework based on the
concept of similarity graph, which encompasses both
self-supervised learning, supervised learning, as well
as semi-supervised learning and many variants.

• We derive a generic PAL algorithm based on an oracle
to query the underlying similarity graph Algorithm 1.
The different learning frameworks (SSL, supervised,
and so forth) are recovered by different oracles, who
can be combined to benefit from each framework dis-
tinction.

• We show how PAL extends into an active learn-
ing framework based on similarity queries that pro-
vides low-cost efficient strategies to annotate a dataset
(Fig. 1).

All statements of this study are proven in Appendix B,
code to reproduce experiments is provided at https://
github.com/VivienCabannes/rates.

2. Background on Self-Supervised Learning

This section provides a brief reminder of the main self-
supervised learning (SSL) methods, their associated losses,
and common notations for the remainder of the study.

A common strategy to learn a model in machine learn-
ing is to curate labeled examples (xn, yn)n, and to learn a
model that given xn ∈ X ≜ RD as input, outputs yn ∈ [C],
hoping that this model will learn to recognize patterns and
relations that generalizes to new, unseen input data. Yet, as
the dataset grew larger, and annotating data has become a
major bottleneck, machine learning has shifted its attention
to learning methods that do not require knowledge of yn.
SSL has emerged as a powerful solution to circumvent the
need for expensive and time-consuming labeling. It learns a
embedding f : X → RK for a small K by enforcing either
reconstruction properties, or some invariance and symme-
try onto a learned representation. SSL also relies on a set
of observations X = {xn}Nn=1 ∈ RN×D, yet instead of
labels yn, it requires known pairwise positive relation that
indicates whether two samples are semantically similar or
not. For simplicity, we shall focus on the joint-embedding
framework, where those positive pairs are artificially gener-
ated on the fly by applying Data Augmentations (DA), e.g.
adding white noise, masking, on the same input. Let denote
T1, T2 : X → X the generators of two (random) DAs T1(x)
and T2(x) from an input x, fθ : RD → RK the parametric
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supervised semi-sup. PAL

Figure 2. Left: Depiction of the “knowledge graph” arising from binary classification with supervised learning. Notice the two connected
components, each corresponding to a single class. Each sample is associated with a node of the graph (blue circle) and the known positive
relation between samples is represented by an edge. This knowledge is summarized into the G matrix depicted on the right. Right:
Examples of the N ×N symmetric graph-adjacency matrices G for the case of binary classification with supervised (same graph as on the
left), semi-supervised and active learning. Each nonzero entry (G)i,j represents the known positive relation between sample i and j.

model to be learned, and

Z(1) ≜

 fθ(T1(x1))
...

fθ(T1(xN ))

 ,Z(2) ≜

 (fθ(T2(x1))
...

(fθ(T2(xN ))

 , (1)

where (z
(1)
n , z

(2)
n ), the nth row of Z(1) and Z(2) respec-

tively, form the nth positive pair associated to sample xn.
Using (1), different SSL losses will employ different mea-
sures of invariance and dimensional collapse. Typically, the
losses are minimized with gradient descent and backpropa-
gation to learn θ.

VICReg. With the above notations, the VICReg loss [3]
reads, with hyper-parameter α, β > 0,

LVIC = α

K∑
k=1

ReLU
(
1−

√
Ck,k

)
+ β

∑
k ̸=l

C2
k,l

+
1

N
∥Z(1) −Z(2)∥22, C ≜ Cov(

[
Z(1)

Z(2)

]
). (2)

SimCLR. The SimCLR loss [14] with temperature
hyper-parameter τ > 0 reads

LSim = −
N∑
i=1

Ci,i

τ
+ log

 N∑
i ̸=j

exp

(
Ci,j

τ

) ,

Ci,j ≜ CoSim(Z(1),Z(2))ij ≜

〈
z
(1)
i , z

(2)
j

〉
∥z(1)

i ∥ ∥z
(2)
j ∥

, (3)

BarlowTwins. BarlowTwins [51] is built on the cross-
correlation matrix Cij = CoSim(Z(1)⊤,Z(2)⊤), with the
hyper-parameter λ it reads

LBT =

K∑
k=1

(1−Cii)
2 + λ

∑
i ̸=j

C2
ij . (4)

Spectral Contrastive Loss. Finally, the spectral con-
trastive loss [28] is theory-friendly proxy for SSL reading

LVIC2 = −2
〈
Z(1),Z(2)

〉
+

1

N

∑
i ̸=j

〈
z
(1)
i , z

(2)
j

〉2
. (5)

In particular, as proven in Appendix B.1.1, (5) recovers
VICReg (2) when the ReLU-hinge loss is replaced by the
mean-square error, hence the denomination VIC2.

