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Abstract

3D reconstruction from a single 2D image was exten-

sively covered in the literature but relies on depth supervi-

sion at training time, which limits its applicability. To re-

lax the dependence to depth we propose SceneRF, a self-

supervised monocular scene reconstruction method using

only posed image sequences for training. Fueled by the re-

cent progress in neural radiance fields (NeRF) we optimize

a radiance field though with explicit depth optimization and

a novel probabilistic sampling strategy to efficiently han-

dle large scenes. At inference, a single input image suf-

fices to hallucinate novel depth views which are fused to-

gether to obtain 3D scene reconstruction. Thorough ex-

periments demonstrate that we outperform all baselines for

novel depth views synthesis and scene reconstruction, on

indoor BundleFusion and outdoor SemanticKITTI. Code is

available at https://astra-vision.github.io/SceneRF .

1. Introduction

Humans evolve in a 3D physical world where even the

slightest motion requires a thorough understanding of their

surroundings to avoid collisions. While binocular vision

is an evident evolutionary edge, physiological studies sug-

gest that humans can sense depth even with monocular vi-

sion [31]. Despite a long-standing line of research [68, 80,

63] this is yet unequaled by computer vision algorithms,

which mostly rely on multiple-views to reconstruct complex

scenes [56]. However, estimating 3D from a single view

would unveil novel applications in a world flooded with

consumer cameras where mobile robots, like autonomous

cars, still require costly depth sensors [6, 4].

A small portion of the 3D field addressed reconstruc-

tion of complex scenes from a single image [26, 81, 8, 12]

but they all require depth supervision which discourage

acquisition of image-only datasets. Meanwhile, Neural

Radiance Field [42] (NeRF), which optimizes a radiance

field self-supervisedly from one or more views, unraveled

Figure 1: SceneRF overview. From a single input image,

SceneRF synthesizes novel depth/views, at arbitrary poses,

which are then fused to estimate 3D reconstruction. It re-

lies on an image-conditioned NeRF (here, f(·)) trained self-

supervisedly on image sequences with pose.

many descendants [74] with unprecedented performance on

novel views synthesis. They are however, mostly limited

to objects when it comes to single-view input [40, 48, 44].

For complex scenes, besides [34] all train on synthetic

data [60] or require additional geometrical cues to train on

real data [54, 14, 56]. Reducing the need of supervision

on complex scenes would lower our dependency to costly-

acquired datasets.

In this work, we address single-view reconstruction

of complex (and possibly large) scenes, in a fully self-

supervised manner. SceneRF trains only with sequences

of posed images to optimize a large neural radiance fields

(NeRF). Fig. 1 illustrates inference where a single RGB im-

age suffices to reconstruct the 3D scene from the fusion of

synthesized novel depths/views, sampled at arbitrary loca-

tions. We build upon PixelNeRF [77] and propose spe-

cific design choices to explicitly optimize depth. Because

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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large scenes hold their own challenges, we introduce a novel

probabilistic ray sampling to efficiently choose the sparse

locations to optimize within the large radiance volume, and

introduce a Spherical U-Net, which aims is to enable hallu-

cination beyond the input image field of view. We summa-

rize our contributions below:

• We build on custom design choices to explicitly opti-

mize depth (Sec. 3.1) with a Spherical U-Net (Sec. 3.3)

– altogether allowing use of our radiance field for

scene reconstruction (Sec. 3.4),

• Our probabilistic ray sampling (Sec. 3.2) learns to

model the continuous density volume with a mixture of

Gaussians – boosting both performance and efficiency,

• To the best of our knowledge, we propose the first self-

supervised large scene reconstruction method using a

single-view as input. Results on indoor and driving

scenes show that SceneRF even outperforms depth-

supervised baselines (Sec. 4).

2. Related work

As the 3D literature recently blossomed with the rise of

NeRF methods [74], we limit our review to the smaller por-

tion of works using a single input view, and study the liter-

ature along two axes related to our work: novel views/depths

synthesis and 3D reconstruction.

Novel views/depths synthesis. Rendering novel views

from an image has been a long-lasting research prob-

lem [24, 66, 49, 75]. Although most recent works rely on

generalizable NeRFs like PixelNerf [77], MINE [34], or

GRF [67] which learn a representation generalizable to un-

seen input images. The almost entire single-view literature

however focuses on objects which hold specific challenges

such as shape and appearance disentanglement [30, 55], ex-

ploiting symmetry priors [36], or category-centric/agnostic

view synthesis [53, 39]. In the latter, objects are usually

on a plain background though CO3D [53] handle objects

on cluttered scenes or large-scale scenes being synthetic as

in SEE3D [60], or real as in MINE [34] or AutoRF [44].

Specific to complex scenes, [34] synthesizes novel depths

and views building on Multiplane Images, while very re-

cently [72] explored prediction of density fields trained with

stereo or monocular sequences though getting limited im-

provement on the latter.

In general, depth supervision is shown to improve qual-

ity and convergence speed [14, 7, 54, 56], leveraging, for

example, structure from motion [14, 56] or Lidar data [54].

Any NeRF-based method can implicitly optimize depth

but those doing it explicitly still require depth supervision.

Instead, we explicitly optimize depth self-supervisedly.

Since NeRF optimizes radiance field only at sparse lo-

cations, efficient sampling strategy is needed to avoid

prohibitive cost [45]. Departing from the initial hierarchical

sampling [42], a log warping strategy was proposed in

DONeRF [45] with depth supervision, while [32] uses a

pretrained NeRF, and [32] employs dual sampling-shading

networks in a 4-stage training scheme. We inspire from

above works but approximates the continuous density

volume as a mixture of Gaussians from which we can

efficiently sample, without any complex setup.

