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Abstract

Recent progress on multi-modal 3D object detection has
featured BEV (Bird-Eye-View) based fusion, which effec-
tively unifies both LiDAR point clouds and camera images
in a shared BEV space. Nevertheless, it is not trivial to
perform camera-to-BEV transformation due to the inher-
ently ambiguous depth estimation of each pixel, resulting
in spatial misalignment between these two multi-modal fea-
tures. Moreover, such transformation also inevitably leads
to projection distortion of camera image features in BEV
space. In this paper, we propose a novel Object-centric
Fusion (ObjectFusion) paradigm, which completely gets
rid of camera-to-BEV transformation during fusion to align
object-centric features across different modalities for 3D
object detection. ObjectFusion first learns three kinds of
modality-specific feature maps (i.e., voxel, BEV, and image
features) from LiDAR point clouds and its BEV projections,
camera images. Then a set of 3D object proposals are pro-
duced from the BEV features via a heatmap-based proposal
generator. Next, the 3D object proposals are reprojected
back to voxel, BEV, and image spaces. We leverage voxel
and RoI pooling to generate spatially aligned object-centric
features for each modality. All the object-centric features of
three modalities are further fused at object level, which is
finally fed into the detection heads. Extensive experiments
on nuScenes dataset demonstrate the superiority of our Ob-
jectFusion, by achieving 69.8% mAP on nuScenes valida-
tion set and improving BEVFusion by 1.3%.

1. Introduction
3D object detection is one of the fundamental tasks in 3D

vision, which aims to localize the objects of interest in the
3D scene. This task plays a critical role in perceiving the
surrounding environment of autonomous driving. For ro-
bust and high-quality detection, the current practice mostly
follows multi-sensor fusion paradigm, which integrates the
data derived from different sensors (e.g., cameras and Li-
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Figure 1: Illustration of (a) point-based fusion [48], (b)
BEV-based fusion [34], and (c) our object-centric fusion.

DAR). On one hand, the RGB images convey rich texture
and semantics of objects captured from different angles of
cameras. LiDAR, on the other hand, observes the environ-
ment by emitting pulses of light, yielding point cloud data
that preserves accurate geometry information regardless of
lighting conditions. As RGB images are vulnerable to light-
ing conditions, LiDAR point clouds naturally complement
camera images and lead to the idea of blending these multi-
sensor data for robust and accurate perception.

Considering that camera and LiDAR offer different per-
spectives (i.e., images versus point clouds) of 3D scenes, the
mainstream approaches unify them into a shared representa-
tion space. Cross-modal projection, such as by point-based
[48, 49] or BEV-based [30, 34] fusing has been proposed.
The point-based fusion strategy [48, 49] first builds the cor-
respondence between 3D points and image pixels via cali-
bration matrices. As shown in Figure 1(a), the images are
projected into the raw point space, augmenting points with
the corresponding image features or semantic scores. The
augmented points are further transformed into BEV features
for 3D detection. However, this point-based fusion only
associates points with a small portion of images, leaving
the rich semantic information of images under-exploited.
Instead, BEV-based fusion [30, 34] projects both the im-
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ages and point clouds into a shared BEV space through
camera-to-BEV and LiDAR-to-BEV transformations, lead-
ing to augmented BEV features for object detection (Figure
1(b)). Despite showing encouraging performances, BEV-
based fusion heavily relies on the off-the-shelf depth esti-
mator (e.g., LSS [39]) to estimate the depth of each image
pixel for camera-to-BEV transformation. As pointed out in
BEVDepth [24], the estimation is error-prone and not triv-
ial. Any inaccurate depth estimation will result in spatial
misalignment between image pixels and points within the
shared BEV space, which subsequently affects object de-
tection. Moreover, recall that image and BEV features re-
flect two different data peculiarities: images are captured
from different perspective views, while BEV features are
formulated as top-down aggregation along height dimen-
sion. Hence, directly projecting the image features into
BEV space will inevitably lead to projection distortion and
destroy the original semantic structures within images.

In view of the limitations of point-based and BEV-based
fusion strategies, is it possible to perform multi-modal fu-
sion without requiring the non-trivial inter-modality trans-
formation (e.g., camera-to-BEV projection)? We address
the challenge by presenting a unique fusion paradigm,
named Object-centric Fusion (ObjectFusion), as conceptu-
ally depicted in Figure 1(c). Our launching point is to intro-
duce the object-centric representation in each modality, and
spatially align the representations according to the 2D/3D
bounding box of an object. ObjectFusion is henceforth able
to safely unify the object-centric representations of differ-
ent modalities by eliminating inter-modality transformation
during fusion. That is, our ObjectFusion nicely preserves
the primary feature of each modality, and enables multi-
modal fusion at object level with better spatial alignment.

