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Abstract

Recently, feature-based methods for Online Action De-
tection (OAD) have been gaining traction. However,
these methods are constrained by their fixed backbone de-
sign, which fails to leverage the potential benefits of a
trainable backbone. This paper introduces an end-to-
end learning network that revises these approaches, in-
corporating a backbone network design that improves ef-
fectiveness and efficiency. Our proposed model utilizes a
shared initial spatial model for all frames and maintains
an extended sequence cache, which enables low-cost in-
ference. We promote an asymmetric spatiotemporal model
that caters to long-form and short-form modeling. Ad-
ditionally, we propose an innovative and efficient infer-
ence mechanism that accelerates extensive spatiotempo-
ral exploration. Through comprehensive ablation studies
and experiments, we validate the performance and effi-
ciency of our proposed method. Remarkably, we achieve
an end-to-end learning OAD of 17.3 (+12.6) FPS with
72.4% (+1.2%), 90.3% (+0.7%), and 48.1% (+26.0%)
mAP on THMOUS’14, TVSeries, and HDD, respectively.
The source code is available at https://github.
com/sqiangcao99/E2E-LOAD.

1. Introduction

Online Action Detection (OAD)[10] has become a crit-
ical domain in computer vision, driven by its extensive ap-
plicability spanning surveillance, autonomous driving, and
more. Recent research endeavors[29, 3, 26, 32] have be-
gun embracing the Transformer architecture [24] for this
task. By leveraging the attention mechanism’s capability
for long-range interactions, these methods manifest marked
improvements over their RNN-based counterparts [28, 5].
Nevertheless, most existing studies [28, 29, 3] rely on fea-
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Figure 1: Comparison of Performance (mAP and FPS).
Methods like GateHUB [3] and LSTR [29] have eliminated
computation-intensive optical flow inputs to speed up infer-
ence, albeit at the cost of a considerable decline in perfor-
mance. In contrast, our E2E-LOAD, benefiting from back-
bone design and efficient inference mechanism, achieves
superior mAP and FPS.

tures from pre-trained networks. The dependency on a
frozen backbone progressively constrains improvements in
both speed and precision. Although there are efforts [30, 4]
to fine-tune the backbone directly, they often fall short in
balancing outstanding performance with acceptable compu-
tation costs. This is primarily because these feature-based
methods adopt a paradigm that employs a heavy spatiotem-
poral backbone for individual local chunks coupled with
a lightweight temporal model for chunk-wise interactions.
Such an architecture often results in a less-than-ideal bal-
ance between performance and efficiency. Specifically, the
localized employment of the heavy spatiotemporal model
might not fully exploit the backbone’s full potential in mod-
eling long-term dependencies. Additionally, the subsequent
lightweight temporal model often struggles to capture long-
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term relationships effectively. Moreover, this design im-
poses challenges for end-to-end training, as it requires the
parallel execution of multiple backbone networks for fea-
ture extraction from each video chunk, resulting in substan-
tial GPU memory consumption. As a response, this pa-
per proposes the design of an end-to-end learning Trans-
former for OAD, enhancing its scalability for practical ap-
plications.

Specifically, we introduce a novel method named the
End-to-End Long-form Transformer for OAD task, abbre-
viated as E2E-LOAD. Our approach employs the “Space-
then-Space-time” paradigm. Initially, raw video frames are
processed by the spatial model and transformed into fea-
tures, which are subsequently cached in a buffer. This tech-
nique is instrumental in managing streaming video data,
as it allows for the re-utilization of these buffered features
across diverse time steps, thereby significantly decreasing
computational overhead. Furthermore, the buffering mech-
anism boosts the model’s capability to process extended
historical sequences, as it retains most frames as compact
representations within the buffer, alleviating the computa-
tional burden. Next, we partition the sequences conserved
in the cache into long-term and short-term histories and con-
duct spatiotemporal modeling independently. We imple-
ment a shallow branch for the long-term stream and a deep
branch for the short-term stream. This asymmetric archi-
tecture promotes efficient long-form feature extraction. Fi-
nally, we introduce a token re-usage strategy to mitigate the
high computation costs of spatiotemporal interactions on
extended video clips, achieving a 2× speed enhancement.
Regarding implementation, we train with shorter history
sequences and then increase the sequence length for infer-
ence. This technique mitigates the training expenses associ-
ated with long-term videos while enabling us to leverage the
benefits of long-term context. The experiments demonstrate
that this strategy effectively reduces training costs without
compromising the model’s effectiveness.

