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Abstract

We present a diffusion-based model for 3D-aware gen-
erative novel view synthesis from as few as a single input
image. Our model samples from the distribution of possible
renderings consistent with the input and, even in the presence
of ambiguity, is capable of rendering diverse and plausible
novel views. To achieve this, our method makes use of existing
2D diffusion backbones but, crucially, incorporates geom-
etry priors in the form of a 3D feature volume. This latent
feature field captures the distribution over possible scene rep-
resentations and improves our method’s ability to generate
view-consistent novel renderings. In addition to generating
novel views, our method has the ability to autoregressively
synthesize 3D-consistent sequences. We demonstrate state-of-
the-art results on synthetic renderings and room-scale scenes;
we also show compelling results for challenging, real-world
objects.

1. Introduction
In this work, we address multiple open problems in novel

view synthesis (NVS): to design an NVS framework that
(1) operates from as little as a single image and is capable
of (2) generating long-range of sequences far from the input
views as well as (3) handling both individual objects and
complex scenes (see Fig. 1). While existing few-shot NVS
approaches, trained on a category of objects with a regression
objective, can generate geometrically consistent renderings,
i.e., sequences whose frames share a coherent scene structure,
they are ineffective in handling extrapolation and unbounded
scenes (see Fig. 2). Dealing with long-range extrapolation
(2) requires using a generative prior to deal with the innate
ambiguity that comes with completing portions of the scenes
that were unobserved in the input. In this work, we propose
a diffusion-based few-shot NVS framework that can generate
plausible and competitively geometrically consistent render-
ings, pushing the boundaries of NVS towards a solution that

*Equal contribution.
†Work was done during an internship at NVIDIA.

Figure 1. Our 3D-aware diffusion model synthesizes realistic novel
views from as little as a single input image. These results are
generated with the ShapeNet [12], Matterport3D [11], and Common
Objects in 3D [58] datasets.

Figure 2. While regression-based models are capable of effective
view synthesis near input views (top row), they blur across ambiguity
when extrapolating. Generative approaches can continue to sample
plausible renderings far from input views (second row, third column).

can operate in a wide range of challenging real-world data.
Previous approaches to few-shot novel view synthesis

can broadly be grouped into two categories. Geometry-prior-
based methods [61, 60, 48, 43, 49, 3, 104] have drawn from
work on scene representations and neural rendering [87].
While they achieve impressive results on interpolating near
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input views, most methods are trained purely with regression
objectives and struggle in dealing with ambiguity or longer-
range extrapolations. When challenged with the task of
novel view synthesis from sparse inputs, they can only tackle
mildly ambiguous cases, i.e., cases where the conditional
distribution of novel renderings is well approximated by the
mean estimator of this distribution — obtained by minimizing
a pixel-wise L1 or L2 loss [106, 78, 104]. However, in highly
ambiguous cases, for example when parts of the scene are
occluded in all the given views, the conditional distribution
of novel renderings becomes multi-modal and the mean
estimator produces blurry novel views (see Fig. 2). Because
of these limitations, regression-based approaches are limited
to short-range view interpolation of object-centric scenes and
struggle in long range extrapolation of unconstrained scenes.

By contrast, generative approaches solve the novel view
synthesis problem by sampling random plausible samples
from a conditional distribution modeled by a generative prior.
Existing generative models for view synthesis [64, 97, 59, 44]
autoregressively extrapolate one or a few input images with
few or no geometry priors. For this reason, most of these
methods struggle with generating geometrically consistent se-
quences — renderings are only approximately consistent be-
tween frames and lack a coherent rigid scene structure. In this
work, we present an NVS method that bridges the gap between
geometry-based and generative view synthesis approaches
for both geometrically consistent and generative rendering.