ObjectFusion first generates two modality-specific fea-
ture maps (voxel and image features) from point clouds and
images via regular 3D/2D networks. The sparse voxel fea-
ture maps are flattened along the height dimension, leading
to denser BEV features. ObjectFusion leverages a heatmap-
based proposal generator to estimate the objectness score
in each position of the BEV features and select the top-
ranked positions as initial object queries, which triggers the
generation of a set of 3D object proposals. Such 3D pro-
posals are projected into voxel, image, and BEV spaces to
align object-centric features in different spaces. Specifi-
cally, the object features corresponding to a proposal are
generated by voxel pooling [12] or RoI Align [17] in their
respective spaces. With the proposals, the features from
the three modalities can be effortlessly aligned, without
the non-trivial inter-modality transformations as adopted by
[30, 34]. ObjectFusion contextualizes the object-centric
features with a modality-specific contextual encoder. These
features are further concatenated and fed into the detection
heads for proposal classification and regression.

2. Related Work
LiDAR-based Approaches. Modern autonomous ve-

hicles are usually equipped with LiDARs and researchers
have developed various 3D detection frameworks solely
upon point cloud data from LiDARs. Due to the irregu-
lar structure of point clouds, a natural solution is to convert
the point cloud into grid representations such as range im-
ages, pillars, or voxels. For example, Lasernet [35], the
pioneering work on range images, exploits a fully convo-
lutional network to predict distributions over 3D boxes for
each point and then fuses these distributions for 3D pre-
dictions. Later on, [2, 8, 14] proceed in this direction and
design customized convolutional kernels for range image
processing. PointPillar [22] organizes the points in each
vertical column as a pillar and uses a PointNet [41] to learn
each pillar’s feature. VoxelNet [63] introduces an end-to-
end framework where the space is divided into grid voxels,
which are further encoded via 3D convolutional network.
Later works [55, 23] improve the performance of Voxel-
Net by designing more effective voxel encoding strategies.
Some other approaches [28, 43, 44, 56, 57] directly oper-
ate on the points to avoid quantization errors. Recent re-
search starts to focus on designing novel detection heads,
e.g., anchor-free heads [9, 15, 60] and Transformer decoder
heads [7, 13, 36].

Camera-based Approaches. Similar to the approach
taken in 2D detection [5, 6, 16, 42] from images, the task
of 3D detection can also be executed within the domain
of image space. For this direction, earlier works are com-
monly established based on 2D counterparts by predicting
3D boxes from 2D proposals [3, 37, 45, 54]. Similar to
FCOS [46] for the image domain, FCOS3D [51] directly
regresses 3D bounding boxes and class scores from object
features. Later on, PGD [50] introduces a geometric re-
lation graph across objects to facilitate depth estimation,
which further improves the quality of 3D object detection.
Another line of research utilizes Transformer [47] decoder
to interact learnable 3D object queries with 2D image fea-
tures. In particular, DETR3D [52] and PETR [32] extract
2D features from camera images and then use 3D object
queries to index these 2D features. Recently, the main-
stream approaches start to convert image features into BEV
space and then perform detection with LiDAR-based ap-
proaches. BEVDet [18] adopts a view Transformer [39] to
render virtual point clouds with image features, which are
further pooled to BEV features. BEVFormer [29] designs
a spatiotemporal Transformer to generate BEV features by
exploiting both spatial and temporal clues.

Fusion-based Approaches. This direction explores the
complementary among multi-sensor data to boost 3D ob-
ject detection with multi-modal fusion at different levels.
Early works [10, 21, 40] fuse the LiDAR and camera fea-
tures at the proposal level. MV3D [10] and AVOD [21]
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learn 3D object proposals from the point clouds and then
combine region-wise features from multiple views to pre-
dict 3D boxes. However, due to the limited capacity in pro-
posal generation and 3D feature learning, the performances
of proposal-level fusion greatly fall behind recent point-
based [19, 48, 49, 61, 53] and BEV-based fusion methods
[30, 34]. PointPainting [48] and PointAugmenting [49] dec-
orate the source points with semantic scores or features ex-
tracted from 2D images, which can be used in any LiDAR-
based method for 3D detection. With recent developments
in BEV perception, transforming images and point clouds
into the shared BEV space emerges as a popular fusion strat-
egy. BEVFusion [30, 34] explicitly predicts depth distribu-
tion of each pixel and scatters image feature to BEV space
with BEV pooling. There are also some works [26, 62] that
focus on voxel-based fusion and training strategies etc.

Our work also falls into the category of fusion-based ap-
proaches. Unlike recent point-level or feature-level fusion
methodologies that hinge on non-trivial inter-modality pro-
jections, our ObjectFusion uniquely integrates high-quality
object-centric representations across three modalities with-
out necessitating inter-modality projection. Such design en-
ables a feasible multi-modal fusion at object level with pre-
cise spatial alignment across different modalities.