The Commonality between SSL Losses. All the above
Eqs. (2) to (5) losses combine two terms: (i) a matching
term between positive pairs, and (ii) a term to avoid collapse
towards predicting a constant solution for all inputs. (i) can
take different forms such as the squared norm between Z(1)

and Z(2) (2), the opposite of their scalar product (5), or of
their cosine (3), or the square norm between the centered-
cosine and one (4). (ii) can also take different forms such as
the infoNCE softmax (5), or an energy that enforces rich-
ness of the learn feature, such as the variance-covariance
regularization in (2) forcing the different coordinates of fθ
to be orthogonal [12].

While at face-value those losses seem distinct, they actu-
ally all simply consist and combine some variants of (i) and
(ii), and even more importantly, they all rely on the exact
same information of positive inter-sample relation for (i).
This is exactly what the next Section 3 will dive into, as a
means to unify SSL losses, along with supervised learning
methods.

3. The Ubiquity of Similarity Graphs
The goal of this section is to unify SSL and supervised

learning through the introduction of a special object: a sim-
ilarity graph.

3.1. The Graphs for (Self-)Supervised Learning

Throughout this study, a similarity graph denotes a graph
for which nodes represent data samples, and edges reflect
similarity relationships. Formally, such a graph is expressed
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through its symmetric adjacency matrix G ∈ RN×N , the
semantic relation between inputs i and j being encoded
in the real entry Gi,j . The remainder of this section will
demonstrate how (i) SSL losses are implicitly based on a
similarity graph (ii) how those losses tackle the supervised
learning problem when provided a richer graph G.

Supervised learning. In addition to the N input samples
X ∈ RN×D, supervised learning has access to paired labels
y ≜ [y1, . . . , yN ]. For clarity, we focus here on categorical
labels i.e. yn belongs to {1, . . . , C} for C the number of
classes.1 The one-hot encoding of y will be denoted by
the matrix Y ∈ RN×C . In terms of the similarity graph
G, the label-based relation becomes naturally encoded as
Gi,j = 1{yi ̸=yj}, or equivalently

G(Y ) = Y Y ⊤ (6)

A key observation that we must emphasize is that the graph
G almost explicitly encodes for the labels Y , which will be
made explicit with Theorem 2.

Multiple Epochs with Data Augmentation. When DA
is employed, and training is carried for E epochs, the orig-
inal N input samples are transformed into N × E “aug-
mented” samples. For more generality, since DA will also
be used in SSL, let’s denote by A ∈ N∗ the number of aug-
mentations –where here A = E. We now have the aug-
mented dataset

X(A) ≜ [T (x1), . . . , T (x1)︸ ︷︷ ︸
repeated A times

, . . . , T (xN ), . . . , T (xN )]⊤,

where each T has its own randomness. When available,
i.e. for supervised learning, the corresponding “augmented”
labels Y (A) are given by repeating A times each row of
Y , formally written with the Kronecker product Y (sup) ≜
Y ⊗ 1A, and from that, we can now define the supervised
dataset and associated graph extending (6) to the case of
multiple epochs and DA training

X(sup) ≜ X(E), G(sup) ≜ Y (sup)⊤Y (sup). (7)

The resulting graph (7) is depicted on the left part of Fig. 2.
Self-Supervised Learning. SSL does not rely on labels,

but on positive pairs/tuples/views generated at each epoch.
Let us denote by V the number of positive views generated,
commonly V = 2 for positive pairs as modeled in (1). With
E the total number of epochs, SSL produces V ×E samples
semantically related to each original sample xn through the
course of training i.e. in SSL A = V × E while in super-
vised learning A = E. The total number of samples is thus

1While we focus here on classification for simplicity, our approach is
easily extendable for generic problems involving a loss ℓ by defining the
graph as Gij = −ℓ(yi, yj). In the classification, ℓ could be the zero-
one loss ℓ(yi, yj) = 1{yi ̸=yj}, and Gij ≃ 1 − ℓ(yi, yj). See Ap-
pendix B.2.1 for details.