Through these architectural innovations and efficiency
techniques, E2E-LOAD addresses the limitations inher-
ent in feature-based methods, achieving both superior ef-
fectiveness and efficiency. A comparison of E2E-LOAD
with other feature-based methods is illustrated in Figure 1.
The results underscore that our model excels in efficiency
and effectiveness compared to other methods. We per-
form comprehensive experiments on three public datasets:
THUMOS14 [13], TVSeries [10], and HDD [20]. E2E-
LOAD yields mAP of 72.4 (+1.2)%, mcAP of 90.3 (+0.7)%,
and mAP of 48.1 (+26.0)% respectively, showcasing sub-
stantial improvements. Notably, E2E-LOAD is roughly
3× faster than these methods in terms of inference speed.
In summary, our key contributions are: (i) We propose
a unique end-to-end learning framework that integrates a
stream buffer between the spatial and spatiotemporal mod-

els, thereby enhancing the effectiveness and efficiency of
online data processing. (ii) We introduce an efficient in-
ference mechanism that accelerates spatiotemporal atten-
tion processing through token re-usage, achieving a 2× re-
duction in running time. (iii) Our method achieves sig-
nificant accuracy and inference speed advancements using
only RGB frames on three public datasets, highlighting its
promise for practical use in real-world scenarios.

2. Related Works
Online Action Detection. Online action detection (OAD)
seeks to identify incoming frames in an untrimmed video
stream instantaneously. Unlike offline video tasks, which
access all the frames, only the gradually accumulated histor-
ical frames are available at each moment in OAD. Several
methods [26, 5, 9, 30] rely solely on recent video frames
that span a few seconds as contextual information for the
current frame. However, such approaches may overlook
critical information in long-term historical frames, poten-
tially enhancing performance. To address this, TRN [28]
employs LSTM [12] to memorize all historical information,
albeit with limitations in modeling long dependencies. Re-
cently, LSTR [29] proposed the concurrent exploration of
long-term and short-term memories using Transformer [24],
significantly improving action identification performance at
the current frame due to the globally attended long-term
history. Beyond historical information exploration, some
methods [26, 28] attempt to circumvent causal constraints
by anticipating the future. OadTR [26], for instance, com-
bines the predicted future and the current feature to identify
the ongoing action. Other methods [8, 22] concentrate on
detecting the commencement of an action, with StartNet [8]
decomposing this task into action recognition and detection
of action start points. Recently, GateHUB [3] introduced
a gate mechanism to filter out redundant information and
noise in historical sequences. Furthermore, Zhao et al. pro-
posed TeSTra [32], a method that reuses computation from
the previous step, making it highly conducive to real-time
inference. Uncertaion-OAD [11] introduces prediction un-
certainty into the spatiotemporal attention for OAD.
Action Recognition. For a comprehensive overview of
classical action recognition methods, we refer the reader to
the survey by Zhu et al. [33]. Due to space constraints, we
focus here on the latest works, especially those based on the
Transformer paradigm [2, 1, 18, 27, 17, 6, 15], which have
achieved significant improvements in video understanding
tasks. The central challenge encountered with these ap-
proaches is the substantial computational burden generated
by element-wise interaction in the spatiotemporal dimen-
sion. To address this issue, recent studies [2, 1, 17] have
proposed several variants of spatiotemporal attention using
spatiotemporal factorization. For instance, MViT [6, 15]
introduced pooling attention to reduce the token number
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at different scales, while Video Swin Transformer [17]
adopted the shifted window mechanism [16] to constrain
element-wise interactions within local 3D windows. Al-
though these methods exhibit impressive spatiotemporal
modeling capabilities, they are rarely tailored for OAD,
where speed and accuracy are of the essence.

3. Method

3.1. Task Definition

Given a streaming video V = {ft}0t=−T . OAD aims
to compute the action probability distribution y0 ∈ [0, 1]

C

for the present frame f0, where T indicates the count of
observed frames and C corresponds to the total number of
action classes. Notably, f1, f2, ... represent future frames,
which are unattainable. Unlike previous works [28, 29, 3,
32] that use pre-extracted features, our E2E-LOAD directly
processes raw RGB frames end-to-end. Before introducing
it, we elucidate the efficient attention mechanism incorpo-
rated in our model, inspired by recent progress in video un-
derstanding [1, 15, 2].

3.2. Efficient Attention

Consider input sequences, X1 ∈ RN1×D and X2 ∈
RN2×D, where N1 and N2 represent the sequence length,
and D signifying the channel dimension. The attention
mechanism learns to assign weights to individual elements
within X2. These elements, weighted accordingly, are then
aggregated to update X1. However, the complexity of this
operation is positively correlated with the length of the in-
put sequence. To address this, we employ down-sampling
techniques D on the query (Q), key (K), and value (V) to
mitigate computational complexity.