3D reconstruction While early deep methods focused

on reconstruction with explicit representations: like vox-

els [73], point clouds [1, 17, 76] or meshes [69, 10, 38],

recently, implicit representations gain popularity [50, 51,

52, 28]. A common practice for 3D object reconstruction

is to employ object detectors [29, 19, 82, 22]. A number of

works addressed holistic 3D scene understanding, seeking

prediction of geometry and semantics for indoor [47, 26,

81, 33, 64, 84, 12, 16] and outdoor scenes [78], or both [8].

When semantic and geometry are estimated jointly it is re-

ferred as semantic scene completion (SSC), recently sur-

veyed in [58]. Relevant to this work, MonoScene [8] and

its descendants [41, 37, 27] address SSC with single-input

view but requiring 3D supervision.

A few alternatives exist for self-supervised 3D recon-

struction. The straightforward use of monocular depth es-

timation, reviewed in [43], inherently limits reconstruction

to the visible surface. Differentiable renderers are also pop-

ular, trained with views and poses [48, 62, 15]. To alleviate

the need of color rendering, some optimize silhouettes [23]

or 2D projection [85]. Despite dazzling visuals, they re-

main object-centric. Instead, we learn scene reconstruction

self-supervisedly from a general radiance field.

3. SceneRF

SceneRF learns the implicit scene geometry from a sin-

gle monocular RGB image, training in a self-supervised

manner with image-conditioned Neural Radiance Fields

(NeRFs) [42, 77]. Given a set S of image sequences with

m temporally consecutive RGB images with correspond-

ing poses, denoted {(Is1 , P
s
1 ), . . . , (I

s
m, P

s
m)}s∈S , we learn

a neural representation conditioned on the first frame of

the sequence {Is1}s∈S . The conditioning learned is shared

across sequences and self-supervisedly optimized with all

other frames (i.e., {Is2 , ..., I
s
m}s∈S ). Subsequently, it can be

used for 3D reconstruction from a single RGB image.

In Sec. 3.1 we elaborate on our usage of NeRF for novel

depth synthesis relying on optimization with a reprojec-

tion loss. We then detail two major components. First,

in Sec. 3.2 we introduce a topology-preserving strategy to

efficiently sample points close to the surface. Second, to
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Figure 2: Scene Representation Learning in SceneRF. We leverage generalizable neural radiance field (NeRF) to generate

novel depth views, conditioned on a single input frame. During training, for each ray r in addition to color Ĉ, we explicitly op-

timize depth D̂ with a reprojection loss Lreproj (Sec. 3.1), introduce a Probabilistic Ray Sampling strategy (PrSamp, Sec. 3.2)

to sample points more efficiently. To hallucinate features outside the input FOV, we propose a spherical U-Net (Sec. 3.3).

Finally, our scene reconstruction scheme (Sec. 3.4) fuses novel views/depths to estimate the 3D mesh.

hallucinate the scene beyond the input image field of view,

we introduce our custom U-Net Sec. 3.3 with a spherical

decoder. Ultimately, the above design choices allow us to

synthesize novel depth/views at arbitrary positions which

are then fused into a single 3D reconstruction Sec. 3.4.

3.1. NeRF for novel depth synthesis

In their original formulation, NeRFs [42, 77] optimize a

continuous volumetric radiance field f(.) = (σ, c) such that

for a given 3D point x ∈ R
3 and viewing direction d ∈ R

3,

it returns a density σ and RGB color c. In the following, we

build on PixelNeRF [77] to learn a generalizable radiance

field across sequences, and introduce new design choices to

efficiently synthesize novel depth views.

The training of SceneRF is illustrated in Fig. 2. Given

the first input frame (I1) of a sequence1, we extract a feature

volume W = E(I1) with our SU-Net (Sec. 3.3). We then

select randomly a source future frame Ij , 2 ≤ j ≤ m, and

randomly sample ℓ pixels from it. Given known source pose

and camera intrinsics, we efficiently sample N points along

the rays passing through these pixels (Sec. 3.2). Each sam-

pled point x is then projected on a sphere with ψ(·) so we

can retrieve the corresponding input image feature vector

W(ψ(x)) from bilinear interpolation. The latter is passed

to the NeRF MLP f(·), along with viewing direction d and

positional encoding γ(x), to predict the point density σ and

RGB color c in the input frame coordinates. This writes:

f(γ(x),d;W(ψ(x))) = (c, σ) (1)

As in original NeRF [42], quadrature approximates the

1For clarity, we hereafter omit the superscript sequence s, but the pro-

cess applies to all training sequences S.

color Ĉ(r) of camera ray r from colors sampled along the

ray. For the sake of generality, we write it as:

Ĉ(r) =

N
∑

i

wici wherewi = Ti(1− exp(−σiδi)), (2)

with Ti the accumulated transmittance and δi is the distance

to the previous adjacent point, as defined in [42].

3.1.1 Depth optimization

Unlike most NeRFs, we seek to unravel depth explicitly

from the radiance volume and therefore define its estima-

tion D̂(r) as:

D̂(r) =

N
∑

i

widi , (3)

where di is the distance of point i to the sampled position.

To optimize depth without ground-truth supervision, we

inspire from self-supervised depth methods [20, 21], and

apply a photometric reprojection loss between the warped

source image Ij and its preceding frame Ij−1, referred as

target. We choose consecutive frames to ensure maximum

overlaps. Using the sparse depth estimate D̂j , the photo-

metric reprojection loss Lreproj writes:

Lreproj =
1

ℓ

ℓ
∑

i=1

||Ij(i)− Ij−1

(

proj
(

D̂j(i)
)

)

||1 , (4)

with proj(·) the projection of 2D coordinates i in Ij−1

using ad-hoc camera intrinsics and poses. Importantly, note

that while D̂j is sparse — since only estimated for some
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Figure 3: Probabilistic Ray Sampling (PrSamp). Here,

k=3 Gaussians and m=4 points per Gaussian. Refer to

Sec. 3.2 for details.

rays — the stochastic nature of these rays offers statistically

dense supervision. To also account for moving objects, we

apply the pixels auto-masking strategy from [21].

