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Abstract

Federated learning enables multiple decentralized
clients to learn collaboratively without sharing local data.
However, the expensive annotation cost on local clients
remains an obstacle in utilizing local data. In this pa-
per, we propose a federated active learning paradigm to
efficiently learn a global model with a limited annota-
tion budget while protecting data privacy in a decentral-
ized learning manner. The main challenge faced by fed-
erated active learning is the mismatch between the ac-
tive sampling goal of the global model on the server and
that of the asynchronous local clients. This becomes even
more significant when data is distributed non-IID across
local clients. To address the aforementioned challenge,
we propose Knowledge-Aware Federated Active Learning
(KAFAL), which consists of Knowledge-Specialized Active
Sampling (KSAS) and Knowledge-Compensatory Federated
Update (KCFU). Specifically, KSAS is a novel active sam-
pling method tailored for the federated active learning
problem, aiming to deal with the mismatch challenge by
sampling actively based on the discrepancies between local
and global models. KSAS intensifies specialized knowledge
in local clients, ensuring the sampled data is informative
for both the local clients and the global model. Meanwhile,
KCFU deals with the client heterogeneity caused by lim-
ited data and non-IID data distributions by compensating
for each client’s ability in weak classes with the assistance
of the global model. Extensive experiments and analyses
are conducted to show the superiority of KAFAL over recent
state-of-the-art active learning methods. Code is available
at https://github.com/ycao5602/KAFAL.

1. Introduction
Federated learning is a decentralized paradigm that al-

lows collaborative learning of local devices to attain a pow-
erful global model in a central server through aggregation
without accessing local data [25, 35]. Most federated learn-
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Figure 1. The primary federated active learning framework with
non-IID data. Each client maintains an active learning loop to
select informative data for annotation with a limited annotation
budget. We show each model’s existing labelled data in different
classes with pink bars and the newly acquired labels with green
bars. Clients specialize in different classes due to non-IID data
distributions.

ing methods consider supervised learning scenarios with
fully annotated training data on each local client. However,
the high annotation cost has been a challenge for real-world
federated learning scenarios, e.g., large-scale medical data
located in different medical institutions while medical spe-
cialists for data annotation are very limited in each institu-
tion. In this paper, we consider a new federated active learn-
ing paradigm, which aims to not only protect data privacy
but also make the most of the very limited annotation bud-
get on each local client for decentralized model training. An
illustration of the proposed federated active learning with
non-IID data framework is shown in Fig. 1.

In federated active learning, we aim to attain a powerful
global model on the server by sampling only local data and
training the model on each local client. A straightforward
solution for federated learning is to directly apply off-the-
shelf active learning methods to each client. Specifically,
existing methods can mainly be categorized into diversity-
based [42, 2], uncertainty-based [49, 44, 51, 45, 23, 8, 3],
and discrepancy-based. [43, 6]. Therefore, we actively sam-
ple based on either the statistics from each client model or
the downloaded global model. However, the former ap-
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proach may yield benefits primarily for local clients, while
the latter might result in the loss of valuable information
during aggregation, even if the selected data is advanta-
geous for the global model on the server. Through exper-
iments in subsequent sections, we demonstrate that active
sampling with the global model on the server struggles to
derive benefits due to this indirect process.

A major challenge in federated active learning is there-
fore, the mismatch between the active sampling goal of the
clients and that of the model on server caused by asyn-
chronous models. What makes it even more challenging
is the statistical heterogeneity resulting from the non-IID
data distributions on clients in a typical federated learning
setting [35, 52, 17, 29]. Ideally, the models can synchro-
nize with sufficiently many aggregations from local clients
to the model on the server. However, the communication
costs usually make the above-mentioned solution impracti-
cal [35]. Therefore, the model parameters of each client and
the global model vary due to non-IID distributions, leading
to a higher degree of mismatch between the sampling goals.

To address the aforementioned challenge, we propose
a federated active learning scheme, namely Knowledge-
Aware Federated Active Learning (KAFAL). It com-
prises two key components, Knowledge-Specialized Active
Sampling and Knowledge-Compensatory Federated Up-
date. Knowledge-Specialized Active Sampling (KSAS)
is a new active sampling strategy, where each client model
learns to intensify its specialized knowledge in order to
annotate universally informative data that benefit both the
clients and the global model. Specifically, we compute
the intensified discrepancy between the client and global
model outputs based on the specialized knowledge of each
client. In addition, the insufficiency of labelled training
data together with the statistical heterogeneity caused by
non-IID data can degrade the federated update quality, e.g.,
clients may perform weakly for certain classes. Aggre-
gating these clients, extra communications are required to
achieve convergence. Therefore, we further devise a new
update rule, Knowledge-Compensatory Federated Up-
date (KCFU), by compensating for weak classes (or low-
frequency classes) on each client through knowledge distil-
lation from the global model. The main contributions of this
paper are as follows:

• We explore a rarely studied problem, federated active
learning with non-IID data, which aims at efficiently
learning a global model with a limited annotation bud-
get on each client under a heterogeneous federated
learning framework. Notably, we reveal the main chal-
lenge in federated active learning is the mismatch be-
tween the active sampling goal of the clients and that
of the server caused by asynchronous models.