Q = X1Wq, Q̂ = D(Q) (1)

K = X2Wk, K̂ = D(K) (2)

V = X2Wv, V̂ = D(V) (3)

Due to its empirically superior performance, we adopt con-
volution with strides for down-sampling. This technique
has been widely used in action recognition tasks and facili-
tates spatiotemporal attention acceleration [16, 15, 6]. Next,
we apply the attention operation on these tensors to gener-
ate the down-sampled feature map, X̂1 ∈ RN ′×D′

. To align
their sequence length, a residual connection from X1 to X̂1

is utilized along with a pooling operation D. The resulting
sequence X̃1 ∈ RN ′×D′

is then processed by MLP to pro-
duce the final output. We define the attention mechanism as

follows, excluding layer normalization for simplicity:

X̂1 = Softmax
(
Q̂KT /

√
D′

)
V (4)

X̃1 = X̂1 +D(X1) (5)

Attn(X1,X2) = MLP(X̃1) (6)

3.3. Architecture

We present the E2E-LOAD architecture, which employs
a Stream Buffer (SB) to extract and cache the spatial rep-
resentations of incoming frames. These representations are
then divided into two parts. The older, longer part is di-
rected to a Long-term Compression (LC) branch to com-
press temporal resolution. In contrast, the newer, shorter
piece is sent to a Short-term Modeling (SM) branch to
model the recent context carefully. Finally, these two rep-
resentations are fused via a Long-Short-term Fusion (LSF)
module to predict the latest frame. During inference, we
introduce an Efficient Inference (EI) technique to acceler-
ate the spatiotemporal exploration of SM. Figure 2 depicts
the structure of E2E-LOAD. The details of each module are
discussed in the sections that follow.

3.3.1 Chunk Embedding

Commonly in offline video recognition [1, 2], 2D or 3D
patches are uniformly sampled from videos and projected
into a token sequence for the Transformer encoder. For
OAD, previous approaches [29, 32, 3] identify ongoing
actions at the chunk level, where each chunk consists of
several consecutive video frames. Following this config-
uration, we evenly sample t frames from each chunk of
τ×H×W , partitioning it into nh·nw 3D patches of t×h×w
along the spatial dimension, where nh =

⌊
H
h

⌋
, nw =⌊

W
w

⌋
. The resulting 3D patches are then projected to chunk

embedding Et ∈ R(nh·nw)×D using Chunk Embedding
(CE). This embedding process allows each token to in-
corporate local spatiotemporal clues, which is beneficial
for fine-grained recognition. It’s noteworthy that feature-
based methods [29, 3, 32] typically rely on heavy spa-
tiotemporal backbones, such as two-stream [23] and TimeS-
Former [2], to extract chunk features, while often employ-
ing lightweight modules for chunk interaction to maintain
overall efficiency. This inflexible and unbalanced design
hinders improvements in OAD’s efficiency and effective-
ness.

3.3.2 Stream Buffer

In online scenarios, OAD models receive one frame at a
time, using existing memory to identify ongoing actions.
However, most action recognition models necessitate tem-
poral interaction among these frames, introducing ineffi-
ciencies in processing online videos because such design
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Figure 2: Overview of the Proposed E2E-LOAD. (1) A Stream Buffer with shared chunk embedding and spatial modeling
is built to reuse computed frames during inference. (2) Two asymmetric spatiotemporal modelings are designed to tackle
the information with different lengths. (3) Three options are explored for the long-short-term fusion. (4) Spatial and Spa-
tiotemporal Attention are building blocks, where D represents the down-sampling operation. (5) We adopt the CLS tokens to
finalize the classification.

hinders the reuse of intermediate frame representations due
to the sequence evolving over time. To tackle this challenge,
we introduce a spatial attention module with a buffer for
storing intermediate per-frame features. The spatial atten-
tion projects the raw frames into compact yet semantically
rich representations, which can be reused at different time
steps, alleviating the burden of subsequent spatiotemporal
modeling. The cached memories, Mt, are expressed as fol-
lows:

Êt = AttnS(Et) (7)

Mt = [Êt−T+1, . . . , Êt−1, Êt] (8)

where T represents the memory length and t indexes the
timestamps. T can be large, which is crucial for long-
term understanding. Lastly, we append [CLS] tokens to
each chunk for action classification, as OAD requires fine-
grained, chunk-level predictions.