3.2. Probabilistic ray sampling (PrSamp)

Prior works [45, 25, 42] demonstrate that for volume ren-

dering, sampling points close to the scene surface improves

color estimation (i.e., Eq. (2)) while reducing its computa-

tional cost due to less f(·) inferences. This is however not

trivial here since we lack depth guidance making surface

location unknown.

To address this, our probabilistic ray sampling strategy

(PrSamp) models the continuous density along each ray as

a mixture of 1D Gaussians which then serve as support for

points sampling. PrSamp implicitly learns to correlate high

mixture values with surface locations, subsequently allow-

ing better sampling with much less points. For example,

optimization of a 100m volume requires only 64 points per

ray.

Referring to symbols and (steps) in Fig. 3, for each ray r

we first uniformly sample k points (•) between near and

far bounds. (1) Taking as input the points • and their cor-

responding features W(ψ(•)), a dedicated MLP g(·) pre-

dicts a mixture of k 1D Gaussians {G1, . . . ,Gk}. (2) We

then sample m points per Gaussian (■) and 32 more points

uniformly (▲) ; which amounts toN=k×m■+32▲ points.

The addition of uniform points is essential to explore the

scene volume and prevent g(·) from falling into local min-

ima. (3) All points are then passed to f(·) in Eq. (1) for

volume rendering of color Ĉ(r) and depth D̂(r). (4) In-

tuitively, the densities {σ1, . . . , σN} inferred by f(·) are

cues for 3D surface locations, which we use to update

our mixture of Gaussians. To solve the underlying points-

Gaussians assignment problem (5) we rely on Probabilistic

Self-Organizing Maps (PrSOM) from [2]. In a nutshell, Pr-

SOM assigns points to Gaussians from the likelihood of the

former to be observed by a set of points while strictly pre-

serving the mixture topology. For each Gaussian Gi and

its assigned points Xi , the updated G′
i is the average of

all points j ∈ Xi, weighted by the conditional probability

p(j/Gi) defined in [2] and the occupancy probability2 of j.
Finally, (6) the Gaussians predictor g(·) is updated from the

mean of KL divergences between the current and the new

Gaussians:

Lgauss =
1

k

k
∑

i

KL(Gi||G
′
i) . (5)

To further enforce one Gaussian on the visible surface, we

also minimize distance between depth and closest Gaussian:

Lsurface = min
i
(||µ(G′

i)− D̂(r)||1) . (6)

The complete loss is the sum: Lsamp = Lgauss + Lsurface.

In practice, we use k = 4 Gaussians and m = 8 points

per Gaussians, leading to only N = 64 points per ray.

The pseudo code is in the supp. We ablate parameters

in Sec. 4.4.

3.3. Spherical U­Net (SU­Net)

By definition, the validity domain of f(.) is restricted

to the feature volume W(.) which for a standard U-Net is

the camera FOV, thus preventing estimation of color and

depth (Eqs. 2,3) outside of the FOV where features cannot

be extracted. This is unsuitable for scene reconstruction.

Instead, we equip our SU-Net with a decoder convolv-

ing in the spherical domain. Because spherical projection

induces less distortion than its planar counterpart [59] we

may enlarge the FOV (typically, approx. 120◦) to halluci-

nate color and depth beyond the input image FOV.

At the bottleneck, the encoder features are mapped to

an arbitrary sphere with ψ(.) and passed to our spherical

decoder. To cope with wide feature space at low cost,

we employ light-weight dilated convolutions in the spher-

ical decoder and adapt the standard U-Net multi-scale skip-

connections simply by mapping features with ψ(.).
In practice, we map a 2D pixel [x, y]⊤ to its normalized

latitude-longitude spherical coordinates [θ, ϕ]. Considering
[

∇x,∇y, 1
]⊤

∼K−1
[

x, y, 1
]⊤

a ray passing through said

pixel and the camera center. The projection writes:

ψ

(

x
y

)

=

(

θ
ϕ

)

=

(

π − arctan(∇−1
x )

arccos(−∇y/r)

)

(7)

where r =
√

∇2
x +∇2

y + 1. When inputted in the decoder,

[θ, ϕ] are discretized uniformly and features stored in a ten-

sor that covers an arbitrary large FOV.

2We use alpha values from [42] as good-enough occupancy estimators:

αj=1− exp(−σjδj) with δj the distance to previous point.
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Novel views

Top-View

Input view

Figure 4: Reconstruction scheme. Given an input image,

we fuse the TSDF of the synthesized novel depth/views uni-

formly sampled along an imaginary path, at varying angles.

3.4. Scene reconstruction scheme

With prior sections, SceneRF is now equipped with

novel depth synthesis capability that allows us to synthe-

size depth that significantly diverges from the source input

position. We use this ability to frame scene reconstruction

as the composition of multiple novel depth views.

As illustrated in Fig. 4, given an input frame we syn-

thesize novel depths along an imaginary straight path,

uniformly every ρ meters up to a given distance. At

each position, we also vary the horizontal viewing angles

Φ={−ϕ, 0, ϕ}.

The synthesized depths are then converted to TSDF us-

ing [79] and the overall scene TSDF for voxel v is obtained

from the minimum of all: V(v) = TSDFargmin
i
|TSDFi(v)|(v),

where i spans all synthesized depths. Traditionally, a voxel

TSDF is the weighted average of all TSDFs [11, 46], but we

empirically show (see Sec. 3.2 in supp.) that using the min-

imum leads to better results. We conjecture that this relates

to the linearly increasing depth error with distance.