3. Approach
This section presents the architecture of our proposed

Object-centric Fusion (ObjectFusion) paradigm, along with
the design of each key component. As shown in Fig-
ure 2, ObjectFusion is composed of three main com-
ponents: 1) modality-specific encoders that learn pri-
mary voxel/BEV/image representations for each modality,
2) object-centric fusion module that unifies three object-
centric representations in different modalities, and 3) de-
tection heads to predict 3D boxes and classes. Specifically,
given LiDAR point cloud and the corresponding multi-view
camera images, the points encoder and image encoder first
extract voxel and image feature maps, respectively. The
voxel feature maps are then flattened along Z-axis to pro-
duce BEV feature maps. In the object-centric fusion mod-
ule, a set of 3D proposals are generated based on the BEV
feature map. For each proposal, we project the 3D boxes
into voxel, BEV, and image spaces, and extract object-
centric features from corresponding modality-specific fea-
ture maps. The object-centric features in each modality are
further contextually encoded via modality-specific context
encoders to fully exploit the inter-object relations. Subse-
quently, the object-centric features from different modali-
ties are concatenated and fed into the detection heads.

3.1. Modality-Specific Encoders

Given the multi-modal inputs of point cloud and image
data, three modality-specific encoders are devised to extract

the primary modality-specific features in voxel, BEV, and
image spaces. Formally, the input point cloud consists of
a set of Np points: P = {pi|i ∈ [1, Np]}. Each point
is represented as a 4-dimensional vector p = (x, y, z, r),
where x, y, z is the coordinates along X-axis, Y-axis, and Z-
axis, and r is the reflection intensity. The multi-view images
contain Nc images I = {In|In ∈ R3×H×W ;n ∈ [1, Nc]},
and In denotes the image captured by the n-th camera.

Voxel Encoder. For point cloud P , we leverage the pop-
ular feature extraction module VoxelNet [63] to learn reg-
ular voxel representation. In particular, the points are di-
vided into equal-spaced voxels and the point coordinates
in the same voxel are aggregated as a voxel feature. In
this way, the irregular points are converted into grid voxels
and each voxel is accompanied by a feature vector. Then
a 3D backbone stacks multiple sparse convolutional layers
to extract voxel features FV ∈ RNV×CV and voxel centers
VC ∈ RNV×3 of the point cloud. Here NV is the number of
voxels and CV is the voxel feature channel.

BEV Encoder. On the basis of the voxel features FV and
voxel centers VC , we stack the features along Z-axis to com-
press voxel features at the same X-Y coordinates into a sin-
gle feature vector. In this way, the voxel feature is converted
to a 2D feature map and we further utilize a 2D convolu-
tional network to extract BEV features FB ∈ RCB×HB×WB ,
where CB is the channel number of the BEV feature.

Image Encoder. For each image In, we use the Swin
Transformer [33] as 2D backbone to extract multi-scale im-
age feature maps, and additionally employ FPN [31] to fuse
multi-scale feature maps into a single-scale feature map
FIn

∈ RCI×HI×WI . The feature map is downsampled
at 1/8 of original image resolution, i.e., HI = H/8 and
WI = W/8. We stack the feature maps from Nc images to
form the whole image feature map FI ∈ RNc×CI×HI×WI .

3.2. Object-Centric Fusion

In an effort to unify multi-modal feature maps, one dom-
inant force in recent advances is to use BEV-based fu-
sion to project point and image features into a shared BEV
space through LiDAR-to-BEV/camera-to-BEV transforma-
tion. However, the camera-to-BEV transformation hinges
on pre-learned depth estimator to obtain the inherently am-
biguous depth estimation of each pixel. Any inaccurate
depth estimation can potentially result in spatial misalign-
ment between the image and point feature maps. In ad-
dition, considering the fundamentally different perspective
views of images and BEV features, directly projecting im-
age features into BEV space will lead to projection distor-
tion. To alleviate these issues, we design a novel object-
centric fusion module by unifying the object-centric rep-
resentation in each modality at the object level, without the
requirement of inter-modality projection. First, we generate
a set of 3D object proposals from BEV features by using a
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Figure 2: An overview of our ObjectFusion framework. The input point cloud and images are separately processed by two
modality-specific encoders (voxel encoder and image encoder) to generate voxel and image features. In addition, the voxel
features are further flattened along Z-axis to produce BEV features. After that, a set of 3D object proposals are generated
based on image-augmented BEV features through a heatmap-based proposal generator. These 3D proposals are projected
back to voxel, BEV, and image space, yielding object-centric features in each space via voxel pooling or RoI Align. Next,
the object-centric features are contextually encoded with a modality-specific context encoder, which are finally concatenated
at object level and fed into regression/classification heads for detection.

heatmap-based proposal generator. Then we project the 3D
object proposals into voxel, BEV and image spaces, and ex-
tract object-centric features in each space. With a two-stage
scheme, the object-centric features are first contextualized
with their respective encoders and then concatenated into
fused object features for each proposal.