N × E × V , defining the dataset and associated graph

X(ssl) ≜ X(V×E), G
(ssl)
i,j = 1{⌊i/V E⌋=⌊j/V E⌋}, (8)

where the associated similarity graph G(ssl) –now of size
NEV ×NEV – captures if two samples were generated as
DA of the same original input.

3.2. Self-Supervised Learning on a Graph

This section reformulates the different SSL losses
through the sole usage of the similarity graph G(ssl). To
lighten notations, and without loss of generality, we rede-
fine X ∈ RN×D to denote the full dataset, i.e. N ← NEV
with X = X(sup) for supervised learning with V × E
epochs, or with X = X(ssl) in SSL with E epochs with
V views for the SSL case. The model embedding is short-
ened to Z ≜ fθ(X) ∈ RN×K as per Eq. (1).

Theorem 1. VICReg (2), SimCLR (3), and BarlowTwins (4)
losses can be expressed in term of the graph G (8)

LVIC2(Z;G) =∥ZZT −G∥2F ,

LSim(Z;G) =−
∑

i,j∈[N ]

Gi,j log

(
exp(z̃⊤

i z̃j)∑
k∈[N ] exp(z̃

⊤
i z̃k)

)
,

LBT(Z;G) =
∥∥∥Z̃⊤GZ̃ − I

∥∥∥2 ,
where D = diag(G1) is the degree matrix of G; with
z̃ ≜ z/ ∥z∥ and Z̃ the column normalized Z so that each
column has unit norm.

In essence, SSL is about making sure that sample’s rep-
resentations match for samples that were deemed similar
through the design of data augmentation. As such, it is not
surprising that one can rewrite SSL losses through the sole
usage of the similarity graph. From Theorem 1, the atten-
tive observer would notice how VICReg is akin to Laplacian
Eigenmaps or multidimensional scaling, SimCLR is akin to
Cross-entropy and BarlowTwins is akin to Canonical Corre-
lation Analysis; observations already discovered in the lit-
erature [2] and reinforced above.

Beyond recovering such representation learning losses,
our goal is to go one step further and to tie SSL and super-
vised learning through the lens of G, which follows in the
next section.

3.3. Self-Supervised is a G Away from Supervised

What happens if one takes the different SSL losses, but
replaces the usual SSL graph G(ssl) with the supervised one
G(sup)?

It turns out that the learned representations emerging
from such losses are identical –up to some negligible sym-
metries that can be corrected for when learning a linear
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probe– to the one hot-encoding of Y . To make our for-
mal statement (Theorem 2) clearer, we introduce the set of
optimal representations that minimize a given loss:

Smethod(G) ≜ argmin
Z∈RN×K

Lmethod(Z;G),

where “method” refers to the different losses.

Theorem 2 (Interpolation optimum). When K ≥ C, and
Z = fθ(X) is unconstrained (e.g. interpolation regime
with a rich functions class), the SSL losses as per Theorem 1
with the supervised graph (7) solve the supervised learning
problem with:

SVIC2(G(sup)) =
{
Y R

∣∣R ∈ RC×K ;RR⊤ = IC
}
,

SSim(G(sup)) =
{
DY RM−1

∣∣D ∈ diag+,R ∈ O
}
,

SBT(G
(sup)) =

{
Y RD

∣∣D ∈ diag+,R ∈ O
}
,

where R ∈ O means that R is a rotation matrix as de-
fined for the VICReg loss, diag+ = diag(RN

+ ) are the set
of diagonal matrix with positive entries, i.e. renormaliza-
tion matrices, and M is a matrix that maps a deformation
of the simplex into the canonical basis. Moreover, provided
class templates, i.e. C data points associated with each of
the C classes, Y is easily retrieved from any methods and
Z ∈ Smethod.