4. Experiments

We evaluate SceneRF on two primary tasks, namely

novel depth synthesis and scene reconstruction, and novel

view synthesis which we refer as ‘subsidiary task’ because

it is not used for scene reconstruction. While we do not

use 3D data, we need it for evaluation, and thus report re-

sults on SemanticKITTI [4, 18] and BundleFusion [13] for

all three tasks. Each dataset holds unique challenges. Se-

manticKITTI has large driving scenes (≈100m deep) and

the image sequences are captured from a forward-facing

camera which offers little viewpoint variations. Instead,

BundleFusion has shallow indoor scenes (≈10m) with se-

quences exhibiting large lateral motion. Since we first ad-

dress self-supervised monocular scene reconstruction from

RGB images, we detail our non-trivial adaptation of monoc-

ular reconstruction baselines [8, 9, 35] (Sec. 4.1).

We always use k = 4 gaussians and m = 8 points per

Gaussians in PrSamp (Sec. 3.2) but vary novel depth/view

sampling for reconstruction (Sec. 3.4). Specifically, we

sample views every ρ = 0.5m for up 10m at angles Φ =
{−10, 0,+10} for SemanticKITTI, and use ρ = 0.2m for

up to 2.0m with Φ = {−20, 0,+20} for BundleFusion.

Datasets. SemanticKITTI [4] has pairs of outdoor

geolocalized images with voxelized lidar scans of

256x256x32 with 0.2m voxel, with free/occupy labels. We

use the standard train/val split as in [8, 4] and left-crop RGB

images to 1220x370. We train SceneRF with successive

frames spanning ≈10m while ensuring a minimum of 0.4m

distance between two frames. This results in 10,270 train-

ing sequences. We evaluate novel view at 1:3 resolution and

novel depth at 1:2 against sparse lidar projection.

BundleFusion [13] has indoor scenes captured with a hand-

held device. It has RGB-D images of 640×480 each with

an estimated 6-DOF pose. We drop every other frame to in-

crease diversity, i.e. getting 9733 images split in sequences

of 17 frames. The middle frame serves as input and remain-

ing ones for supervision. We select 7 of the 8 scenes for

training and 1 as validation. We evaluate at 1:2 resolution.

Metrics. To measure our reconstruction quality, we use

the intersection over union (IoU), precision, and recall of

occupied voxels. For novel depth estimation, we choose

usual metrics [21]: relative error absolute (Abs Rel) or

squared (Sq Rel), root mean squared error (RMSE), mean

log10 error (RMSE log), threshold accuracies (δ1, δ2, δ3).

As a common practice, depth is capped to 80m in Se-

manticKITTI and 10m in BundleFusion. Following [34],

we measure the quality of synthesized RGB images with:

Structural Similarity Index (SSIM) [70], PSNR, and LPIPS

perceptual similarity [83].

Training setup. SceneRF trains end-to-end minimizing

Ltotal = Lrgb + Lreproj + Lsamp where Lrgb is the standard L2

photometric reconstruction loss of NeRFs [54, 42, 77]. We

report results for 50 epochs training with batch size of 4 and

initial learning rate of 1e-5 with exponential decay at each

epoch with gamma 0.95. Training was conducted on 4 Tesla

v100 GPUs, amounting to ≈5 days.

4.1. Baselines

Novel depth/views. Despite the bustling NeRF field, there

are in fact few single-view NeRFs. We select 3 of them

among the best open-sourced ones for novel depths/views

synthesis: PixelNeRF [77], VisionNeRF [39], MINE [34].

Similar to us, all train with images and poses. We also

compare against state-of-the-art 3D-aware GAN, namely

SynSin [71] for which novel depths are obtained by ap-

plying its depth regressor on novel views. Finally, to ac-

count for natural baselines we evaluate against monocu-

lar depth estimation, here MonoDepth2 [21], where novel

depths (views) are the reprojection of the (colored) point

cloud derived from the input view and estimated depth map.

As such novel views/depths are inevitably sparse we also

report ‘MonoDepth2 + LaMa’ where novel views of Mon-

oDepth2 baseline are inpainted with LaMa [65] and novel
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Method
SemanticKITTI BundleFusion

Novel depth synthesis Novel view synthesis Novel depth synthesis Novel view synthesis

Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1↑ δ2↑ δ3↑ LPIPS↓ SSIM↑ PSNR↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1↑ δ2↑ δ3↑ LPIPS↓ SSIM↑ PSNR↑

MonoDepth2 [21] 0.5259 7.113 14.43 1.0292 10.44 26.32 41.43 0.623 0.166 9.61 0.3205 0.562 0.879 0.4080 44.98 76.31 91.05 0.537 0.492 11.15

MonoDepth2 + LaMa [65] 0.4086 5.101 12.14 0.8472 30.93 49.50 62.65 0.489 0.418 15.32 0.3937 0.954 1.155 0.4538 46.43 75.10 88.79 0.338 0.794 20.80

SynSin [71] 0.3611 3.483 8.824 0.4290 52.61 74.56 86.50 0.519 0.375 14.86 0.2360 0.174 0.522 0.2992 57.08 84.71 95.53 0.627 0.597 13.48

PixelNeRF [77] 0.2364 2.080 6.449 0.3354 65.81 85.43 92.90 0.489 0.466 15.80 0.6029 2.312 1.750 0.5904 46.34 72.38 83.89 0.351 0.822 20.51

MINE [34] 0.2248 1.787 6.343 0.3283 65.87 85.52 93.30 0.448 0.496 16.03 0.1839 0.098 0.386 0.2386 65.53 91.78 98.21 0.377 0.763 20.60

VisionNerf [39] 0.2054 1.490 5.841 0.3073 69.11 88.28 94.37 0.468 0.483 16.49 0.5958 2.468 1.783 0.5586 55.47 79.29 86.68 0.332 0.831 20.51

SceneRF 0.1681 1.291 5.781 0.2851 75.07 89.09 94.50 0.476 0.482 16.46 0.1766 0.094 0.368 0.2100 72.71 94.89 99.23 0.323 0.853 25.07

Table 1: Novel depth/view synthesis. We outperform all on our main task of novel depth, and perform on par on the

subsidiary novel view task. Note the large δ1 gaps, in particular w.r.t. PixelNerf from which we depart from. (val. sets)

Method
Supervision SemanticKITTI BundleFusion

3D Depth Image IoU Prec. Rec. IoU Prec. Rec.