3.3.3 Short-term Modeling

Previous works [28, 29] often used heavy spatiotempo-
ral backbones [23, 2] to extract features from chunks.
These features were then pooled into a 1D format, with
lightweight temporal modeling [12, 24] creating dependen-
cies. While this approach provided some computational
efficiency, it overlooked the importance of spatiotempo-
ral modeling among chunks for fine-grained action clas-
sification. In contrast, our method employs the Stream
Buffer (SB) module to capture spatial features within each

chunk. We then apply spatiotemporal modeling among
these chunks. Such a “Space-then-Space-time” design
makes full use of the backbone’s representational capac-
ity for long-range dependencies, without wasting exces-
sive resources on computing dependencies within individ-
ual chunks. Consequently, our end-to-end trained frame-
work delivers improvements in both efficiency and effec-
tiveness. Concretely, we take the TS most recent chunks
MS

t =
[
Êt−TS+1, ..., Êt−1, Êt

]
from the Stream Buffer as

the input of Short-term Modeling (SM). Then, the stacked
multi-layer attentions build the spatiotemporal interactions
among the inputs with TS · nh · nw tokens.

M̂S
t = AttnST(M

S
t ) (9)

Additionally, we employ a causal mask to the short-term
history to block any future interactions for each token, in
line with previous works [29]. Upon completing the spa-
tiotemporal exploration of the current context, we feed the
[CLS] token of the last frame to the classifier for the action
prediction.

3.3.4 Long-term Compression

Over time, extensive video frames are cached within the
streaming buffer. These frames may contain critical in-
formation that can assist in identifying the current frame.
Therefore, we compress the long-term historical sequences
into several spatiotemporal feature maps, providing an ex-
tended time-scale context for the short-term modeling (SM)
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module. Specifically, we sample the long-term history from
Mt, where ML

t =
[
Êt−TS−TL+1, . . . , Êt−TS−1, Êt−TS

]
,

and TL represents the length of the long-term memory.
Then we utilize spatiotemporal attention to compress ML

t

using a larger down-sampling rate than that used in SM.
To achieve efficiency, we construct a shallow compres-
sion module with LLC attention layers since the correla-
tion between long-term history and current actions is gen-
erally weaker compared to short-term history. This module
progressively reduces the spatial and temporal resolution.
Through several stages, the resulting tokens aggregate the
most critical spatiotemporal clues. More importantly, be-
fore ML

t is fed to the compression module, we detach ML
t

to stop back-propagation from ML
t to the Stream Buffer.

This step is taken as we empirically observe a training frus-
tration if such gradient truncation is not applied. It is worth
noting that the Short-term Modeling has already provided
gradients for training the Stream Buffer. The “stop gra-
dient” operator, used to implement this detachment, is de-
noted as sg(·). The formulation of this process is illustrated
below.

ML
t = sg([(Êt−TL+1), . . . , (Êt−TS−1), (Êt−TS

)]) (10)

M̂L
t = AttnST(M

L
t ) (11)

where M̂L
t ∈ RT ′

L·n′
h·n

′
w×D and T ′

L, n
′
h and n′

w represent
the resolution of the compressed historical representations.

3.3.5 Long-Short-term Fusion

The fusion of long-term and short-term histories is a crit-
ical technical aspect that significantly impacts the ability
of each branch to learn better representations of their char-
acteristics. Therefore, we explore various fusion operators
and positions to achieve more effective integration between
the long-term compressionM̂L

t and the short-term histories
M̂S

t . Unlike previous work [23, 7, 27, 29], we aim to fuse
them in space-time. This approach allows M̂S

t to discover
and accumulate M̂L

t through more fine-grained spatiotem-
poral cubes rather than relying on whole image representa-
tions. The details of this method are as follows.
Fusion Operation. For the cross-attention (CA) based fu-
sion, we take the compressed long-term history M̂L

t as the
key and value tokens, and the short-term trend M̂S

t as the
query tokens, to perform cross-attention. In contrast, we
reuse the spatiotemporal attention in short-term modeling
for the self-attention (SA) based fusion. This is done by
concatenating M̂L

t with M̂S
t as its key and value tokens.

While this approach does not introduce extra parameters, it
increases computational costs.
Fusion Position. One intuitive method, referred to as Late
Fusion, is to perform fusion after the long-term and short-
term memories have been fully explored, similar to previous

OAD approaches [29, 3, 32]. In contrast, Early Fusion in-
tegrates the compressed long-term history with the interme-
diate representations within a layer of the Short-term Mod-
eling module, allowing the subsequent layers to explore the
fused representations further.