In essence, Theorem 2 states that SSL losses solve the
supervised learning problem when the employed graph G
is G(sup). Moreover, the matrix D appearing in Theo-
rem 2 captures the fact that SimCLR solutions are invari-
ant to rescaling logit and is akin to the cross-entropy loss,
while BarlowTwin is invariant to column renormalization
of Z and is akin to discriminant analysis. Lastly, VICReg
might be thought of as a proxy for the least-squares loss.
At a high-level, Theorem 2 suggests fruitful links between
spectral embedding techniques captured in Theorem 1 and
supervised learning. We let for future work the investigation
of this link and translation of spectral embedding results in
the realm of supervised learning.

While Theorem 2 describes what we have coined as the
“interpolation optimum”, i.e. solution in the interpolation
regime with rich models, we ought to highlight that clas-
sical statistical learning literature analyzes losses under the
light of “Bayes optimum”, i.e. solutions in noisy context-
free setting [4]. Those Bayes optima do not make as much
sense for losses that intrinsically relate different inputs, yet
for completeness we provide such a proposition on Bayes
optimum in Appendix B.3.

4. PAL: Positive Active Learning
Now that we demonstrated how one should focus on the

graph G, rather than the (self-)supervised loss, we turn our

focus into getting that graph G. In particular, we propose
an active learning framework that discovers G through effi-
cient, low-cost queries.

4.1. One Framework to Rule Them All

From our understanding (Theorem 2), the difficulties of
both supervised learning and SSL are the same: they need
a correct graph G, i.e they need to identify samples that
are semantically similar, either through label annotations or
through the right design of DA.

Algorithm 1: PAL framework with oracle

Data: X ∈ RN×D; unknown graph G = G(sup).
Result: Embedding fθ : RD → RK .
Initialization: weights θ0, scheduler (γt); T ∈ N;
for t ∈ [T ] do

Collect It, Jt ← from sampler;
Collect (Gij = 1{yi=yj})(i,j)∈It from labelers;
Update θt+1 ← θt − γt∇θL(θt;G, It, Jt).

Our framework suggests a generic way to proceed, hav-
ing fixed the samples X in advance, and without much
a priori knowledge on the similarity graph G. In an ac-
tive learning spirit, one would like to design a query strat-
egy to discover G, and an update rule for the learned pa-
rameter θ. To ground the discussion, let us focus on VI-
CReg. The variance-covariance term can be rewritten with
R(a, b) = (a⊤b)2 − ∥a∥2 − ∥b∥2, this leads to the formula,
proven in Appendix B.1.1,

LVIC2(θ;G, I, J) =
∑

(i,j)∈I

Gi,j ∥fθ(xi)− fθ(xj)∥2 (9)

+
∑

(i,j)∈J

R(fθ(xi), fθ(xj)), (10)

where I = J = [N ]2. An oracle would typically consider
two small sets of indices I, J ⊂ [N ]2, asks labelers to pro-
vide Gij for i, j ∈ I , and, given a step size γt, update the
weights with

θt+1 = θt − γt∇θL(θt;G, I, J), (11)

which could be performed with the sole access to
(Gij)(i,j)∈I . The pairs in J are used to avoid dimensional
collapse, and in particular for the VICReg loss, to compute
the variance-covariance regularization term. The complete
picture leads to PAL, Algorithm 1. A particularly useful
features of SGD for active learning is its robustness to la-
beling noise [10]. In other terms, Algorithm 1 is robust to
noise in the query answers.

We will now dive more in-depth into two variants of or-
acles: passive and active ones. As we will see, passive or-
acles can recover traditional SSL as special cases, but will
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be much less efficient in learning good representation than
active strategies.

4.2. Passive Oracles

Passive variations of the PAL algorithm consist in fixing
the oracle behavior at iterations t ∈ [T ] before starting the
training. This formulation, under which the oracle does not
leverage any information collected along training, recovers
both SSL and supervised learning, based on the different
querying strategies.

Self-Supervised Oracle. Probably the simplest oracle to
describe is the one corresponding to the SSL strategy. The
original VICReg algorithm [3] is made of t gradient updates
over T = N0E iterations with N = N0V E samples, where
N0 is the number of original samples, E is the number of
epochs, V the number of views. At time t ∈ [T ], It is
chosen as {(2t+ 1, 2(t+ 1))}, describing a positive pairs
generated on the fly from one original sample xi for i =
t mod. N0; and Jt is chosen as some mini-batch to estimate
the covariance matrix of the features at the current epoch.
Because it has been built to remove human feedback, SSL
actually does not need to ask for labelers to query Gs,s+1

(where s = 2t + 1), since it is known by construction that
those entries are going to be one.