MonoScene [8] ✓ 37.14 49.90 59.24 30.15 35.07 68.51

LMSCNetrgb [57] ✓ 12.08 13.00 63.16 14.91 25.22 31.15

3DSketchrgb [9] ✓ 12.01 12.95 62.31 16.88 25.82 32.76

AICNetrgb [35] ✓ 11.28 11.84 70.89 15.99 25.20 30.41

MonoScene [8] ✓ 13.53 16.98 40.06 19.00 22.51 54.91

MonoScene* [8] ✓ 11.18 13.15 40.22 17.20 21.88 44.59

SceneRF ✓ 13.84 17.28 40.96 20.16 25.82 47.92

* Here, MonoScene is supervised by depth predictions of [21] trained
with ground-truth poses.

Table 2: Scene reconstruction. Despite being the only self-

supervised method, we outperform all ‘Depth’ supervised

baselines. Refer to Sec. 4.3 for supervision details.

depth is obtained from running MonoDepth2 again3.

Scene reconstruction. For monocular scene reconstruc-

tion, we consider 4 baselines being: MonoScene [8],

LMSCNetrgb [57], 3DSketchrgb [9], AICNetrgb [35]. The

baselines with rgb are RGB-inferred version from [8]. Since

all baselines require geometric supervision from depth sen-

sors, we report ‘3D’ and ‘Depth’ supervision along our ‘Im-

age’ supervision. This is further detailed in Sec. 4.3.

4.2. Novel depth synthesis

To first evaluate the quality of our novel depths/views,

given an input image we synthesize depth/views at the po-

sition of all frames in the sequence except for the input one.

From Tab. 1, for the task of novel depth synthesis we rank

first on all metrics with a comfortable margin. In particu-

lar, one may note the large gaps on AbsRel and δ-metrics

as they are challenging metrics. It is also noticeable that

we significantly improve over PixelNeRF, from which we

depart, demonstrating the benefit of our design choices.

For example, we get an improvement of +9.26 and +26.37

for δ1 on SemanticKITTI and BundleFusion, respectively,

w.r.t. PixelNeRF. Unsuprisingly, we outperform very sig-

nificantly baselines using monocular depth estimation (i.e.,

MonoDepth2) or 3D-GAN (i.e., SynSin) which we ascribe

to radiance volumes preserving 3D-aware consistency.

Though of least importance for scene reconstruction,

3Empirically, we observe that directly depth inpainting is much worse.

Tab. 1 also shows that SceneRF is roughly on par with the

best methods on the subsidiary task of novel views synthesis

where, notably, we always improve over PixelNeRF.

In Fig. 5, we primarily show novel depths and the sub-

sidiary novel views for varying input frames, multiple po-

sitions and angles w.r.t. the input frame position. For all,

novel depths are visually outperforming the baselines. In

particular, we note the sharper depth edges and the better

quality at far when zooming in. When varying the viewing

angle (i.e., −10◦ or +10◦) we note also fewer edge artefacts

than baselines, which is even more striking for the outdoor

example. Please also refer to the supplemental video.

4.3. 3D reconstruction results

To evaluate reconstruction, we compare against the vox-

elized 3D groundtruth which is obtained either from the ac-

cumulation of lidar scans in SemanticKITTI or the fusion

of depth maps in BundleFusion.

Though we do not require depth or 3D for supervision,

we still report 3 supervision setups in Tab. 2: (i) ‘3D’ where

baselines are trained with full 3D groundtruth. (ii) ‘Depth’

using as supervision the TSDF fusion [79] of depth se-

quences from the supervised AdaBins method [5] which

we retrain to boost performance. (iii) ‘Image’ where like

in SceneRF, we only train self-supervisedly from image se-

quences. It is important to note that, except for the ’Image’-

supervision baseline, all other baselines incorporate some

sense of ground truth depth which we do not have.

From Tab. 2, SceneRF is the only original self-

supervised baseline that still outperforms all ‘Depth’-

supervised baselines on both datasets. This is surpris-

ing given the additional geometrical supervision of ‘Depth’

methods. It advocates that SceneRF efficiently self-

discovers geometrical cues from image sequences. For

more in depth comparison, we also adapt MonoScene [8]

to ‘Image’-supervision, using as ground truth the fusion

of depth predictions of [21]4. SceneRF still outper-

forms this image-supervised MonoScene by ≈ 3 points on

BundleFusion. We also report the original ‘3D’-supervised

MonoScene, acting as an unreachable upper bound since 3D

provides supervision beyond occlusions. In general, The

4We train Monodepth2 [21] with groundtruth poses for fair comparison.
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Method
SemanticKITTI BundleFusion

Novel depth synthesis Novel view synthesis Novel depth synthesis Novel view synthesis

AbsRel↓ SqRel↓ RMSE↓ RMSElog↓ δ1↑ δ2↑ δ3↑ LPIPS↓ SSIM↑ PSNR↑ AbsRel↓ SqRel↓ RMSE↓ RMSElog↓ δ1↑ δ2↑ δ3↑ LPIPS↓ SSIM↑ PSNR↑