3.4. Efficient Inference

Although the proposed Stream Buffer can reuse the com-
puted features and accelerate the online inference, we ob-
serve a significant consumption of inference time for spa-
tiotemporal exploration in Short-term Modeling (SM). To
address this, we propose Efficient Inference (EI) to acceler-
ate SM. At each step, Regular Inference (RI) requires up-
dating all the frames within the short-term window. The EI
directly reuses the results of the TS − 1 frames from the
previous moment. As such, only the feature of the single
latest frame needs to be calculated via cross-attention, with
the computational complexity being reduced from O(T 2

S)
to O(TS). Specifically, EI is formulated as follows, where
Xt

[1:TS ] and Yt
[1:TS ] is the input and output of the spatiotem-

poral attention at time t, respectively:

Yt
TS

= AttnST
(
XTS

,X[1:TS ]

)
(12)

Yt
[1:TS ] = Concatenate

(
Yt−1

[2:TS ],Y
t
TS

)
(13)

For RI, the receptive field is fixed with TS , and causal self-
attention updates all the frames in the window. Instead, the
proposed EI reuse the computed features of the TS−1 over-
lapped frames that contain all the information in the win-
dow from the last moment. So the receptive field becomes
recurrent and expands from the beginning to the current mo-
ment, introducing long-term context to short-term history as
a complement to LC. Moreover, the EI mechanism does not
modify the training process. While this introduces differ-
ences between training and testing, the token-reuse strategy
employed during testing does not result in information loss
as we use a causal mask to cut off the token’s connection to
the future during training. Instead, this strategy allows us
to gain information outside the window and is efficient for
long video understanding.

3.5. Objective Function

Following LSTR [29] and GateHUB [3], we apply a
cross-entropy loss over all the short-term frames, given by:

L = −
t∑

i=t−TS+1

C∑
j=1

yi,j log ŷi,j (14)

where yi represents the ground truth for the ith frame,
and ŷi corresponds to the predicted probabilities across C
classes.
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Method Architecture THUMOS’14 / mAP (%) TVSeries / mcAP (%) HDD / mAP (%) FPS
CNN RNN Transformer

TRN [28] ✓ ✓ 62.1 86.2 29.2⋆ 4.99
IDN [5] ✓ ✓ 60.3 86.1 - -
FATS [14] ✓ ✓ 59.0 84.6 - -
PKD [31] ✓ 64.5 86.4 - -
WOAD [9] ✓ ✓ 67.1 - - -
OadTR [26] ✓ ✓ 65.2 87.2 29.8 4.97
Colar [30] ✓ ✓ 66.9 88.1 30.6 -
LSTR [29] ✓ ✓ 69.5 89.1 - 4.92
GateHUB [3] ✓ ✓ 70.7 89.6 32.1 4.85
Uncertain-OAD [11] ✓ ✓ 69.9 89.3 30.1 5.03
TeSTra [32] ✓ ✓ 71.2 - - -

E2E-LOAD ✓ 72.4 90.3 48.1⋆ 17.30

Table 1: Performance Comparison with Different Methods on THUMOS’14, TVSeries, and HDD. For THUMOS’14
and TVSeries, the evaluated methods utilize features pre-trained on Kinetics or ActivityNet as input. For HDD, results marked
by ⋆ indicate RGB data is used as input. Otherwise, sensor data is used as input. The mAP is reported for THUMOS’14 and
HDD, while the mcAP is reported for TVSeries. The FPS column represents the inference speed, including the time taken
for feature extraction. The architectures of the compared models, including Convolution, RNN, and Transformer, are also
provided for a comprehensive comparison.

4. Experiments

We evaluate all the methods on the following datasets:
THUMOS’14 [13], TVSeries [10], and HDD [20]. Please
refer to the supplementary material for detailed informa-
tion about the dataset introduction, hyperparameter settings,
training procedures, and evaluation metrics.

4.1. Comparison of the State-of-the-art Methods.

As illustrated in Table 1, we compare our proposed
E2E-LOAD method with existing approaches on THU-
MOS’14 [13], TVSeries [10], and HDD [20] to validate
the effectiveness of our model. These methods encom-
pass architectures such as CNN [21], RNN [28, 19], and
Transformer [29, 3]. For TVSeries and THUMOS’14, pre-
vious works [21, 28, 29, 3] utilize RGB and flow fea-
tures with two-stream models [23]. In the case of HDD,
TRN [28] uses RGB and sensor data, while GateHUB [3]
and OadTR [26] rely solely on sensor data. Our experi-
ments only employ the RGB modality as input. As evident
from Table 1, E2E-LOAD outperforms all existing meth-
ods in terms of both effectiveness and efficiency across the
three benchmark datasets. E2E-LOAD achieves a mcAP
of 90.3 (+0.7)% on TVSeries, becoming the first method
to surpass 90% on this dataset. The complexity of the TV
series context underscores the critical role of spatiotempo-
ral attention, thus validating the effectiveness of our pro-
posed approach. Furthermore, E2E-LOAD reaches remark-
able performances of 48.1 (+26.0)% and 72.4 (+1.2)% on
HDD and THUMOS’14, respectively. Additionally, E2E-
LOAD achieves an inference speed of 17.3 FPS, making it
3× faster than all existing methods requiring both RGB and
optical flow inputs.