Heatmap-based Proposal Generator. The proposal
generator takes image-augmented BEV features as input to
generate preliminary 3D proposals, which facilitates further
object-centric feature extraction and fusion. Note that we
employ BEVFusion [34] to augment BEV features with ad-
ditional image information, which guarantees that most true
positives are in the candidate pool for the latter stage of 3D
detection head. Conditioned on the augmented BEV fea-
tures, we first leverage a heatmap head [1] to predict a class-
specific objectness map S ∈ RK×HB×WB , where K is the
number of interested object classes. Then we select top-
O positions in S with the highest objectness scores, which
can be regarded as the positions of initial 3D object queries
{qpo |qpo ∈ R2; o ∈ [1, O]}. To eliminate redundant propos-
als clustered at the same object, we use the peak finding
algorithm to find the local maxima at each objectness map
position when selecting the top-O positions. Then the query
features {qfo |qfo ∈ RCB ; o ∈ [1, O]} are initialized from the
BEV features FB at the corresponding positions. Subse-
quently, we use a Transformer decoder layer to aggregate
relevant BEV features FB into object query features qfo .
Furthermore, the object queries are decoded into 3D pro-
posals B = {bo|bo = (x, y, z, w, l, h, θ); o ∈ [1, O]} inde-
pendently through a feed-forward network, where (x, y, z)
is the center and (w, l, h, θ) are the width, length, height,
and yaw angle respectively.

Object-Centric Voxel Feature. Voxel feature is a nat-
ural regular representation of point cloud data, where each

voxel represents a grid-size 3D space. The benefits of voxel
features lie in the encoding of precise localization and geo-
metric information. Accordingly, given voxel features FV ,
voxel centers VC , and the 3D bounding box bo of each pro-
posal, we capitalize on voxel pooling [12] to extract the
object-centric voxel feature. Concretely, the voxel pooling
starts by dividing bo into G × G × G equal-spaced sub-
voxels and the center point of each sub-voxel is regarded
as the grid point. Next, for each grid point, we seek the
nearby voxels in CV within a pre-defined radius and inte-
grate corresponding voxel features from FV into the grid
points. Finally, the features of all grid points are concate-
nated together to form the primary object-centric voxel fea-
ture F̂Vo

∈ RCV×G×G×G for proposal bo. Such process can
be formally denoted as:

F̂Vo = VoxelPooling(FV , VC , bo). (1)
Based on the primary feature F̂Vo , we further apply a 3D
convolutional layer with global average pooling to output
object-centric voxel feature FVo

= 3DConv(F̂Vo
).

Object-Centric BEV Feature. Compared to the sparse
voxel features FV , BEV features FB belong to another type
of point cloud representation which is much denser with
richer context information via aggregation. Since the BEV
features are represented as a 2D feature map in the shape of
RCB×HB×WB , we take the inspiration from 2D RoI pooling
and adopt RoIAlign [17] to extract object-centric features
from BEV feature map. Technically, the eight corners of the
3D bounding box bo are first projected to BEV space by ig-
noring the height dimension. Then a minimum axis-aligned
bounding box bBo ∈ R4 which can cover all eight concerns
in BEV space is taken as the projection of bo. Next, the
RoIAlign divides bBo into r × r equal-spaced sub-regions
and utilizes bilinear interpolation to aggregate relevant fea-
tures from FB into each sub-region. Finally, the features
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Figure 3: An illustration of RoI enlarging operation during
the projection from 3D proposals to 2D boxes.

from all sub-regions are concatenated to construct the pri-
mary object-centric BEV feature F̂Bo

∈ RCB×r×r:
F̂Bo

= RoIAlign(FB, bo). (2)
Similar to the object-centric voxel features, we adopt a con-
volution layer with global pooling to transform F̂Bo

into the
output object-centric BEV feature FBo

= 2DConv(F̂Bo
).

Object-Centric Image Feature. Both voxel and BEV
features excel at capturing the geometric information of ob-
jects, while lacking the ability to model object texture and
appearance. Instead, the image feature contains rich tex-
ture and appearance information of objects. Targeting for
learning object-centric features from images, we project the
3D proposal bo into the camera image plane, and obtain the
2D bounding box bIo ∈ R4 by using calibration matrices.
In particular, we compute the eight corners of bo and their
projected X-Y coordinates on the images. Considering that
multiple images are provided in different camera views, we
need to decide which camera to use for object-centric fea-
ture extraction. Depending on the positions and sizes of
objects, the projection of a 3D box could fall into multi-
ple camera Field of Views (FoVs) or outside of all cam-
era FoVs. If the projected corners are outside of all cam-
era FoVs, we discard the image feature for bo. Otherwise,
we select the image which covers the most projected cor-
ners to extract object-centric features. Here we compute
the minimum axis-aligned bounding box (AABB) on the
selected image plane. The intersection between the mini-
mum AABB and image boundary is taken as the 2D bound-
ing box bIo to learn object-centric features F̂Io . Consider-
ing that the projections between 3D and 2D spaces are not
perfect due to sensor misalignment, we adopt a simple yet
effective RoI enlarging operation to alleviate such calibra-
tion error. As shown in Figure 3, our RoI enlarging opera-
tion strategy doubles the RoI sizes of projected 2D boxes on
image planes. This way ensures that the object features ex-
tracted from images can still encompass interested objects
even when 3D and 2D spaces are not perfectly aligned. Fi-
nally, we adopt RoIAlign followed by convolutional layers
plus global pooling to extract the object-centric image fea-
ture FIo in image space.