SceneRF 0.1681 1.291 5.781 0.2851 75.07 89.09 94.50 0.476 0.482 16.46 0.1766 0.094 0.368 0.2100 72.71 94.89 99.23 0.323 0.853 25.07

w/o Lrgb 0.1801 1.480 6.347 0.3085 72.15 87.56 93.66 - - - 0.1769 0.084 0.374 0.2043 71.75 95.82 99.79 - - -

w/o Lreproj 0.2115 1.706 6.133 0.3059 69.10 87.55 94.13 0.491 0.481 16.42 0.2168 0.144 0.454 0.2577 64.99 90.47 97.72 0.328 0.852 24.82

w/o SU-Net 0.1758 1.386 5.908 0.2967 73.91 88.27 94.01 0.464 0.480 16.40 0.2449 0.167 0.488 0.3263 59.77 85.84 94.63 0.461 0.730 14.29

w/o PrSamp 0.1858 1.301 5.844 0.2936 71.85 88.73 94.24 0.505 0.471 16.43 0.1825 0.100 0.385 0.2125 70.69 94.10 98.78 0.317 0.730 25.15

Freeze σ Lrgb 0.1750 1.366 6.029 0.2962 73.42 88.28 94.14 0.494 0.476 16.42 0.2081 0.131 0.423 0.2362 67.55 92.68 98.42 0.342 0.850 24.80

Lrgb on S + T 0.1966 1.484 5.993 0.2991 70.36 88.35 94.07 0.486 0.478 16.40 0.1942 0.134 0.409 0.2270 70.78 93.73 98.18 0.357 0.838 24.71

Table 3: Architecture ablation on the validation set. All components contribute to yielding better results for our primary

task of novel depth synthesis, with mixed results on novel view synthesis. Details are in Sec. 4.4.

low numbers for ’Depth’ and ’Image’ methods suggest task

complexity, indicating potential for future research.

Fig. 5 also shows reconstructed 3D meshes for sample

inputs. Results are better seen when zooming in and in

supplementary video. On both datasets SceneRF produces

better reconstruction results with less artefacts, especially

on vegetation and sidewalk on SemanticKITTI and general

scene structure on BundleFusion.

4.4. Ablation studies

Architectural components. Tab. 3 reports novel

depth/view synthesis of SceneRF when removing the rgb

loss (Lrgb), reprojection loss (Lreproj, Eq. (4)), Spherical

U-Net (SU-Net, Sec. 3.3), or Probabilistic Sampling

(PrSamp, Sec. 3.2). Without SU-Net, we use a standard

U-Net of similar capacity where ψ(.) is a simple carte-

sian projection. Without PrSamp, we revert to standard

hierarchical sampling [42, 77], using the same number of

inferences for a fair comparison.

In a nutshell, all our components contribute to the best

novel depth synthesis metrics. In particular, Lreproj and

PrSamp improve significantly the absolute relative error and

the δ1, showing a beneficial effect on close range depth es-

timation. For the subsidiary task of novel view synthesis,

our components have mixed effects showing that depth im-

provement comes at the cost of slightly lower image recon-

struction.

Probabilistic Ray Sampling (Sec. 3.2). It is tempting to

assume that PrSamp would better approximate the underly-

ing density volume with more Gaussians or more sampled

points, thus yielding better results. This is proven wrong

in Tab. 4 where we vary the number of Gaussians (k) and

points sampled per Gaussian (m). The best results are with

k=4 and m=8. We conjecture this relates to the radiance

field not being able to optimize too many surfaces per ray.

Fewer Gaussians also preserve computational cost, more

Gaussians introduce noise with fewer points per Gaussian.

We now compare PrSamp (k=4 and m=8) against other

samplings. First, we train SceneRFMN360 where PrSamp is

replaced by the sampling of MipNerf360 [3]. Our SceneRF

(i.e., using PrSamp) outperforms SceneRFMN360 on all

k m Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1↑ δ2↑ δ3↑

1 32 0.1850 1.358 5.956 0.2940 71.38 88.73 94.51

2 16 0.1788 1.327 5.889 0.2878 72.68 88.90 94.70

4

4 0.1845 1.371 5.878 0.2940 71.62 88.59 94.51

8 0.1717 1.309 5.696 0.2809 75.01 89.35 94.76

16 0.1664 1.319 5.980 0.2894 74.58 88.48 94.17

8
4 0.1768 1.311 5.824 0.2910 72.86 88.60 94.42

8 0.1697 1.311 5.794 0.2873 74.59 88.71 94.34

Table 4: PrSamp ablation on Sem.KITTI (val). We vary

number of Gaussians (k) and points per Gaussian (m).

metrics and datasets, with δ1/δ2/δ3 of +6/+3/+2 on Se-

manticKITTI and +5/+4/+2 on BundleFusion. We conjec-

ture that this relates to our uniform sampling (▲, Sec. 3.2)

which encourages ray exploration, i.e. fighting view am-

biguity, while MN360 coarse-to-fine distillation prevents

escaping from invalid minima. Importantly, note that

MN360 uses 96 inferences (64 proposal+32 NeRF) and

PrSamp only 64 (32+32). Second, we depart from original

VisionNerf in Tab. 1 and train VisionNerfPrSamp where hier-

archical sampling is replaced by our PrSamp, which proves

to improve δ1/δ2/δ3 by +3.9/+0.1/+0.1 on SemanticKITTI.