Our method leverages recent developments in diffusion
models. Specifically, conditional diffusion models [67, 65,
57, 63, 66] can be directly applied to the task of NVS. Con-
ditioned on input images, these models can sample from the
conditional distribution of output renderings. As a generative
model, they naturally handle ambiguity and lend themselves
to continued autoregressive extrapolation of plausible outputs.
However, as we show in Sec. 4 (Tab. 1), an image diffusion
framework alone struggles to synthesize 3D-consistent views.

Geometry priors remain valuable for ensuring view
consistency when operating on complex scenes, and
pixel-aligned features [68, 104, 92] have been shown to
be successful for conditioning scene representations on
images. We incorporate these ideas into the architecture of
our diffusion-based NVS model with the inclusion of a latent
3D feature field and neural feature rendering [51]. Unlike
previous view synthesis works that include neural fields, how-
ever, our latent feature field captures a distribution of scene
representations rather than the representation of a specific
scene. A rendering from this latent field is distilled into the
rendering of a particular scene realization through diffusion
sampling at inference. This novel formulation is able to both
handle ambiguity resulting from long-range extrapolation
and generate geometrically consistent sequences.

In summary, contributions of our work include:

• A novel view synthesis method that extends 2D diffusion
models to be 3D-aware by conditioning them on 3D
neural features extracted from input image(s).

• A demonstration that our 3D feature-conditioned
diffusion model can generate realistic novel views given
as little as a single input image on a wide variety of
datasets, including object level, room level, and complex
real-world scenes.

• A showcase that with our proposed method and sampling
strategy, our method can generate long trajectories of
realistic, multi-view consistent novel views without
suffering from the blurring of regression models or the
drift of pure generative models.

2. Related work
Focusing on novel view synthesis (NVS) from as little as

a single image, our work touches on several areas at the inter-
section of 3D reconstruction, NVS, and generative models.

Geometry-based novel view synthesis. A large body of
prior works for NVS recovers the 3D structure of a scene
by estimating the input images’ camera parameters [80, 70]
and running multi-view stereo (MVS) [1, 23]. The recovered
explicit geometry proxies enable NVS but fail to synthesize
photorealistic and complete novel views especially for
occluded regions. Some recent methods [60, 61] combine 3D
geometry from an MVS pipeline with deep learning–based
NVS, but the overall quality may suffer if the MVS pipeline
fails. Other explicit geometric representations, such as
depth maps [22, 91], multi-plane images [21, 110], or
voxels [77, 46] are also used by many recent NVS approaches,
as surveyed by Tewari et al. [87].

Regression-based novel view synthesis. Many deep
learning–based approaches to NVS are supervised to predict
training views with regression. These works often employ
3D representations for scenes and differentiable neural ren-
dering [78, 48]. While many methods are optimized on a
per-scene basis with dense input views [48], few-shot NVS
approaches are designed to generalize across a class of 3D
scenes, which enable them to make predictions from one
or a few input images at inference. Among few-shot NVS
methods, some rely on test-time optimization [78, 32] or meta
learning [75, 85], while others lift input observations via en-
coders [91, 52, 110, 104, 88, 13, 92] and predict novel views
in a feed-forward fashion. A recent trend has some NVS meth-
ods forgoing geometry priors for light fields [76] or transform-
ers [69, 39], but these geometry-free methods are otherwise
trained similarly to other regression-based NVS algorithms.