• We introduce a federated active learning paradigm,

known as KAFAL, with a novel active sampling
method KSAS and a novel federated update method
KCFU to handle the aforementioned challenge. KSAS
is designed to sample universally informative data by
computing the intensified discrepancies between the
clients’ and the global model’s outputs based on the
specialized knowledge of each client. KCFU is de-
vised to deal with data heterogeneity by compensating
for weak classes using knowledge distillation from the
global model.

• We conduct extensive experiments on different bench-
marks to demonstrate the superiority of the proposed
method, where comprehensive ablation studies are
also provided to validate the design of the proposed
KAFAL.

2. Related Work

2.1. Federated Learning

Federated learning is a learning paradigm that allows de-
centralized training of a model on the central server with
training data distributed over a number of local clients in
a non-IID manner [25, 35, 18, 37, 19, 4, 30, 13]. Specif-
ically, Konevcny et al. [25] first introduced the term and
proposed a method, FedAvg, to aggregate the client mod-
els, which was later improved by FedAvgM to accumu-
late model updates with momentum [18, 19]. Federated
learning has also been discussed in more practical views,
such as federated multi-task learning [34], federated do-
main adaptation [40, 48], federated continual learning [50],
semi-supervised federated learning [22, 47], and unsuper-
vised federated learning [31]. Specifically, Jeong et al. [22]
considered the deficiency of data labels in federated learn-
ing and proposed a semi-supervised solution. Ahn et al. [1]
and Kim et al. [24] discussed a federated active learning
paradigm, while they only considered the less realistic IID
data scenario. To the best of our knowledge, we are the first
to explore the active data sampling problem in the non-IID
federated learning framework.

2.2. Active Learning

Existing active learning methods can be categorized into
diversity-based, uncertainty-based, and discrepancy-based
methods. Specifically, diversity-based methods [42, 2, 38]
select representative and diverse data points that span the
data space for query. Sener et al. [42] proposed a core-
set approach that selects the most representative core-set
from the data pool using k-center algorithms. Recently,
Ash et al. [2] proposed to actively select the data points
that produce gradients with diverse directions. Uncertainty-
based methods [49, 44, 51, 45, 23, 3] estimate the uncer-
tainty of predictions using different metrics and select data
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points accordingly. Despite being simple to use, these meth-
ods cannot be directly applied in federated active learning,
without the mismatch between each client model and the
global model being handled. Some recent methods explic-
itly measure the informativeness of data points instead of di-
rectly calculating the uncertainty metrics [49, 44, 51, 45, 8].
Specifically, Sinha et al. [44] utilized an extra variational
auto-encoder to select data points that are less likely to be
distributed in the labelled pool for querying. Despite effec-
tive sampling, these methods require extra modules for sam-
pling with an increased computational cost. Discrepancy-
based methods [43, 9, 7, 36, 6] pass data points through an
ensemble of models, namely a committee, and select the
data points that cause large discrepancy within the commit-
tee. Freund et al. [9] proposed to randomly pick two models
in the committee that are consistent for labelled data and
then use them to sample from unlabelled data. Multiple
models usually make discrepancy-based methods stable, but
also increase the computational cost. This partially explains
why they become less popular with the rise of deep active
learning. It is costly to fit them in federated active learning.

Many recent methods have also been proposed to en-
able active learning in more challenging settings, e.g., low-
budget active learning [33], biased-data active learning [14],
semi-supervised active learning [11, 20] and cross-domain
active learning [10, 32]. Our work also considers apply-
ing active learning in a more practical decentralized feder-
ated learning setting where local data privacy is protected.
Chen et al. [5] proposed a novel automated learning system
for distributed active learning that requires a shared labelled
set. Furthermore, Goetz et al. [12] considered active learn-
ing in a federated learning framework that studies how to se-
lect clients actively. Our work, instead, considers the active
sampling of data on each local client in federated learning.

3. Method
In this section, we first describe the problem setting of

federated active learning and then introduce two main com-
ponents, i.e., KSAS and KCFU in the proposed KAFAL.