4.2. Ablation Study

In this section, we conduct ablation experiments to as-
sess each component of the E2E-LOAD model. Unless ex-
plicitly stated otherwise, all experiments were performed on
the THUMOS’14 dataset, with an evaluation conducted us-
ing a history length of TL = 128.

4.2.1 Impact of Each Component

We design different configurations of the proposed E2E-
LOAD as follows. The performance, in terms of FPS and
mAP, is reported in Table 2a.
Baseline. The Baseline configuration only considers short-
term historical frames as input. It includes the Stream
Buffer (SB) and Short-term Modeling (SM) modules. The
SB module caches incoming chunks as feature maps via
spatial attention. Subsequently, the SM module aggregates
the short-term spatial features for spatiotemporal modeling.
The resulting [CLS] tokens of each chunk are then fed to a
fully connected layer for classification.
Baseline+LC+LSF. To incorporate long-term history into
the Baseline, we introduce the Long-term Compres-
sion (LC) module to generate compact representations of
long-term history. The Long-Short-term Fusion (LSF) then
integrates the spatiotemporal cues from this long period into
the short-term memory, aiding in identifying ongoing ac-
tions.
Baseline+EI. Our proposed Efficient Inference (EI) tech-
nique significantly accelerate the spatiotemporal attention
in the SM module. We apply this technique to the Baseline
model to validate its efficiency.
Baseline+LC+LSF+EI (E2E-LOAD). This configuration
combines LC, LSF, and EI with the Baseline to form the
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(a)
Baseline LC+LSF EI mAP (%) FPS

✓ 71.2 9.1
✓ ✓ 72.2 8.7
✓ ✓ 71.5 19.5
✓ ✓ ✓ 72.4 17.3

(b)
Compression Factor mAP (%) FPS

×4,×2,× 1 70.8 18.9
×4,×1,× 1 70.6 18.7
×2,×2,× 1 71.8 18.7

×2,×2,×1,× 1 72.4 17.3

(c)
Layer Index mAP (%)

1 (early) 70.5
5 (middle) 72.4
7 (middle) 71.7
11 (late) 71.5

(d)
Variants mAP (%) FPS

CA@5 72.4 17.3

SA@5 70.3 17.5
SA@7 70.8 17.5

Table 2: Ablation Studies (a) Impact of the proposed components, i.e. LC+LSF and EI. (b) Design choice of temporal
downsample rate at each layer for LC module. (c) Design choice of the position to perform the fusion. (d) Design choice of
the fusion operators.
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Figure 3: Ablation Studies. (a) The trade-off of SM module with different depth. (b) The trade-off of LC module with
different lengths of long-term history (c) The trade-off of SM module with different lengths of short-term history. (d) The
long sequence generalization for LC is trained with 32 frames and tested with different lengths.

Method Training Architecture mAP (%)RGB Flow

LSTR [29]

Feat. TSN [25] - 56.8
E2E TSN - 59.2
Feat. MViT [6] - 60.7
Feat. TSN TSN 69.5
Feat. TimSformer [2] TSN 69.6
Feat. MViT TSN 71.2

GateHUB [3] Feat. TSN TSN 70.7
Feat. TimeSformer TSN 72.5

TeSTra [32] Feat. TSN TSN 71.2
Feat. MViT TSN 71.6

E2E-LOAD [3] E2E MViT - 72.4

Table 3: Comparison of Performance with Recent Meth-
ods Under Different Configurations. “Feat.” refers to
training with a fixed backbone, while “E2E” signifies end-
to-end training.

proposed E2E-LOAD model. It leverages informative long-
term historical tokens while ensuring robust inference effi-
ciency. As illustrated in Table 2a, the Baseline attains mAP
of 71.2% with only RGB frames, which is competitive to the
state-of-the-art approach [32], underscoring the potential of
spatiotemporal module for long-term modeling. Moreover,
leveraging long-term context, the Baseline+LC+LSF sur-
passes the Baseline by over 1.0%. In addition, the Base-
line+EI configuration achieves a 10.4 FPS improvement
and a 0.3% enhancement in mAP. We attribute this improve-
ment to the reuse of tokens, which may preserve valuable
long-term historical information. By combining these tech-

niques, Baseline+LC+LSF+EI (E2E-LOAD) stands out by
delivering the best performance compared to the other vari-
ants.