Explicit depth optimization (Lreproj). Besides perfor-

mance in Tab. 3, it is reasonable to question the need of

explicit depth optimization as NeRF-based methods can im-

plicitly estimate depth. We argue that Lrgb and Lreproj pursue

slightly different objectives since Lrgb optimizes the ren-

dered image by adjusting point density color c and σ w.r.t.

source frame (Ij in Fig. 2), while Lreproj optimizes repro-

jection of source on target (Ij−1 in Fig. 2) but solely by

adjusting depth with σ. In Tab. 3 bottom we verify the com-

plementarity of the two losses. First, we ‘Freeze σ in Lrgb’

to separate both optimization objectives, which performs

worse (−4 on δ1). Second, we verify that using target in

Lreproj does not provide an unfair edge by removing Lreproj

and replacing Lrgb with ‘Lrgb on source+target’ — which

also drops performance (−6 on δ1). In supp., we also show

that Lreproj can boost the geometric ability of other NeRFs.
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Input Method 3D mesh

(w/ our recons. scheme)

Novel depth Novel view

+1m, 0◦ +3m, −10◦ +5m, +10◦ +5m, +10◦

PixelNeRF

MINE

VisionNeRF

SceneRF

+0.2m, 0◦ +0.2m, −20◦ +0.4m, +20◦ +0.4m, +20◦

PixelNeRF

MINE

VisionNeRF

SceneRF

Figure 5: Qualitative results on SemanticKITTI and BundleFusion. For each row, we report novel depths/views at varying

positions and viewing angles w.r.t. the input frame. We note that our depths are sharper and better at-far distances. To produce

3D meshes, all — even baselines — use our scheme for reconstruction (Sec. 3.4). On both datasets, our reconstruction is

evidently better than others. Please zoom in and refer to video in supplementary for better qualitative judgement.

Figure 6: Performance vs. input view distance on Se-

manticKITTI. Novel depth quality drops as distance in-

creases due to lower overlaps of FOV with the input view.

Spherical U-Net (Sec. 3.3). Tab. 3 ‘w/o SU-Net’ high-

lights the benefit of our SU-Net. We complement this study,

by comparing planar (i.e., standard decoder) and spheri-

cal decoder of different horizontal FOV. We experiment

with planar-80◦/planar-120◦/spherical-80◦/spherical-120◦,

getting respectively 17.66/17.25/17.67/17.17 for Abs Rel

metric (lower is better) and 73.78/74.23/73.46/75.01 for δ1
(higher is better). Larger FOV seems to always improve,

but our spherical decoder reaches the best results — pre-

sumably because it induces less projection distortion.

Performance beyond input FOV. Different than genera-

tive methods, like GAN, a minimum FOV overlaps between

the input and the novel view is needed to estimate relevant

features. We quantify this on novel depth in Fig. 6 show-

ing that all metrics drop significantly as a function of the

novel view distance although SceneRF is consistently bet-

ter. For novel view synthesis, we evaluate the quality of the

generated unseen pixels using ‘masked metrics’ in Tab. 5,

i.e., evaluating only pixels not seen in the input frame. Here

again, SceneRF is far better than any other baselines.

Scene reconstruction (Sec. 3.4). We study variations

of our scene reconstruction scheme in Tab. 6. In the

first 3 rows, we evaluate reconstruction using a single

depth map at the input frame with the best monocu-

lar depth estimation methods being: AdaBins [5] (depth-

supervised), Monodepth2 [21], and SceneRF w/o recon-

struction scheme. AdaBins is the only that requires depth

and logically outperforms others on SemKITTI where scene

are deep and Lidar provides an unfair supervision edge.
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Novel depth synthesis Novel view synthesis

Method AbsRel↓ SqRel↓ RMSE↓ RMSElog↓ δ1↑ δ2↑ δ3↑ LPIPS↓ SSIM↑ PSNR↑

S
em

K
IT

T
I PixelNeRF 0.5145 8.057 14.835 0.843 9.10 26.68 47.58

N / A

33.48

MINE 0.3869 6.099 13.105 0.656 25.41 50.43 67.55 33.47

VisionNerf 0.4831 7.556 14.573 0.825 14.50 34.43 52.44 33.41

SceneRF 0.3056 4.187 9.980 0.447 44.32 69.56 81.40 33.91

B
u
n
.F

u
si

o
n PixelNeRF 3.2717 20.369 5.277 1.441 4.48 10.40 15.75

N / A

22.18

MINE 0.2047 0.112 0.388 0.246 62.77 90.90 98.24 25.47

VisionNerf 3.3925 20.645 5.360 1.453 4.43 10.11 14.67 21.63

SceneRF 0.1848 0.092 0.343 0.211 70.06 94.00 99.18 25.90

Table 5: Masked metrics. We calculate the metrics for

pixels that are not visible in the input image, highlighting

the superiority of SceneRF compared to the baselines.

SemanticKITTI BundleFusion

Method
Need

depth
IoU Prec. Rec. IoU Prec. Rec.

AdaBins [5] ✓ 15.37 27.33 26.00 18.37 20.65 62.39

Monodepth2* [21]

✗

10.76 18.28 20.74 14.52 20.14 34.29

SynSin [71] 7.84 13.05 16.43 9.81 16.62 19.30

MINE [34] 10.93 18.44 21.20 12.61 18.46 28.46

VisionNeRF [39] 11.77 20.14 22.08 13.65 20.19 29.65

PixelNeRF [77] 11.65 19.73 22.16 13.48 19.78 29.75

SceneRF (w/o Scheme) 11.80 19.91 22.47 17.33 20.13 55.43

SceneRF 13.84 17.28 40.96 20.16 25.82 47.92

* Monodepth2 is trained with GT poses for fair comparison with our setting.

Table 6: Variations of scene reconstruction. We compare

SceneRF against reconstruction with AdaBins [5] (depth-

supervised) or Monodepth2 [21] (self-supervised), and also

report result w/o our Reconstruction Scheme (Sec. 3.4).

Note that, conversely to SceneRF, baselines use TSDF of

the depth from the input view.