Generative models for novel view synthesis. A separate
line of work studies methods for long-range view extrapo-
lation. Because venturing far beyond the observed views
requires generating parts of the scene, these methods are
typically grounded in generative models. A common thread
amongst these methods is that they often contain only weak
geometry priors, e.g., sparse feature point clouds [97, 62, 37],
or lack geometry priors altogether [64, 59]. As image-
translation-based generative models, they are capable of
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conditioning on their own previous generations to autore-
gressively synthesize long camera trajectories, sometimes
infinitely [44, 41]. Because the focus is on extrapolating
at large scales, these methods ordinarily achieve only
approximate view consistency at longer ranges.
3D GANs. 3D GANs [50, 73, 9, 8, 25, 53, 101, 109, 79,
103, 108, 16, 98, 4, 102] combine an adversarial [24] training
strategy with implicit neural scene representations to learn
generative models for 3D objects. While typically tasked
with unconditional synthesis of 3D objects, a trained 3D
GAN contains a strong prior for 3D shapes and can be
inverted for NVS of detailed scenes [9, 8]. 3D GANs have
been extensively developed to achieve compositionality [51],
higher rendering resolution [8, 25, 79], video generation [2],
and scalability to larger scenes [17]. GANs, however, are
notoriously difficult to train, and their 3D inversions from
an input image are often brittle without additional 3D
priors [100] or an accurate camera input [36]. Moreover,
most 3D GANs assume canonical camera poses and limit
their optimal operating ranges to single objects.
2D diffusion models. 2D diffusion models [29, 81, 83, 34]
have transformed image synthesis. Favorable properties such
as mode coverage and a stable training objective have enabled
them to outperform [18] previous generative models [24] on
unconditional generation. Diffusion models have also been
shown to be excellent at modeling conditional distributions of
images, where the conditioning information may be a class la-
bel [84, 18], text [57, 63, 66] or another image [30, 67, 65, 10].
Recent 3D diffusion works. Recently, DreamFusion [55]
and 3DiM [96] apply 2D image diffusion models to build
3D generative models. DreamFusion performs text-guided
3D generation by optimizing a NeRF from scratch. 3DiM
performs novel view synthesis conditioned on input images
and poses (similar to [59]) and does not employ any explicit
geometry priors; it aggregates multiple observations at
inference using a unique stochastic conditioning scheme. By
contrast, the geometry priors present in our approach enable
3D consistency with a much lighter-weight model (90M
for ours vs 471M or 1.3B for 3DiM [96]), and because our
model naturally handles multiple input views, we have the
flexibility to choose efficient sampling schemes at inference.
While code for 3DiM is unavailable, we compare to a similar
geometry-free variant in Sec. 4 (Tab. 1) and to stochastic view
conditioning in the supplement.

A number of concurrent works have been proposed which
utilize 2D diffusion models for novel view synthesis and 3D
generation [105]. Many such works build on DreamFusion,
either providing improvements to the score distillation
loss formulation [95, 27, 35] or underlying 3D representa-
tion [42, 15, 5, 38, 33, 7, 89, 56]. More similar to our method
are those which use pose-conditioned image diffusion models
to synthesize novel views [45, 90, 86, 99, 26, 111]. These
methods either use specialized architectures to inject the
pose conditioning [45, 90], use warped images as condition-
ing [99], or use a partially optimized 3D representation to

Figure 3. Illustration of our framework D. The pipeline receives
as input one or more input views x and the camera parameters
associated with input and target views. We extract features from
each input view x using T and unproject them into a feature volume
W . These volumes are aggregated using a mean-pooling operation,
decoded by a small MLP f , and a feature image F is created by
projecting into the target view xtarget using volume rendering. The
U-Net denoiser U then takes in the resulting feature image F as
well as a noisy image of the target view y and noise level σ, and
produces a denoised image of the target view xtarget.

serve as a geometric prior for conditioning [86]. Our method
strikes a balance between these approaches: no scene-specific
training is needed, but we still capture the strong geometric
prior of feature re-projection in a 3D space.

A final line of related work [74, 93] adapts 2D diffusion
models to 3D object generation by training diffusion models
on datasets of optimized tri-planes [8, 54]. They have
achieved impressive results on object synthesis but require
two-stage training and are limited to object generation.
While our work also adapts 2D diffusion architectures for 3D
generation, it can be applied to larger scenes and is trained
end-to-end.

3. Method
Here we describe the architecture of our NVS model for

both single and multiple-view conditioning, and we explain
our training and inference methods.

In novel view synthesis, we are given a set of input images
xinputs and camera parameters Pinputs with associated pose
and intrinsics and are tasked with making a prediction for a
query view given a set of query camera parameters.