Two-stage Fusion Scheme. Next, given the object-
centric features from voxel, BEV, and image spaces, we de-
sign a two-stage fusion scheme for cross-object and cross-

modal representation learning. In the first stage, an object
feature is contextualized with the features of remaining ob-
jects in the same modality via a Modality-Specific Con-
text Encoder (MSCE). Transformers [25, 27, 47, 58, 59]
have been widely used in the context modeling of different
modality features. Therefore, the MSCE is implemented as
a single-layer Transformer encoder. In this way, we can ob-
tain the enhanced object-centric features in each modality:

{F ′
Vo
|o ∈ [1, O]} = MSCEV ({FVo

|o ∈ [1, O]}), (3)
{F ′

Bo
|o ∈ [1, O]} = MSCEB({FBo

|o ∈ [1, O]}), (4)
{F ′

Io |o ∈ [1, O]} = MSCEI ({FIo |o ∈ [1, O]}). (5)
In the second stage, for each object proposal bo, we concate-
nate the corresponding enhanced object-centric features in
three modalities, and embed them with a feed-forward net-
work (FFN) to achieve the unified object-centric feature Fo:

Fo = FFN(Concat(F ′
Vo
, F ′

Bo
, F ′

Io)). (6)

Such unified object-centric feature Fo is further integrated
with the query feature qfo , which will be fed into the fol-
lowing detection heads. Accordingly, the overall two-stage
fusion scheme operates as follows:

q̂fo = FFN(Concat(Fo, q
f
o )) + qfo . (7)

3.3. Detection Heads

Based on the upgraded query features {q̂fo |o ∈ [1, O]}
that contain rich multi-modal contextual information of ob-
jects, we leverage a decoder-based detection module to pre-
dict the object class and 3D bounding box. Specifically, a
Transformer-based decoder first embeds each query feature
q̂fo by cross-attending to each other. Note that the design of
detection module is similar to the one in BEVFusion [34].
However, instead of attending to both query and BEV fea-
tures in BEVFusion, we only attend to query features since
the query features are already strengthened with additional
multi-modal information. Next, a regression head and clas-
sification head are applied to decode the query features into
3D boxes and object classes. Both heads are implemented
as two-layer feed-forward networks.

4. Experiments
4.1. Experimental Setup

Dataset and Metric. We evaluate ObjectFusion on the
challenging large-scale nuScenes dataset [4], which is col-
lected with a 32-beam LiDAR and six cameras. The six
images cover 360-degree surroundings and the dataset pro-
vides calibration matrices that enable precise projection
from 3D points to 2D pixels. We use the mAP and NDS
across all categories as the primary metrics for evaluation
following [1, 34]. Note that NDS metric is a weighted aver-
age of mAP and other breakdown metrics (e.g.,translation,
scale, orientation, velocity, and attributes errors).
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Table 1: Comparisons with state-of-the-art methods on nuScenes validation and test set for 3D object detection. The Modality
column: “L” = only LiDAR data; “LC” = the use of both LiDAR and camera data. The Fusion column: “P” = Point-based
fusion; “B” = BEV-based fusion; “O” = Object-centric fusion; “%” = Not applicable. “†”: performances from BEVFusion
[34]. “‡”: we use the released model to calculate per-category AP. The best performances are marked with bold font.

Method Modality Fusion mAP(%) NDS(%) Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

Performances on validation set:

TransFusion-L [1] L % 65.1 70.1 86.5 59.6 25.4 74.4 42.2 74.1 72.1 56.0 86.6 74.1
PointPainting [48]† LC P 65.8 69.6 - - - - - - - - - -
TransFusion [1] LC B 67.3 71.2 87.6 62.0 27.4 75.7 42.8 73.9 75.4 63.1 87.8 77.0
BEVFusion [30] LC B 67.9 71.0 88.6 65.0 28.1 75.4 41.4 72.2 76.7 65.8 88.7 76.9
BEVFusion [34]‡ LC B 68.5 71.4 89.2 64.6 30.4 75.4 42.5 72.0 78.5 65.3 88.2 79.5
ObjectFusion LC O 69.8 72.3 89.7 65.6 32.0 77.7 42.8 75.2 79.4 65.0 89.3 81.1

Performances on test set:

PointPillar [22] L % 40.1 55.0 76.0 31.0 11.3 32.1 36.6 56.4 34.2 14.0 64.0 45.6
CenterPoint [60] L % 60.3 67.3 85.2 53.5 20.0 63.6 56.0 71.1 59.5 30.7 84.6 78.4
TransFusion-L [1] L % 65.5 70.2 86.2 56.7 28.2 66.3 58.8 78.2 68.3 44.2 86.1 82.0
PointPainting [48] LC P 46.4 58.1 77.9 35.8 15.8 36.2 37.3 60.2 41.5 24.1 73.3 62.4
PointAugmenting [49] LC P 66.8 71.0 87.5 57.3 28.0 65.2 60.7 72.6 74.3 50.9 87.9 83.6
MVP [61] LC P 66.4 70.5 86.8 58.5 26.1 67.4 57.3 74.8 70.0 49.3 89.1 85.0
TransFusion [1] LC B 68.9 71.7 87.1 60.0 33.1 68.3 60.8 78.1 73.6 52.9 88.4 86.7
BEVFusion [30] LC B 69.2 71.8 88.1 60.9 34.4 69.3 62.1 78.2 72.2 52.2 89.2 85.2
BEVFusion [34] LC B 70.2 72.9 88.6 60.1 39.3 69.8 63.8 80.0 74.1 51.0 89.2 86.5
ObjectFusion LC O 71.0 73.3 89.4 59.0 40.5 71.8 63.1 76.6 78.1 53.2 90.7 87.7

Implementations. We implement the proposed Object-
Fusion in the PyTorch [38] framework, based on the open-
source MMdetection3D [11] and BEVFusion [34] code-
bases. For the voxel encoder, we use VoxelNet [63] as
the backbone and a SECOND [55] 2D network is adopted
to obtain BEV features. The voxel size is set as [0.075m,
0.075m, 0.1m], and the point cloud range is [-54m, -54m,
-3m, 54m, 54m, 5m] in X, Y, and Z-axis, respectively. For
the image encoder, we use the Swin-T [33] network as the
backbone and FPN [17] to fuse multi-scale feature maps.
The resolution of input images is resized and cropped to
256 × 704 as in BEVFusion. The image backbone is pre-
trained on the nuImage [4] dataset for 2D detection and the
neck is randomly initialized. The MSCE is implemented
as a single layer Transformer encoder with 8 heads and the
FFN in object-centric fusion contains two layers MLP with
the hidden dimension of 128. During training, we adopt a
two-stage strategy. In the first stage, we train the LiDAR
branch without using images for 20 epochs. Then we ini-
tialize the overall multi-modal fusion model with the pre-
trained LiDAR branch weights and continue training for
another 6 epochs. For both stages, we utilize random flip,
random rotation in [−π/4, π/4], random translation with
std=0.5, and random scaling in [0.9, 1.1] to augment the Li-
DAR data. We use CBGS [64] to resample the training data.
For the first 15 epochs, we add copy-paste data augmenta-
tion [55] to reduce overfitting. For the second stage, we ad-
ditionally use random rotation in [−5.4◦, 5.4◦] and random
resizing in [0.38, 0.55] to augment the images. Following
common practice [1, 34], we align the previous nine LiDAR
sweeps into the current frame for a denser point cloud. Dur-
ing training, we use Adam optimizer [20] with one-cycle
learning rate policy, where the maximum learning rate is

0.001 and the weight decay is 0.01. The batch size is set
as 16/8 for the first/second stage. For all runs, we use four
NVIDIA V100 16G GPUs for training. At inference, we
remove the data augmentation and set batch size to 1.

4.2. Comparisons with State-of-the-Art Methods

3D Object Detection. We first compare the perfor-
mances of our ObjectFusion and other state-of-the-art ap-
proaches on the nuScenes validation set for 3D object de-
tection task. As shown in Table 1, ObjectFusion establishes
to-date the best performances on validation set (69.8% in
mAP and 72.3% in NDS), which consistently outperform
all single-modality and multi-modal fusion approaches.
In general, by exploiting the complementary information
among different modalities, the multi-modal fusion series
(“LC” in Modality column) exhibit better performances
than the single-modality series (“L” in Modality column).
Specifically, the point-based fusion (PointPainting [48]) di-
rectly augments points with a small portion of projected im-
age semantic scores. ObjectFusion preserves the primary
features in each modality and exploits rich object-level im-
age features for fusion, without losing substantial image se-
mantics, leading to a large absolute performance gain of
4.0% mAP. Furthermore, when compared to the BEV-based
fusion (i.e., TransFusion [1] and BEVFusion [34]), Object-
Fusion achieves the absolute performance improvement of
2.5% and 1.3% in mAP, respectively. In particular, Trans-
Fusion performs BEV-based fusion by measuring cross-
attention between BEV features (query) and the whole im-
age features (keys/values). Such cross-attention progress
directly refines BEV features by aggregating all image fea-
tures without the consideration of the spatial alignment. As
an alternative, our ObjectFusion elegantly fuses the spa-
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Table 2: Comparisons with state-of-the-art approaches on
nuScenes validation set for 3D multi-object tracking.