Supervised Oracle. When it comes to a supervised
learning oracle, the supervised learning loss provided in
Theorem 1 –which is known to recover Y (given class tem-
plates) as per Theorem 2– is easily minimized with gradi-
ent descent based on (10). Hence a simple oracle to solve
the supervised learning problem based on stochastic gradi-
ent descent: at time t, consider a random pair of indices
(it, jt) and set It = Jt ← {(it, jt)}. The querying of
Git,jt can either be done on the fly, or if the dataset is al-
ready annotated, it can be deduced from the knowledge of
Git,jt = 1{yit=yjt}.

Algorithm 2: Passive Oracle Specifications
SSL oracle:

Sampler: It =
{
(i2t+1, i2(t+1))

}
, Jt a minibatch,

Labeler: G2t+1,2(t+1) = 1.
Supervised oracle:

Sampler: It = Jt = {(it, jt)} random in [N ]2,
Labeler: Gi,j = 1{yi=yj}.

Theoretical Remarks. Remarking that (10) is an unbi-
ased formulation of VICReg, in the sense that

LVIC2(Z) = EI,J∼U([N ]2) [LVIC2(Z; I, J)] .

As a consequence, when θ 7→
∥∥fθ(X)fθ(X)⊤ −G

∥∥2 is
strongly convex, Algorithm 3 with either the self-supervised
or the supervised oracle will converge to the minimizer
of the VICReg loss in O(1/T ) [8]. Moreover, while this

results holds for the empirical loss with resampling, it is
equally possible to get a similar result for the minimization
of the infinite-data (aka population) version of the VICReg
loss and the recovery of the ideal embedding representation,
when performing a single pass over the data. In particular,
by making sure that J only charges pairs (i, j) for i and j
in two disjoint subsets of [N ], one can prove convergence
rates in O(1/N) (Theorem 3 in [12]).

Moreover, because the VICReg loss in Theorem 2 is
nothing but a matrix factorization problem, one can directly
translate results from this literature body into PAL. In par-
ticular, recent works have derived theoretical results regard-
ing the matrix factorization problem based on toy models
of neural networks, which might be plugged directly in here
to claim theoretical results about the soundness of the PAL
algorithm with neural networks [50, 22, 29]. Since those
results hold for any graph G, such results directly apply to
both SSL and supervised learning, highlighting how PAL
jointly derives results for SSL and supervised learning.

4.3. Active Oracles

Seen through the eyes of PAL, supervised and SSL –
which employ passive querying– can be improved by refin-
ing the oracle to choose the next indices It and Jt to process
at time t.

Low-Cost and Efficient Active Learning. A crucial
point of this study is that the active learning framework
stemming from PAL differs fundamentally from classic ac-
tive learning. In the latter, at time t, one asks for a fresh
label yit for some chosen index it. Instead, PAL consid-
ers a batch of data It and asks for pairwise comparisons
1{yi∼yj} for (i, j) ∈ I . Rather than asking labelers for
fine-grained labels, such as “caracal” or “numbfish” on Im-
ageNet, PAL would rather asks labelers if two images are re-
lated, or even to spot outliers in a set of images compared to
a template, as illustrated on Fig. 1.2 This is particularly use-
ful when the cost of spotting a few outliers in a batch of M
images is much less costly than annotating M data points.
On such instances, Criteo engineers found that batches of
15 images was a sweet spot in terms of labeling efficiency
[5]; while ImageNet was annotated by querying images on
search engines, and spotting outliers among the results [21].
Meanwhile, reCaptcha (illustrated on Fig. 1) is said to have
helped annotate millions of images [9]. We refer the curious
reader to [43] and references therein regarding the design of
efficient user interfaces for those labeling tasks.

Zoo of Active Learning Strategies. By introducing
PAL, we open a way to match the practice of active learn-
ing and its theory through a grounded framework that en-
compasses current heuristics to annotate big chunks of data.