Our goal is to sample novel views from the corresponding
conditional distribution:

p(xtarget|xinputs,Pinputs,Ptarget). (1)

3.1. 3D-aware diffusion model architecture
Diffusion models rely on a denoiser trained to predict

Ep(x|y)[x] given y, a noisy version of x with noise
standard deviation σ. An image is generated by drawing
y0 ∼ N (0,σ2

maxI) and iteratively denoising it according to
a sequence of noise levels σ0=σmax>...>σN =0.
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In our work, we directly repurpose 2D diffusion models to
model the distribution in Eq. 1. The intuition is that generative
novel view synthesis is identical to any other conditional
image generation task — all we need to do is condition
a 2D image diffusion model on the input image and the
relative camera pose. However, while there are many ways of
applying this conditioning, some may be more effective than
others (see Tab. 1 and ablation studies of different options in
Sec. 4.4). By incorporating geometry priors in the form of a
3D feature field and neural rendering, we give our architecture
a strong inductive bias towards geometrical consistency.

Fig. 3 summarizes the design of our conditional-desnoiser-
based pipeline D that takes as inputs a noisy target view y,
conditioning information (xinputs,Pinputs,Ptarget) and a noise
level σ. Our strategy builds upon pixel-aligned implicit func-
tions [68, 104] and neural rendering. Following Fig. 3, given
a single input image x taken from an input view camera P,
we use an image-to-image translation network T to predict a
feature image with c×d channels and reshape it into a feature
volumeW that spans the source camera frustum. d then corre-
sponds to the depth dimension of the volume and c to the num-
ber of channels in each cell of the volume (typically, c=16
and d=64). Given a query camera Ptarget, we cast rays in 3D
space. Continuing on Fig. 3, for any point r along a ray, we
sample the volume W with trilinear interpolation and decode
the obtained feature w=W (r) with a small multi-layer per-
ceptron (MLP) f to obtain a density τ and a feature vector c

(τ,c)=f(w). (2)

By projecting this feature field into the target view using vol-
ume rendering [47, 48], we obtain a feature imageF in Fig. 3:

F (x,P,Ptarget)=RENDER(f ◦T (x),P,Ptarget). (3)

In practice, we employ the image segmentation archi-
tecture DeepLabV3+ [14, 31] for T , and implement f as a
two-layer ReLU MLP with 64 channels. We perform volume
rendering over features in the same way as NeRF [48]. We
use input/output image resolution 1282 in all experiments.

The feature image F is concatenated to the noisy
image y and passed as input to a denoiser network U to
produce the final target view xtarget (see Fig. 3). We use
DDPM++ [84, 34] for U , where

D(y ;xinputs,Pinputs,Ptarget,σ)=U(y,F ;σ) (4)

Fig. 3 and Eq. 4 summarize the design of D. The total
number of trainable parameters in D is 90M.

3.2. Incorporating multiple views
The previous section describes our approach to condition-

ing on a single input view. However, additional information
in the form of multiple input views reduces uncertainty and
enables our model to sample renderings from a narrower
distribution. When multiple conditioning views are available,

we process each input image independently into a separate
feature volume.

Eq. 2 can be generalized to n conditioning views by
averaging the features wj =Wj(r) obtained for each input
image xj , as in [104]:

(τ,c)=f

 1

n

n∑
j=1

wj

. (5)

To leverage this strategy during inference, we train our
model by conditioning with multiple (variable) input images.
Conditioning using multiple input images helps to ensure
smooth, loop-consistent video synthesis. While conditioning
on only the previous frame is sufficient for view consistency
in a small view change, it does not guarantee loop closure.
In practice, we find that conditioning on a subset of previous
views helps to enforce correct loop closure while maintaining
reasonable view to view consistency.