3.1. Problem Setting

We illustrate the overview of the federated active learn-
ing framework in Fig. 1 and sum up the proposed KAFAL
algorithm in Alg. 1. In federated active learning, we keep
K local client models parametrized with {ωi}Ki=1 and one
global model on central server parametrized with Ω. Each
client model i is optimized using its local training dataset
Di. Different from standard federated learning, federated
active learning annotates a subset of data samples on each
client with a local active learning loop. The training set Di

for client i is divided into a labelled set DL
i and an unla-

belled set DU
i . In each communication round, a fraction

R ∈ (0, 1] of the total K clients are first randomly selected

Algorithm 1 Knowledge-Aware Federated Active Learning
Data: local datasets {DL

k }Ki=1 and {DU
i }Ki=1

Input: T , R, sampling budgets {bi}Ki=1

Parameter: Ω, {ωi}Ki=1

1: for active round a=1 to A do
2: Federated Update: KCFU
3: Initialize the global model with Ω0

4: for communication round t = 1 to T do
5: St ← Random subset of ⌈R ·K⌉ clients.
6: for client k ∈ St do
7: Download the global model’s parameters Ωt

8: Copy to the client ωt
k ← Ωt

9: ωt+1
k ← LocalUpdate(ωt

k;DL
k ,DU

k )
10: Upload the local model parameters to the server
11: end for
12: for client k′ /∈ St do
13: Keep the client model unchanged ωt+1

k′ ← ωt
k′

14: end for
15: Aggregate the clients with Eq. (7) to update Ωt+1

16: for each client k ∈ St do
17: Download Ωt+1

k and save as Ω̂k

18: end for
19: end for
20: Active Sampling: KSAS
21: for client i = 1 to K do
22: for each unlabelled data x ∈ DU

i do
23: for class y ∈ C do
24: Compute P i

y(x) on class y using Eq. (1)
25: Compute Qi

y(x) on class y using Eq. (2)
26: end for
27: Compute Di(x) using Eq. (3)
28: end for
29: Send bi unlabelled data points with the largest D

to the oracle for annotation
30: Remove the annotated data in DU

i and add to DL
i

31: end for
32: end for
33: Return {DL

i }Ki=1 and {DU
i }Ki=1

as a subset St, which simulates the real-world scenarios that
some local devices may be offline from time to time. After
that, the selected clients first download Ω from the server
to initialize {ωk}k∈St , and then conduct local update based
on {Dk}k∈St . The updated {ωk}k∈St will be uploaded to
the central server and aggregated to update Ω. The train-
ing process terminates after T communication rounds. Af-
ter that, a batch of unlabelled data is sampled from each
DU

i , sent to the local oracle for annotation, and added to
the labelled data pool DL

i for each client i. The sampling
budget for the client i is bi. The active sampling process
is repeated for A times, where A is set according to need.
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The training sets {Di}Ki=1 follow non-IID distributions. All
client models share the same architecture with the global
model to synchronize model parameters between the client
and server. Just like in federated learning, transferring the
local data {Di}Ki=1 across clients (or server) is prohibited
in federated active learning. The objective of federated ac-
tive learning is to actively annotate local data with limited
budgets to improve the overall model performance without
violating data privacy.

3.2. Knowledge-Specialized Active Sampling

Given the mismatch problem in federated active learn-
ing, informative data on each client may not be that infor-
mative to the global model due to the non-IID data distri-
butions, meaning that using only one of them for active
sampling is therefore not reliable. Computing the model
discrepancy between each client and the global model al-
lows us to consider both aspects in active sampling. But
alone is insufficient. Data from rare classes in each local
dataset can cause large discrepancies between the client and
the global model. However, they are usually uninforma-
tive to the global model and can hardly contribute to the
client model’s updates. Being rare locally makes their con-
tributions limited in the gradient computation. Furthermore,
during aggregation, the global model may not find them as
informative as they are to the clients. Hence, we propose
to enable each client to intensify its specialized knowledge
(common class knowledge) in the computation of discrep-
ancy to sample more informative data containing special-
ized knowledge. We introduce the Knowledge-Specialized
KL-Divergence as follows. On top of a symmetrized
KL-Divergence [21, 27], our Knowledge-Specialized KL-
Divergence further incorporates a Knowledge-Specialized
component to accentuate each client’s specialized knowl-
edge. The Knowledge-Specialized probability of client i
being predicted to class y is formulated as:

P i
y(x) =

nλ
i,yexp

(
gy(x;ωi)

)
∑

c∈C nλ
i,cexp

(
gc(x;ωi)

) , (1)

where x is an unlabelled data point sampled from DU
i ,

gy(x;ωk) is the prediction score at the y-th class, C in-
dicates the set of all classes, ni,y is the number of data
points that belong to class y in DL

i , and λ is a hyperparam-
eter which controls the knowledge-specialized level. We
name nλ

i,y as the knowledge weight which indicates the
client’s knowledge in each class. Similarly, the knowledge-
specialized probability of the global model predicted to be
class y can be defined as:

Qi
y(x) =

nλ
i,yexp

(
gy(x; Ω̂i)

)
∑

c∈C nλ
i,cexp

(
gc(x; Ω̂i)

) , (2)

(b)(a)

0.562

0.349

0.875

0.186

Figure 2. Illustration of how Knowledge-Specialized KL-
Divergence intensifies specialized knowledge compared to the
standard KL-Divergence. The blue and orange lines integrate to
be KL-Divergence and the knowledge-specialized KL-Divergence
computed from the same pair of distributions. The blue and orange
numbers show the integrated areas of the blue and orange curves
in each image, respectively.

where Ω̂i is a copy of global model parameters downloaded
from the server to client i. The knowledge-specialized KL-
Divergence is defined as:

Di(x) =
∑
y∈C

(
P i
y(x) ln

P i
y(x)

Qi
y(x)

+Qi
y(x) ln

Qi
y(x)

P i
y(x)

)
, (3)

where x is data from the unlabelled pool of client i.
The knowledge-specialized KL-Divergence focuses on each
client’s specialized knowledge and selects more informa-
tive data points from its specialized classes for labelling. In
the Knowledge-Specialized probabilities, {ni,c}c∈C serve
to amplify the KL-Divergence on class c if the class is con-
sidered to contain the client’s specialized knowledge.

Visualization. To better visualize how Knowledge-
Specialized KL-Divergence intensifies specialized knowl-
edge compared to the standard KL-Divergence, we use
continuous distributions to simulate model predictions and
compute the divergences in Fig. 2. Note that the knowl-
edge weight curves represent a continuous version of our
knowledge weights. For clarity, we only show the KLD
and Knowledge-Specialized KLD and omit the distribution
curves in the figure. (a) and (b) can be viewed as global-
local discrepancies from two different inputs on the same
client model since the KLD values are different and the
knowledge weights are the same. Although (a) has a smaller
KLD, its knowledge-specialized KLD is larger, meaning
that if we used KLD for sampling, (a) is less likely to be
sampled. On the other hand, if our proposed knowledge-
specialized KLD is used, (a) is more likely to be sampled
than (b). What makes the results different is the knowledge
weight. It intensifies the client’s specialized knowledge and
suppresses the less reliable divergence contributed by unfa-
miliar knowledge of the client. More of the model differ-
ence in (a) is caused by specialized knowledge (peak area
of knowledge weight) other than that in (b). More analyses
are provided in the supplementary (A.10).
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Figure 3. KCFU compensates for each client’s ability on weak
classes through knowledge distillation from the global model. Un-
labelled data are used in the process.

3.3. Knowledge-Compensatory Federated Update

An overview of knowledge-compensatory federated up-
date (KCFU) is shown in Fig. 3. The local data on
each client follows its own realistic data distributions [18],
thus leaving non-uniform class distribution on each client.
Besides, our KSAS which tends to annotate data with
specialized-knowledge further introduces imbalance in la-
belled data. Therefore, on top of the standard FedAvg [35],
we introduce a balanced classifier and a knowledge-
compensatory strategy.

Local Update with Balanced Loss. Our balanced classi-
fier on each client optimizes with a balanced cross-entropy
loss [41] to deal with the imbalanced local data distribution:

Lk
client = −log

nk,yexp
(
gy(x;ωk)

)
∑

c∈C nk,cexp
(
gc(x;ωk)

) . (4)

In our experiment, each labelled set DL
k starts from only

a small proportion of the local dataset on the client k. We
demonstrate with experiments in later sections that, with the
imbalanced class distributions and the small size of training
data, a simple local client update using cross-entropy loss is
not enough for training. The balanced loss allocates more
weight to data from rare classes and less weight to data from
common classes to deal with the problem. It prevents the
model from becoming biased towards common classes dur-
ing training.
Remark: Although our balanced loss (Eq. (4)) looks
similar in formulation compared with the aforementioned
knowledge-specialized probabilities, i.e., Eq. (1) and (2),

they are designed for various purposes and function dif-
ferently. Eq. (1) and (2) are designed to compute the ac-
tive sampling scores, and Eq. (4) is a loss that updates
the client models. The knowledge-specialized probabili-
ties magnify the KL-Divergence computed from common
classes for sampling, while the balanced loss magnifies the
loss computed from rare classes.