2This “spot-the-outliers” strategy is formalized with It = {(it, j) | j ∈
Ĩt} for it representing the class template, and Ĩt capturing the batch of
data to spot outliers in.
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Figure 3. Comparison the active oracle of Algorithm 3 and the
passive supervised one of Algorithm 2. Given q queries made,
and the consequent reconstructed graph Gq , we learn fθt : X →
RC by minimizing LVIC2 , and plot the downstream mean-square
error of the optimal a linear classifier w⊤fθt for the best w ∈
RC . Here X = R2, and y ∈ [4] spans four concentric circles
(represented by the blue, red, green and orange classes), N = 100,
query batches are chosen of size 10 and results are average over
100 trials (standard deviations being represented by the colorized
regions). Snapshots at different points on the curve show the third
coordinates of the reconstructed fθt , and the ideal linear classifier
that can be learned based on this embedding.

While the optimal oracle depends on the problem idiosyn-
crasies, as well as the labeling cost model, the vast literature
body on active learning provides many heuristics to design
sophisticated or intricate oracles under different structural
assumptions. One could query information based on the
least certain predictions [27, 1]; based on the distance to the
decision boundaries [44]; by comparing predictions made
by different methods in an ensemble [7, 17]; or by finding
the queries whose answers are the most likely to modify
the current guess for fθ [49, 33, 31]. We refer the curious
reader to Appendix A for further discussion on the matter.
Throughout reviews, adaptations to PAL, ablation studies
and comparisons on different benchmarks of those strate-
gies is left for future work.

PAL à la Captcha. A natural and easy property to lever-
age in order to build active learning strategies is the fact that
the N2-entry matrix G is actually derived from the NC-
entry matrix Y . In particular, one can recover the full graph
G = G(sup) with less than NC pairwise queries, and in the

best case only N queries –compare this to the N2-entries
that are queried by the supervised learning oracle. This
idea is captured formally with the oracle described in Al-
gorithm 3, where the matrix Q remembered past queries,
and illustrated on Fig. 3. At time t, this oracle chooses to
query against the class with the least numbers of known in-
stances, and choose M data points, ask if they match this
class, and update known labels as a consequence. An ad-
vantage of the query strategy of Algorithm 3 is that one can
stop at any time t and have a balanced labeled dataset to
learn with.

Algorithm 3: Oracle à la Captcha

Data: Class templates (µ1, · · · ,µC) ∈ XC ,
Q ∈ RN×C initialized at zero.

Choose the class with least known examples
j = argminj 1

⊤Qtej ∈ [C];
Collect pairwise comparison Qij ← 1{xi∼µj} for i
in a batch B ⊂ [N ] \Kt where Kt remove queries
with known results based on Qt;

Sampler: It = Jt all the new entries deduced in G.
Labeler: Human feedback Qij ; deduction to fill G.

The basic Algorithm 3 can be improved in several ways.
First, class templates can be deduced based on initial
queries: the first data point µ1 = x1 provides a first class
template; after querying 1{x2∼x1} if the answer is negative,
µ2 = x2 provides a second class template (otherwise it is
part of class one); so forth and so on (if 1{x=µ1} = · · · =
1{x=µk} = 0, set µk+1 = x). Those templates could be re-
fined during training by defining the templates as the exam-
ple the most at the center of the classes examples with some
well-thought notion of distance (either in the input space
or the embedding space). Second, when classes are unbal-
anced and class probabilities are roughly known, one should
rather choose y(t) to be the class that minimizes the number
of known examples in this class divided by the probability
of this class. Third, if C the number of classes is small, ran-
dom sampling of the batch B will work well enough. Yet,
when C is big, random sampling will mainly lead to nega-
tive observations and too few positive ones. In this situation,
the algorithm is improved by training a classifier based on
known labels at time t (eventually incorporating unlabeled
data with semi-supervised learning techniques), and query-
ing labels that were classified as the same class. Finally,
to avoid only getting negative pairs on datasets with many
classes, one could leverage hierarchy in the labels: if deal-
ing with the classes of ImageNet, one can first ask reviewers
coarse-grained information, e.g. flag pictures that are not
fishes; before going deeper in the taxonomy.
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Modality Oracle 1 accuracy 5 accuracy
Passive SimCLR [15] 71.7 -
Passive VICReg [3] 73.2 91.1
Active NNCLR [23] 75.6 92.4

Table 1. Best known performance on ImageNet for state-of-the-
art SSL methods. Notice how NNCLR [23] derives states of the
art performance on ImageNet thanks to an active rule for labelers
in Algorithm 1, which consists in defining positive pairs as near-
est neighbors in the embedding space as detailed in Algorithm 4.
This rule allows to beat the passive strategy that are provided by
SimCLR and VICReg.