Input 3D mesh
Novel depth Novel view

+1m, 0◦ +3m,−10◦ +3m,−10◦

Figure 7: nuScenes generalization. (train on SemKITTI)

On BundleFusion, SceneRF however outperforms AdaBins

by ≈ + 2 IoU points which is remarkable as it is self-

supervised. SceneRF also reaches best performance among

all self-supervised methods with roughly +3 and +6 IoU

w.r.t. Monodepth2 [21] on SemKITTI and BundleFusion,

respectively. SceneRF also outperforms reconstructions

from SynSin and all other NeRFs by a few points on both

datasets. In supplementary, we also study the effect of vary-

ing steps (ρ) and rotations (Φ) in our reconstruction scheme.

5. Discussion

To the best of our knowledge, SceneRF is the first

method to handle complex cluttered scenes. Still, self-

supervised monocular scene reconstruction is yet in its early

steps, and we discuss here some remaining challenges.

Features compression. A drawback of our

planar7→spherical mapping of SU-Net is that it in-

duces spatial compression. An intuitive example is when

input/output are of same size, since features will project

on a smaller spatial portion of the output feature map. A

simple workaround would be to increase output size but

this would come at higher memory cost.

Inference time. Despite fewer inferences thanks to our

PrSamp, depth synthesis is still time-consuming due to per-

point inference — which limits applicability. We conjecture

that ray inference [61] could be beneficial here.

Generalization. To overcome the highly ill-posed prob-

lem of reconstruction from a single image, NeRF-based

methods rely on strong priors learned on the training set.

This poses inevitable issues for across domains generaliza-

tion (e.g., beyond driving scenes). Still, in Fig. 7 we show

that when training on SemanticKITTI, SceneRF exhibits

some generalization capability to the unseen nuScenes im-

ages [6] despite a large gap (Germany7→USA, different

camera setup, etc.).

Direct Field Reconstruction. As SceneRF uses fused

synthesized depths (Sec. 3.4) which are proxies of the

radiance field, this suggests that reconstruction could be

achieved directly. While our experiments show that using

alpha/sigma to reconstruct 3D scene is not straightforward,

we believe an interesting avenue for research is to seek

direct extraction of surfaces from the radiance field.
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[38] Yiyi Liao, Simon Donné, and Andreas Geiger. Deep march-

ing cubes: Learning explicit surface representations. In

CVPR, 2018. 2

[39] Kai-En Lin, Yen-Chen Lin, Wei-Sheng Lai, Tsung-Yi Lin,

Yichang Shih, and Ravi Ramamoorthi. Vision transformer

for nerf-based view synthesis from a single input image. In

WACV, 2023. 2, 5, 6, 9

[40] Feng Liu and Xiaoming Liu. 2d gans meet unsupervised

single-view 3d reconstruction. In ECCV, 2022. 1

[41] Ruihang Miao, Weizhou Liu, Mingrui Chen, Zheng Gong,

Weixin Xu, Chen Hu, and Shuchang Zhou. Occdepth: A

depth-aware method for 3d semantic scene completion. In

CVPR, 2023. 2

[42] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In ECCV, 2020. 1, 2, 3, 4, 5, 7

9396



[43] Yue Ming, Xuyang Meng, Chunxiao Fan, and Hui Yu. Deep

learning for monocular depth estimation: A review. Neuro-

computing, 2021. 2

[44] Norman Müller, Andrea Simonelli, Lorenzo Porzi,
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zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. In NeurIPS,

2019. 2

[63] Peter Sturm and Steve Maybank. A method for interactive

3d reconstruction of piecewise planar objects from single im-

ages. In BMVC, 1999. 1

[64] Cheng Sun, Chi-Wei Hsiao, Min Sun, and Hwann-Tzong

Chen. Horizonnet: Learning room layout with 1d represen-

tation and pano stretch data augmentation. In CVPR, 2019.

2

[65] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,

Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,

Naejin Kong, Harshith Goka, Kiwoong Park, and Victor S.

Lempitsky. Resolution-robust large mask inpainting with

fourier convolutions. In WACV, 2021. 5, 6

[66] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.

Single-view to multi-view: Reconstructing unseen views

with a convolutional network. CoRR, 2015. 2

[67] Alex Trevithick and Bo Yang. GRF: Learning a general ra-

diance field for 3D scene representation and rendering. In

ICCV, 2021. 2

[68] Frank A Van den Heuvel. 3d reconstruction from a single

image using geometric constraints. ISPRS, 1998. 1

[69] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei

Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh

models from single rgb images. In ECCV, 2018. 2

[70] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.

Image quality assessment: from error visibility to structural

similarity. TIP, 2004. 5

[71] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. SynSin: End-to-end view synthesis from a single

image. In CVPR, 2020. 5, 6, 9

[72] Felix Wimbauer, Nan Yang, Christian Rupprecht, and Daniel

Cremers. Behind the scenes: Density fields for single view

reconstruction. In CVPR, 2023. 2

[73] Haozhe Xie, Hongxun Yao, Shengping Zhang, Shangchen

Zhou, and Wenxiu Sun. Pix2vox++: Multi-scale context-

aware 3d object reconstruction from single and multiple im-

ages. IJCV, 2020. 2

[74] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,

Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-

kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in

visual computing and beyond. In EUROGRAPHICS, 2022.

1, 2

9397



[75] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir

Mech, and Ulrich Neumann. Disn: Deep implicit surface

network for high-quality single-view 3d reconstruction. In

NeurIPS, 2019. 2

[76] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge

Belongie, and Bharath Hariharan. Pointflow: 3d point cloud

generation with continuous normalizing flows. In ICCV,

2019. 2

[77] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelNeRF: Neural radiance fields from one or few images.

In CVPR, 2021. 1, 2, 3, 5, 6, 7, 9

[78] Sergey Zakharov, Rares Ambrus, Vitor Campagholo

Guizilini, Dennis Park, Wadim Kehl, Frédo Durand,
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