Global-to-Local Knowledge Compensation. Due to the
extreme limitation and non-uniformity of local data labels,
the clients can perform weakly on rare classes. The weak
classes of clients differ depending on the data distributions.
Such statistical heterogeneity of clients can be harmful in
model aggregation. To compensate for the clients’ knowl-
edge on the weak classes, we further introduce an extra
loss Lcompen. Since the global model aggregates param-
eters of local clients, they usually have a more balanced
performance over different classes. On classes where each
client considers to be rare, the global model is likely to per-
form better than the client. Hence, it is reasonable to de-
sign the knowledge-compensation process which conducts
knowledge distillation from the global model to the clients
using unlabelled data. We later show with experiments
that Lcompen can save the communication cost via boost-
ing the convergence. The loss Lcompen on client k can be
evaluated as follows. We first sample unlabelled data x′

from DU
k . Then we compute the logits z = g(x′;Ω) and

the pseudo label y′ = argmax
c

gc(x
′;Ω) with the down-

loaded global model. The loss weight can be computed as
Γ(x′) =

∑
c∈C nk,c

nk,y′
, and the compensation loss is then de-

fined as:

Lk
compen = Γ(x′) · KL

(
σ(z)∥σ(g(x′;ωk))

)
, (5)

where σ stands for the softmax function and KL-divergence
KL(p, q) = p ln p

q . Note that no gradient is computed for
the global model Ω, only. As the unlabelled data falls in
the same distribution as the labelled data, rare classes in
labelled data are usually still rare in unlabelled data. To
make the most of the compensation loss, we further pro-
pose to augment the training with mixed unlabelled data
x̃′ = βx′

1 + (1− β)x′
2, where β is a mixing weight sam-

pled from a beta distribution. x′
1 and x′

2 are randomly sam-
pled from the unlabelled batch. Γ(x̃′) is similarly mixed as
βΓ(x′

1) + (1− β)Γ(x′
2). The compensation loss then be-

comes Lcompen(x̃
′; z̃,ωk) with z̃ = g(x̃′;Ω). Therefore,

the complete loss Lk
KCFU to update client k is:

Lk
KCFU = νLk

client + (1− ν)Lk
compen, (6)

where ν is a tradeoff hyperparameter. We show the detailed
local update algorithm in Alg. 2.
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Algorithm 2 LocalUpdate(ωk;DL
k ,DU

k )

Data: DL
k , DU

k

Input: epochs, batches, communication round t, learning
rate η
Parameter: ωk

1: for e = 1 to epochs do
2: for b = 1 to batches do
3: Sample a batch {(x, y)} ⊆ DL

k

4: Compute Lk
client using Eq. (4)

5: if t equals 1 then
6: ωk ← ωk − η∇Lk

client
7: else
8: Sample a batch {x′} ⊆ DU

k

9: Construct a mixed batch {x̃′}
10: Find z, Γ(x̃′) for each x̃′

11: Compute Lk
compen using Eq. (5)

12: Compute Lk
KCFU with Eq. (6)

13: ωk ← ωk − η∇Lk
KCFU

14: end if
15: end for
16: end for
17: Return ωk

Global Aggregation After local updates of clients, they
are uploaded to the server and aggregated as follows:

Ωt =
∑
k∈St

Nk∑
j∈St

Nj
ωt

k, (7)

where Nk =
∑

c∈C nk,c indicates the number of data points
in local labelled data poolDL

k . Lastly, we can formulate the
overall objective as:

argmin
{ωk}k∈St ,x∼{DL

k }k∈St ,x
′∼{DU

k }k∈St

LKCFU, (8)

where LKCFU =
∑

k∈St

Nk∑
j∈St

Nj
Lk

KCFU, {DL
k }k∈St is

achieved via active learning loops.

4. Experiments
In this section, we mainly conduct experiments on

three image classification datasets, CIFAR10/100 [26] and
MNIST [28], that are popular in both active and federated
learning. Additionally, we also apply our method in a more
realistic scenario by conducting medical image classifica-
tion with NIH Chest X-Ray dataset [46]. Specifically, CI-
FAR10 and CIFAR100 contain 60, 000 images from 10 and
100 classes, respectively, including 50, 000 training images
and 10, 000 testing images. Results and details of MNIST
are shown in the supplementary (A.8). For the server and
client models, we utilize ResNet-8 [16] as the model archi-
tecture.

We implement the method with Pytorch [39]. We use
K = 10 clients in our experiments. In each communication
round, R = 80% of the clients are selected at random to up-
date locally. The hyperparameter λ is set to 1. More details
are given in the supplementary (A.1). To distribute non-IID
data to different clients, we follow Hsu et al. [18] and draw
q ∼ Dir(αp) from a Dirichlet distribution. p stands for the
global prior class distribution over all classes, and α > 0
is a concentration parameter that controls the level of IID.
When α → ∞, the data distributions are identical to the
global class distribution. When α → 0, each client will be
allocated data from only one class. In our main results, we
set α = 0.1. We also show the results from α = 0.3 and
α = 1. The different CIFAR10 data distributions are shown
in the supplementary (A.1).