Methods Modality
AMOTA AMOTP

IDS↓
(%) ↑ (%)↓

CenterPoint [60] L 63.7 60.6 640
TransFusion-L [1] L 69.9 59.9 821

TransFusion [1] LC 71.8 60.3 794
BEVFusion [34] LC 72.8 59.4 764
ObjectFusion LC 74.2 54.3 611

tially aligned multi-modal features at object level, leading to
the performance boosts. Moreover, BEVFusion transforms
image features into a shared BEV space via camera-to-BEV
transformation, which might result in spatial misalignment
and projection distortion. In contrast, ObjectFusion man-
ages to eliminate above issues through object-centric fu-
sion without camera-to-BEV transformation in 3D detec-
tion head, thereby achieving the best performances.

We also submitted the detection results on nuScenes test
set to the official evaluation server, and Table 1 summarizes
the performance comparisons. Similar to the observations
on the validation set, our ObjectFusion again surpasses all
the published multi-modal fusion techniques.

3D Multi-Object Tracking. Next, we further evaluate
our ObjectFusion on the nuScenes tracking benchmark for
3D multi-object tracking (MOT) task. Following Trans-
Fusion [1], we adopt the same tracking-by-detection al-
gorithm, which directly links objects between consecutive
frames greedily. For fair comparisons, we report single
model performances without test-time augmentation and
model ensembling on nuScenes validation set. As shown
in Table 2, ObjectFusion outperforms TransFusion [1] and
BEVFusion [34] by 2.4% and 1.4% performance gains in
AMOTA metric, which basically validates the generaliz-
ability of our ObjectFusion on 3D MOT task.

4.3. Detection Robustness Analysis

In this section, we present the robustness analysis of Ob-
jectFusion which is crucial for practical applications. Ro-
bustness is measured by assessing the performance under
different lighting and weather conditions, different ego dis-
tances and object sizes, and calibration errors. All experi-
ments are conducted on the nuScenes validation set.

Robustness to Lighting and Weather Conditions. Dif-
ferent lighting and weather conditions make the 3D object
detection task challenging in practice. For example, the
night and fog will make objects more difficult to be captured
with cameras due to the poor lighting conditions. Here we
follow BEVFusion [34] to evaluate ObjectFusion under dif-
ferent lighting and weather conditions. We split the scenes
in validation set into Sunny/Rainy/Day/Night by search-
ing “rain” and “night” keywords in the description of each
scene. As shown in Table 3, CenterPoint [60] which only
uses LiDAR point cloud is sensitive to rainy weather with

Table 3: Performance comparisons on nuScenes validation
set under different lighting and weather conditions.

mAP(%) Modality Sunny Rainy Day Night

CenterPoint [60] L 62.9 59.2 62.8 35.4
BEVDet [18] C 32.9 33.7 33.7 13.5

BEVFusion [34] LC 68.2 69.9 68.5 42.8
ObjectFusion LC 69.8 70.1 69.8 46.0

Table 4: Performance comparisons on nuScenes validation
set with different ego distances and object sizes.

mAP(%) with different ego distances:

Distances Modality Near Middle Far

TransFusion-L [1] L 77.5 60.9 34.8
BEVFusion [34] LC 79.4 64.9 40.0
ObjectFusion LC 79.7 65.4 41.6

mAP(%) with different object sizes:

Sizes Modality Small Moderate Large

TransFusion-L [1] L 44.7 54.5 60.4
BEVFusion [34] LC 50.3 58.7 64.0
ObjectFusion LC 53.0 60.7 65.0

3.7% mAP drop compared to sunny weather. And BEVDet
[18] which only relies on camera image is severely vulner-
able to poor lighting conditions at night with only 13.5%
mAP. The results basically demonstrate that neither LiDAR
point clouds nor camera images are sufficient for robust 3D
object detection. Instead, by integrating both LiDAR point
clouds and camera images via BEV-based fusion, BEVFu-
sion [34] significantly boosts up the performances under
all conditions. By getting rid of camera-to-BEV transfor-
mation and enabling spatially aligned object-centric fusion
of multi-modal data, ObjectFusion attains the best perfor-
mances under each challenging lighting and weather condi-
tion. Especially for night scenarios, ObjectFusion outper-
forms BEVFusion by 3.2% where depth estimation is more
challenging for BEVFusion under poor lighting conditions.

Robustness to Ego Distances and Object Sizes. The
performances of 3D object detection are commonly sensi-
tive to ego distances (the distances to ego vehicle) and ob-
ject sizes. Generally, it is difficult to observe distant and
small objects from LiDAR sensor. We categorize annota-
tion and prediction ego distances simultaneously into three
groups: Near (0-20m), Middle (20-30m) and Far (>30m).
We also summarize the object size distributions for each
category and define three size levels with equal propor-
tions: Small, Moderate and Large. As shown in Table 4, the
LiDAR-only TransFusion-L [1] is sensitive to the change of
ego distances and object sizes: 77.5% mAP v.s. 34.8% mAP
for Near v.s. Far objects; 60.4% v.s. 44.7% for Large v.s.
Small objects. BEVFusion [34] relaxes the limitation on the
ego distances and object sizes to some extent by integrating
LiDAR point cloud feature with camera image features so
that even the distant and small objects contain semantics.
Such BEV-based fusion clearly narrows the performance
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Table 5: Performance comparisons on nuScenes validation
set with object-centric features in different spaces.