4.2.2 Analysis of the Backbone Design.

The previously featured-based approaches [28, 29, 3, 32]
employed a two-stream TSN [25] for feature extraction,
whereas the proposed E2E-LOAD relies on a Transformer
architecture. To isolate the effects of different architectures
on performance and underscore the value of the proposed
framework, we utilize advanced Transformer-based video
backbones [2, 1] for training existing methods [29, 32, 3]. In
alignment with previous work [29, 3], we take each chunk
as input to the backbone network and treat the [CLS] token
as the representative feature of that chunk. As illustrated in
Table 3, the switch from TSN to MViT as the model’s back-
bone led to a significant performance increase for LSTR,
from 56.8% to 60.7%. However, this performance still
falls short of the two-stream model, even though MViT is
a state-of-the-art spatiotemporal backbone. Incorporating
optical flow input further enhanced its performance, from
69.5% to 71.2%. This emphasizes the strong dependence of
feature-based approaches on optical flow, a conclusion also
reached by methods [3, 32]. Such dependency stems from
the inherent constraints of the prior feature-based frame-
work, which applies a spatiotemporal backbone to each lo-
cal chunk, thereby limiting its ability to capture long-term
dependencies. Therefore, optical flow is required to aug-
ment motion information. In contrast, our E2E-LOAD in-
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Method Training mAP
(%)

GPU Mem
(GPUs × GB)

Time
(min/epoch)

Param
(M)

LSTR
Feat.(S) 51.6 1× 1.8 1.5 19.8

Feat.(L+S) 56.8 1× 2.9 3.4 58.0
E2E (L+S) 59.2 8× 31.4 7.0 105.9

E2E-LOAD E2E (S) 71.5 8× 15.3 6.5 34.2
E2E (L+S) 72.4 8× 16.9 9.6 53.5

Table 4: Comparison of Training Costs. “S” and “L” de-
note short-term and long-term history, respectively. “GPU
Mem” represents the consumption of GPU memory.

tegrates lightweight spatial attention for each chunk and
spatiotemporal attention across different chunks. This de-
sign enables the comprehensive utilization of long-term de-
pendencies through the Transformer by end-to-end training.
Consequently, we observed an improvement in performance
from 71.2% to 72.4%. Furthermore, as depicted in Figure 1,
our approach overcomes the need for optical flow, yielding
substantial improvements in inference speed (+4 FPS).

4.2.3 Analysis of the Training Cost.

Previous studies [28, 29, 32] typically leveraged a two-
stream network [23] for feature extraction, with subsequent
model training based on these derived features. In contrast,
our approach involved the end-to-end training of the entire
model. We conducted a comparative analysis of the end-
to-end training costs between LSTR [29] and our method.
Here both models solely utilize RGB frames, and the batch
size is 16. From Table 4, we can observe that LSTR’s mem-
ory consumption for end-to-end training is substantial, even
when utilizing only the RGB branch of the two-stream net-
work. In contrast, E2E-LOAD demonstrates marked im-
provements in several key areas when end-to-end training
(E2E (L+S)) is employed: it boosts mAP by 13.2%, re-
duces memory consumption by 8× 14.5GB, and decreases
the number of parameters by 52.4M. These enhancements
stem from our framework’s novel integration of the Stream
Buffer and Short-term Modeling. The Stream Buffer effi-
ciently mitigates the costs associated with processing ex-
tensive frames, while the Short-term Modeling adeptly cap-
tures long-term dependencies through spatiotemporal mod-
eling. E2E-LOAD’s ability to achieve end-to-end training
with fewer resources while outperforming previous meth-
ods accentuates the superior efficacy of the proposed frame-
work.

4.2.4 Choice of Efficient Attention.

We explore various efficient attention mechanisms pro-
posed by the previous video models, such as the Video
Swin Transformer [17], MeMViT [27], and MViT [6].
Specifically, Video Swin Transformer incorporates a unique

Method mAP (%) GPU Mem
(GPUs× GB)

Time
(min/epoch)

Video Swin 64.7 8× 12.7 4.3
MeMViT 70.9 8× 14.9 5.8

Ours (MViT) 71.5 8× 15.3 6.5

Table 5: Comparison of Different Efficient Attention.

method known as shifted window attention, which decom-
poses the video clip into smaller windows and performs at-
tention calculations across different hierarchical levels. On
the other hand, both MeMViT and MViT employ pool-
ing attention techniques to craft multi-scale representations.
While these two approaches share similarities, the ordering
of the linear layer and the pooling operation differs, lead-
ing to subtle variations in computational complexity. When
comparing the performance, we did not introduce the long-
term history to simplify the problem. Table 5 details the
comparative analysis among these techniques. Considering
performance and training costs, we adopt pooling attention
from MViT.

4.2.5 Impact of Spatiotemporal Exploration.

Increasing the number of spatiotemporal attention layers
will lead to more computational costs while resulting in
effective representations. We conducted several experi-
ments based on Baseline+EI to investigate the trade-off be-
tween effectiveness and efficiency. Specifically, we control
the proportion of spatiotemporal attention by adjusting the
number of layers in SB and SM while maintaining the total
number of layers of SB and SM. As shown in Figure 3a,
with the increasing LSM , the model’s performance is sig-
nificantly improved, but the corresponding inference time
also increases. To ensure both effectiveness of efficiency,
we choose the setting of LSB = 5, LSM = 11.