For active learning loops, we start by randomly selecting
10% data fromDi as the labelled poolDL

i of client i. This is
around 500 labelled data for each client. For each sampling
cycle, the budget bi on each client is 5% of the total local
data Di. We sample for A = 5 times until the labelled data
amount reaches 35% of all data for each client. We repeat
each experiment 5 times with different random seeds and
average the results to get a final result.

4.1. Comparison with Active Learning Methods

We compare our KAFAL with 8 other active learning
methods and show the results in Fig. 4(a)(b). All methods
are fit into the federated active learning framework using the
same model architectures following the same training steps
for fair comparison. For all baselines, we use the KCFU
loss (Eq. (6)) for local update. FedAvg is used for aggrega-
tion for all methods. We categorize our baselines into five
types. (I) We compare with uncertainty-based methods: en-
tropy and top-2 margin scores (Margin). Entropy is calcu-
lated as H(p) = −p · log(p), where p is the Softmax out-
put. The top-2 margin score calculates the margin between
the largest prediction score and the second largest predic-
tion score over all classes for each data point. Unlabelled
data with the lowest top-2 margin scores will be sampled
for annotation. Here we compute the uncertainty scores on
each client model after local update. (II) We compare with
a special uncertainty-based method which explicitly learns
the data loss with extra modules, Learning Loss for Active
Learning (LL4AL) [49]. We train a loss prediction module
for each client model. (III) We also compare with diversity
methods: Core-set [42], BADGE [2], and ALFA-Mix [38].
We sample on each client model using diversity. (IV) Re-
sults from a previous discrepancy-based method, Query-by-
Committee (QBC) [7], is also compared with. We use 3
models on each client for QBC. (V) Finally, we compare
with random sampling results.

On both CIFAR10 and CIFAR100, our KAFAL achieves
state-of-the-art results (Fig. 4(a)(b)). The margins between
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(a) (b) (c)

(d) (e) (f)
Figure 4. (a)-(b) The federated active learning results from different active learning baselines plus the results of our KAFAL on CI-
FAR10/100 with α = 0.1. (c)-(d) Comparing our KAFAL with the federated active learning baseline F-AL on CIFAR10/100 with
α = 0.1. (e) Component analyses of KSAS and KCFU on CIFAR10. (f) Results with balanced loss (Eq. (4)) and standard cross-entropy
loss on CIFAR10. For all figures, the error bars show the standard deviation of results across 5 runs.

KAFAL and other baselines become larger with the increase
of labelled data. On CIFAR10, our method eventually
achieve a margin of around 3% compared to BADGE, En-
tropy, Margin, and Core-set. LL4AL, although quite com-
petitive in standard active learning, does not perform well in
the federated active setting. Besides, LL4AL and QBC up-
date extra model parameters of sizes 0.015M and 0.156M
for each client, when each client’s model size for the rest
methods is only 0.078M . On CIFAR100, the margins are
less significant compared to results from CIFAR10. Prob-
ably because the 10 times of classes in CIFAR100 makes
it a much more difficult task, especially consider the lim-
ited amount of labelled data for each client. Some of the
methods perform poorer than Random, possibly because
Random naturally diversifies in sampling. It is worth not-
ing that in CIFAR10 and CIFAR100, the full-set federated
learning results are 72.93% and 37.35%. On CIFAR10, the
full-set result is lower than our KAFAL result with 35% la-
belled data. This could be because our strategy selects only
the most informative data for annotation and avoids data re-
dundancy. On CIFAR100, the full-set result is around 5%
higher than our KAFAL result with 35% labelled data, indi-
cating that 35% data is not enough to represent a 100-class
dataset. Notably, we also evaluate each client with the test
set and show the analysis in the supplementary (A.1) for a
complete picture of the performance of our KAFAL.

4.2. Comparison with Sampling by Global Model

As we mentioned in previous sections, for some sam-
pling methods, it is possible to compute the sampling crite-
ria either on the local client after local updates or on the
downloaded aggregated global model. Using the global
model for sampling is also the main idea of F-AL [1], a
federated active learning method for IID data. Among the
baselines we compared with in Sec. 4.1, we found Core-Set,
Margin, Entropy, BADGE, and Alfa-Mix to be qualified to
compute sampling scores on either the clients or the down-
loaded global model. We show the experiment results on
CIFAR10 and CIFAR100 in Fig. 4(c)(d). The solid lines
show the results from using locally updated client models
to compute sampling criteria. These are also the results
presented in Fig. 4(a). The dashed lines represent the re-
sults from using the downloaded global model for com-
puting sampling scores. There is a clear drop in perfor-
mance moving from client model statistics to global model
statistics. Additionally, we compare our method with QBC.
Our method combines local and global with discrepancy-
based sampling and QBC is a local disagreement-sampling
method. This experiment demonstrates the challenge in fed-
erated active learning where the sampling aims of the clients
mismatch with that of the global model. It also shows that
even if we sample informative data points directly using the
downloaded global model, the information cannot be fully
utilized to benefit the global model through aggregation.
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Table 1. Number of rounds of different federated update ways to
achieve the same accuracy as running KCFU runs for 15 rounds.