5. Experiments

This section provides experimental details to validate the
various theoretical results derived in previous sections. In
order to remove confounding effects linked with architec-
ture, optimization, data curation and other design choices
that might impact the different empirical validation we fo-
cus here on closed-form solution based on kernel methods
with synthetic dataset. Further real-world empirical vali-
dations are provided in Appendix C. In particular, Table 1
reminds the reader how NNCLR [23] succeed to beat state-
of-the-art SSL methods on ImageNet thanks to an active la-
beler oracle, which defines positive pairs as nearest neigh-
bors in the embedding space fθt(X ).

Kernel methods are rich “linear” parametric models de-
fined as fθ = θ⊤ϕ(x), for ϕ(x) and θ belonging to
a separable Hilbert space H. Because those model can
approximate any function [36], it is important to regu-
larize θ in practice, either with early stopping in SGD,
or with Tikhonov regularization, which can be written as
λTr(Z⊤K−1Z) where λ > 0 is a regularization parame-
ter and K ∈ RN×N is the kernel matrix defined as Kij =
k(xi,xj) = ϕ(xi)

⊤ϕ(xj). In this setting, rather than
matching the top of the spectral decomposition of G, the so-
lution recovered by VICReg amounts to the top spectral de-
composition of G−λK−1 [12]. This allows to compute the
ideal representation of fθ in closed-form given any graph
G based on the regularized kernel model fθ = θ⊤ϕ(x),
hence ablating the effects that are unrelated to the theory
described in this study. In this controlled setting, the su-
periority of active algorithms is undeniable, and illustrated
on Fig. 3, where we illustrate the optimal downstream error
one can achieve with linear probing of the minimizer fθ of
the VICReg loss. Experimental details and more extensive
validations are provided in Appendix C: in particular, the
use of non-contrastive versus contrastive graphs, i.e. that
set Gij = −1 when yi ̸= yj , is studied on Fig. 7; the ability
to incorporate label knowledge in SSL methods is the ob-
ject of Fig. 4; robustness to noise is shown on Fig. 8; and
relations between test error and the number of connected
components of the reconstructed G is analyzed on Fig. 9.
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Figure 4. A major motivation of this paper is to be able to add
prior information on sample relationships in SSL methods, and
more in particular, to have a simple way to leverage known la-
bels. We do by considering Y containing one-hot encoding of
known labels, and rows being zero otherwise and the mixed graph
G = (1−α) ·G(ssl)+α · Ŷ Ŷ ⊤. The setting is the same as Fig. 5
with N = 200 and two augmentations per sample. When zero
labels are known (left of the plot), we are in the full SSL regime,
while when all the 200 labels are known (right of the plot), we re-
cover supervised learning performance. When few labels are given
the effect of the supervised graph can be counterproductive if the
mixing coefficient α is too big. However, when mixed properly,
adding prior label information in SSL methods allows to improve
performance.

6. Conclusions
This work introduces PAL, a learning framework that re-

volves around the central concept of similarity graph. We
first showed how similarity graphs are the implicit backbone
of self-supervised learning methods, and how this concept
extends to tackle supervised learning problems. This ob-
servation does not solely unveil a rich learning framework,
but also provides a single algorithm based on a querying
oracle that can describe both SSL and supervised learn-
ing techniques, opening the way to new oracles that ben-
efit from techniques stemming from both the supervised
and self-supervised learning literature. Finally, PAL leads
to an efficient formalization of active learning as performed
in practice to annotate large datasets, potentially enabling
fruitful exchanges between the practice and the theory of
active learning. Promising directions for future works in-
clude empirical validations on large-scale datasets, as well
as theoretical study of the newly introduced active learning
framework.
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