# BEV Voxel Image mAP(%) NDS (%)

1 ! 68.8 70.9
2 ! 69.1 71.1
3 ! 69.3 71.4
4 ! ! ! 69.8 72.3

Table 6: Performance comparisons on nuScenes validation
set with different calibration errors.

Offsets (m) 0.0 0.2 0.4 0.6 0.8 1.0

mAP (%) 69.8 69.7 69.6 69.6 69.5 69.3

gaps by 3.3% and 2.0% when varying ego distances and
object sizes. Compared to BEVFusion, our ObjectFusion
consistently boosts up the performances under all ego dis-
tances and object sizes, and meanwhile further narrowing
the performance gaps. The results validate that our object-
centric fusion paradigm is more robust against the change
of ego distances and object sizes.

Robustness to Calibration Errors. Here we further
assess the robustness of ObjectFusion against calibration
errors, where the camera and LiDAR are not perfectly
aligned. Following TransFusion [1], we randomly add
translation offsets to the calibration matrix for evaluation.
As shown in Table 6, ObjectFusion demonstrates competi-
tive performances under different offset scales, which sur-
passes BEVFusion [34] (68.5%) without calibration errors.
The results show that the RoI enlarging operation in Object-
Fusion is a robust way to compensate for calibration errors.

4.4. Other Experimental Analysis

To evaluate the effectiveness of each component in our
method, we conduct ablation studies on the nuScenes val-
idation set. Moreover, we analyze the computational ef-
ficiency and generalization ability on more datasets. In
the Supplementary Material, we provide 1) more ablation
studies on voxel sizes, image sizes and data augmentation,
2) robustness to corrupted images, and 3) qualitative results.

Ablation on Object-Centric Features in Different
Spaces. We first examine how performance is affected
when capitalizing on object-centric features in different
spaces. As shown in Table 5, the use of object-centric fea-
ture in each BEV/voxel/image space in general achieves
a good detection performance. In between, the object-
centric BEV feature is inferior to object-centric voxel fea-
ture that provides finer geometric information. The object-
centric image feature outperforms object-centric voxel fea-
ture, showing the advantage of rich texture and semantic
information in image feature. Integrating all three kinds of
object-centric features in BEV, voxel, and image spaces fur-
ther boosts up the performances, which demonstrates the
complementarity among the three modalities.

Table 7: Performance comparisons on nuScenes validation
set with and without (w/o) MSCE.

Method mAP(%) NDS (%)

ObjectFusion w/o MSCE 69.3 71.5
ObjectFusion 69.8 72.3

Table 8: Performance comparisons on Waymo validation
set between TransFusion and ObjectFusion.

Method TransFusion-L [1] TransFusion [1] ObjectFusion

L2 mAPH(%) 64.9 65.5 66.3

Ablation on the Effect of Modality-Specific Context
Encoder (MSCE). Recall that MSCE leverages cross-
attention mechanism to contextually encode object-centric
features in each space. Table 7 shows the performances of
ObjectFusion with and w/o MSCE. In general, the use of
MSCE clearly improves the performances of ObjectFusion
by 0.5% in mAP, which validates the merit of exploiting
inter-object interaction to enhance object-centric features.

Computation Efficiency. Compared to the existing
methods (e.g., BEVFusion [34]), the extra computational
cost of ObjectFusion is due to the extraction and fusion of
object-centric features. Specifically, the inference time of
ObjectFusion on an Nvidia V100 GPU is 274ms per sample,
which is slightly slower than BEVFusion (257ms). Note
that the object-centric features are extracted sequentially in
the current implementation. A possible direction for future
work is to parallelize this process for faster inference.

Generalization to Waymo Open Dataset. Here we
evaluate ObjectFusion on Waymo Open Dataset. Specif-
ically, we followed the setup in TransFusion [1] to train
ObjectFusion on Waymo training set and evaluate it on the
validation set. Note that the point clouds in Waymo Open
Dataset are significantly denser than those in nuScenes, re-
sulting in more accurate detections via LiDAR-only solu-
tion and less improvement with multi-modal fusion. As
shown in Table 8, ObjectFusion still manages to achieve
0.8% higher LEVEL 2(L2) mAPH than TransFusion.

5. Conclusion
In this work, we circumvent the use of non-trivial inter-

modality transformation and propose a new multi-modal
fusion paradigm for unifying voxel, BEV, and image fea-
tures at object level for 3D object detection. To verify our
claim, we devise an additional heatmap-based proposal gen-
erator to produce 3D object proposals based on BEV fea-
tures. Such 3D object proposals are further projected into
voxel, BEV, and image spaces, yielding spatially aligned
object-centric features in each modality. All three object-
centric features are finally unified at object level for detec-
tion. We empirically validate the superiority of our object-
centric fusion paradigm over the state-of-the-art approaches
for multi-modal 3D object detection.
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