Method CIFAR10 CIFAR100
Baseline 35 39
KCFU w/o mix 25 27
KCFU 15 15

F-AL, which is initially proposed for IID federated active
learning, does not suit the task of federated active learning
with non-IID data.

4.3. Ablation Studies

4.3.1 Component study

To explore the importance of our model components
in KAFAL, we separately run experiments to analyze
KASA and KCFU. To analyze KSAS, we first replace our
knowledge-Specialized KL-Divergence with a vanilla KL-
Divergence and observe a 3% to 5% performance drop
through the whole sampling process (Fig. 4(c)). We also
attempt to sample with a reversed KSAS (learning to diver-
sify), where we replace each ni,y and ni,c in Eq. (1) and
(2) with 1

ni,y
and 1

ni,c
. This prevents the client models from

intensifying their specialized knowledge. Instead, it drives
the clients to focus on sampling data from rare classes. The
results show a significant drop compared to the other two.
This further validates our design where each client should
intensify its knowledge during active sampling. Data from
rare classes can be quite useless in improving the global
model on the server.

To analyze the efficiency of KCFU, we count the num-
ber of communication rounds of different federated up-
date ways to achieve the same accuracy. The benchmark
accuracy is set as the accuracy of running KCFU for 15
rounds. We experiment with the baseline method by replac-
ing KCFU with a vanilla federated update which removes
Lcompen and updates with Lclient (eq. (4)) only. We also com-
pare the results from mixing and not mixing unlabelled data
in KCFU. As shown in Tab. 1, KCFU can converge faster
than vanilla update no matter mixed data are used, demon-
strating the effect of our knowledge-compensatory design
which borrows common knowledge from the global model.
Mixing data in KCFU further boosts the efficiency. We fur-
ther experiment by fixing Γ(x̃′) = 1

C , where C is the num-
ber of classes, for Lcompen (Eq. (5)). This means we distil
knowledge from the downloaded global model without dif-
ferentiation on all unlabelled data. Unsurprisingly, the per-
formance is very poor. The accuracy reaches only 40.4%
with 10% data and the setting aligned with Fig. 4(a).

4.3.2 Local update without the balanced loss

We use a balanced loss (Eq. (4)) for local update of clients.
This type of loss is usually the cherry on the top for stan-
dard federated learning. This is however not the case in our
federated active learning problem. In Fig. 4(f), we show
the results using balanced loss (Eq. (4)) and a simple cross-
entropy loss (simply replacing ni,y and ni,c in Eq. (4) with
1). We ran the experiment with two methods, our KAFAL
and random sampling. From the experiment results, we can
see that removing the balanced loss in local update disturbs
or almost ruins the learning, a drop of 5% to 10% in per-
formance occurs. Our KAFAL still outperforms random
sampling, but the results are highly unstable. This is some-
what foreseeable since each client model starts with a very
small amount of data in federated active learning. Despite
our learning to intensify on specialized knowledge during
sampling, it is still crucial to handle the imbalance of data
during local client update using the balanced loss.

4.3.3 Knowledge specialization alternatives

It is an interesting question whether other reweighting tech-
niques can also help achieve knowledge specialization in
federated active learning. Here we compare our method
with two knowledge specialization alternatives, probability-
level specialization and KL-Divergence-level specializa-
tion. Results and detailed analyses are presented in the
supplementary (A.2). The experimental results show that
KAFAL outperforms both of the alternative methods. While
probability-level specialization yields an acceptable out-
come, KL-Divergence-level specialization fails to produce
a reasonable result. One possible reason for this difference
is that the probability-level specialization method, like our
KAFAL, uses a moderate level of reweighting to adjust the
results. In contrast, the KL-Divergence-level specializa-
tion method directly reweights the summation in the KL-
Divergence calculation, potentially resulting in a level of
reweighting that is too strong.