4.2.6 Design of the Short-term Modeling.

For the SM module, we conduct experiments based on
Baseline+EI to investigate the impact of the short-term his-
tory’s length. Shown in Figure 3c, as the period TS in-
creases, the performance gradually increases, and the FPS
gradually decreases, which indicates that a wider receptive
field will provide more spatiotemporal clues for the ongo-
ing actions, accompanied by a more considerable computa-
tional burden due to the element-wise interactions. We take
TS = 32 for the trade-off of effectiveness and efficiency.

4.2.7 Design of the Long-term Compression.

The LC module encodes the long-term histories as com-
pact representations to enrich the short-term context. We
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Current FrameHistorical Frames

High JumpHigh Jump High Jump High Jump

Figure 4: The visualization of the spatiotemporal atten-
tion in the SM module. It illustrates the attention distribu-
tions of the current frame (red dotted box) on the historical
frames (blue dotted box).

conduct extensive experiments to study the temporal com-
pression factor at different layers and the long-term his-
tory length TL. All the studies are conducted on Base-
line+LC+LSF+EI. From Table 2b, the ×2,×2,×1,×1 out-
performs the other settings, indicating the importance of the
progressive compression. From Figure 3b, when the length
of long-term history TL is 32, it is the most helpful for train-
ing, compared with other settings. We set the compression
factor to ×2,×2,×1,×1 and the long-term historical length
to 32 for training.

4.2.8 Design of the Long-Short-term Fusion.

The LSF module is designed to fuse the compressed long-
term history with the short-term history. We study the vali-
dation of the fusion operation and the fusion position based
on Baseline+LC+LSF+EI. We first discuss which layer of
the SM module to fuse the compressed history is the best
option, shown in Table 2c. We define three fusion types,
i.e. early fusion, middle fusion, and late fusion, and ob-
serve that the middle fusion will result in the best perfor-
mance. This is because early fusion may cause a misalign-
ment of features since the compressed historical tokens are
well explored at the spatiotemporal dimension. In contrast,
the short-term historical tokens are not well characterized at
early stages. As for the late fusion, we observe over-fitting
in earlier iterations. This is because the Long-term Com-
pression (LC) module contains fewer parameters than the
Short-term Modeling (SM), leading to over-fitting and dom-
inating the fusion. So we employ fusion at the 5th layer for
our E2E-LOAD. Besides, we discuss the impact of fusion
operations, i.e., cross-attention (CA) or self-attention (SA),
as shown in Table 2d. We adopt the cross-attention as the
fusion operations due to the superior performance.

4.2.9 Generalization of Sequence Length.

End-to-end training with long-term historical sequences is
challenging due to the enormous resource consumption. To
address this issue, we intend to investigate the ability of the
Transformer models to generalize to longer sequences. This

allows us to use relatively short histories during the training
process and sufficiently long histories during the test pro-
cess for the LC module. As shown in Figure 3d, we observe
that with or without EI, E2E-LOAD produces better perfor-
mance for longer sequences during inference while training
is limited to 32 frames. Therefore, during the inference pro-
cess, we extend the long-term historical frame to 128, and
further extension beyond this length does not yield signifi-
cant performance improvement.

4.3. Running Time

As shown in Figure 1 and Table 1, we compare E2E-
LOAD with other approaches in terms of running time,
which is tested on Tesla V100. We can observe that feature-
based methods are constrained by optical flow extraction
and infer at around 5 FPS. Once the optical flow is removed,
although the speed can be significantly improved, the per-
formance is also considerably frustrating. Instead, our E2E-
LOAD can efficiently run at 8.7 FPS. With EI, it can run at
17.3 FPS while retaining performance.

4.4. Visualization

We qualitatively validate the effectiveness of E2E-
LOAD by visualizing a spatiotemporal attention map in
the current window. Figure 4 shows a “High Jump“ demo
where we observe a strong correlation of the subject in the
current and historical frames, and the irrelevant background
can be well suppressed. More examples can be found in the
supplementary material.

5. Conclusion
This paper proposes E2E-LOAD, an end-to-end frame-

work based on Transformers for online action detection.
Our framework addresses the critical challenges of OAD,
including long-term understanding and efficient inference,
with novel designs such as stream buffer, short-term mod-
eling, long-term compression, long-short-term fusion, and
efficient inference. Through extensive experiments on three
benchmarks, E2E-LOAD achieves higher efficiency and ef-
fectiveness than existing approaches. As E2E-LOAD pro-
vides an efficient framework for modeling long videos,
which may be helpful for other long-form video tasks.
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