4.3.4 Different non-IID levels

We further explore federated active learning with the non-
IID coefficient α = 0.3 and α = 1 on CIFAR10. We
show results and detailed analysis in the supplementary
(A.3). A larger α value provides less non-IID distributions
for clients, i.e., the distributions across different clients are
more similar. Unsurprisingly, compared to our CIFAR10
with α = 0.1 results, the results are overall better for
α = 0.3 and α = 1. Our KAFAL is still state-of-the-art
for α = 0.3 and α = 1, but the margins between the results
of KAFAL and the rest methods are relatively smaller. This
experiment demonstrates that our KAFAL is more compet-
itive with higher levels of non-IID. It validates that intensi-
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fying knowledge-specialized data in KAFAL can handle the
non-IID distributed data in federated active learning.

4.3.5 Different λ values

The coefficient λ in eq. (1)(2) controls the knowledge-
specialized level in KSAS. With larger values of λ, the
clients intensify more on their specialized knowledge in ac-
tive sampling. As we stated, we simply use λ = 1 in our
main experiments. Here we explore more values of λ on CI-
FAR10 and show the results and detailed analysis in the sup-
plementary (A.4). For λ of values 1, 2, and 3, the difference
is not significant. However, the results are clearly poorer for
more extreme λ values 0.1 and 10. Therefore, when apply-
ing KAFAL, the selection of λ value can be flexible, but the
chosen value should be neither too small nor too large.

4.3.6 Learning with more decentralized clients

In previous sections, we explored federated active learning
with N = 10 clients. To better analyze the problem, we run
experiments on CIFAR10 with N = 20 and N = 100. The
labelled data amount still starts with 10% of each training
set, meaning that the local dataset on each client is smaller
in size. The results and detailed analysis are shown in the
supplementary (A.5). Compared with results from using
N = 10 clients, results for all methods reduce due to the
smaller local datasets. Our KAFAL still outperforms the
rest methods by a clear margin.

4.3.7 A smaller ratio of clients to update per round

We used R = 80% in previous experiments. To test how
our KAFAL performs with a smaller ratio of clients updated
in each communication round, we use R = 40%, meaning
that only 40% of the clients are updated in each commu-
nication round. Surprisingly, our KAFAL performs even
better using R = 40% compared with using R = 80%,
while results from the rest methods all drop. This is possi-
bly because our KAFAL compensates for the knowledge of
clients with the global model using KCFU along with ac-
tively sampling data by intensifying specialized knowledge
using KSAS. The two together enable a faster convergence
in global aggregations. Using R = 40% means each client
is trained less compared to using R = 80% when the com-
munication rounds T is fixed. The rest methods which still
actively sample harder data that are likely from less fre-
quent classes cannot utilize these data in training with the
smaller R value. Although KCFU is also used for other
methods for a fair comparison, it cannot be fully utilized
without the knowledge-specialized intensification of KSAS.
Detailed results and analyses are shown in the supplemen-
tary (A.6).

Pleural thickening Atelectasis Emphysema Nodule Infiltration

Figure 5. Selected images in NIH Chest X-Ray dataset.

4.4. Medical Image Classification

We further conduct experiments in a more realistic sce-
nario of X-ray image classification using NIH Chest X-Ray
dataset [46]. Some examples are shown in Fig. 5. The
task is to categorize thorax diseases using chest X-ray im-
ages. The dataset consists of more than 112k images of size
1024 × 1024. We follow the official training and testing
splits. And we exclude images tagged with ’no findings’.
The rest data have 14 for different thorax diseases as la-
bels. The training split includes 36024 images and the test-
ing split includes 15735 images. We use ResNet-50 [15]
as the backbone of the clients and the global model. We
still use α = 0.1 as the non-IID coefficient to distribute the
client data. 5 clients are used, and 80% are selected for the
update at each communication round. We start with 10%
labels and use 5% of the whole dataset as the budget. The
results are shown in the supplementary (A.7). We compare
with four baseline methods (Random, Core-Set, Entropy,
and Margin) that the dataset can easily fit in considering the
image size and model size. Our KAFAL still achieves state-
of-the-art results on this dataset.

5. Conclusion

We have introduced a federated active learning paradigm
which allows actively selecting the unlabelled data to effi-
ciently learn a global model given a limited annotation bud-
get in a decentralized learning process. We revealed that the
main challenge in federated active learning is the mismatch
between the active sampling goals of the global model on
the server and each local client due to model differences
caused by non-IID data distributions. This paper devised
a Knowledge-Aware Federated Active Learning (KAFAL)
method for federated active learning with non-IID data.
KAFAL computes the discrepancies between client-server
models with an intensification on each client’s specialized
knowledge. It is worth noting that the intensifying pro-
cess is particularly important to achieve a powerful global
model in the non-IID federated learning framework. More-
over, KAFAL also compensates for each client’s ability in
rare classes to handle data heterogeneity caused by non-IID
data during federated updates. Extensive experiments and
analyses have validated the superiority of KAFAL over the
state-of-the-art active learning methods under the federated
active learning framework.
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