3.3. Training
At each iteration during training, we sample a batch of

target images, input images, and their associated camera
poses, where the targets and inputs are constrained to be from
the same scene. Our model is trained end-to-end from scratch
to minimize the following objective

L :=E(xtarget,xinputs,Ptarget,Pinputs)∼pdataEε∼N (0,σ2I) (6)[
∥D(xtarget+ε ;xinputs,Pinputs,Ptarget,σ)−xtarget∥22

]
,

where σ is sampled during training according to the strategy
proposed by EDM [34]. The number of conditioning views
for a query is drawn uniformly from {1,2,3} at every iteration.
During training, we apply non-leaking augmentation [34] to
U and augment input images with small amounts of random
noise. Please see the supplement for hyperparameters and
additional training details.

3.4. Generating novel views at inference
Sampling a novel view with our method is identical to sam-

pling an image with a conditional diffusion model. The spe-
cific update rule for the denoised image is determined by the
choice of sampler. In our experiments, we use a deterministic
2nd order sampling strategy [34], with 25 or fewer denoising
steps. Other sampling strategies [84, 82] can be dropped in
if other properties (e.g., stochastic sampling) are desired.

In order to improve efficiency at inference, we decouple
Γ and U . Rather than running both Γ and U at every step
during sampling, we first render the feature image F as
a preprocessing step and reuse it for each iteration of the
sampling loop – whileU must run every step during inference,
Γ is run only once.
Alternative “one-step” inference. An alternative variant
of our model to generating an image with iterative denoising
is to produce the image with a single step of denoising. Intu-
itively, the one-step prediction of a model trained with Eq. 6
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Figure 4. Qualitative comparison on ShapeNet [12] with one input
view. Unlike regression-based approaches, our method produces
sharp realizations. With one-step inference, our approach behaves
like a mean estimator of the novel view, similarly to PixelNeRF.

should behave identically to the prediction of a model trained
to minimize pixel-wise MSE. Thus, this alternative inference
mode is representative of regression-based methods. A model
trained as described is capable of both generative sampling
and deterministic one-step inference—no architecture or
training modifications are required.

3.5. Autoregressive generation

In order to generate consistent sequences, we take
an autoregressive approach to synthesizing sequential
frames. Instead of independently generating each frame
conditioned only on the input images, which would lead to
large deviations between frames, we generate each frame
conditioned on the inputs as well as a subset of previously
generated frames. While there are many possible ways of
selecting conditioning views, a reasonable setting that we use
in our experiments is to condition on the input image(s), the
most recently generated image, and five additional images
drawn at random from the set of previously generated frames.

We found this default conditioning setting to be a good
starting point that balances short range, frame-to-frame
consistency, long-range consistency across the scene,
and compute cost, but other variants may be preferred to
emphasize specific qualities.

While one might expect errors and artifacts to accumulate
throughout long autoregressive sequences, in practice we find
that our model effectively suppresses such errors, making
it suitable for extended sequence generation. Please see the
supplement for alternative autoregressive schemes.

4. Experiments
We evaluate the performance of our generative NVS

method on ShapeNet [12] “cars” and Matterport3D [11], two
starkly different datasets. ShapeNet is representative of syn-
thetic, object-centric datasets that have long been dominated
by regression-based approaches to NVS (e.g., [104, 76]).
Meanwhile, long-range NVS on Matterport3D is prototypical
of unbounded scene exploration, where generative models
with weak geometry priors [97, 64, 59] have seen more
success. Finally, we stress-test our method on the challenging

FID↓ LPIPS↓ DISTS↓ PSNR↑ SSIM ↑
PixelNeRF [104] 65.83 0.146 0.203 23.2 0.90
ViewFormer [39] 20.82 0.146 0.161 19.0 0.83
EG3D-PTI [8] 27.23 0.150 0.310 19.0 0.85
3DiM (autoregressive) [96]† 8.99 21.01 0.57

O
ur

s

Explicit 8.09 0.129 0.158 19.1 0.86
Geom.-Free 16.68 0.342 0.329 13.1 0.74
One-Step 42.07 0.150 0.178 23.2 0.91
Full (autoregressive) 11.08 0.120 0.146 20.6 0.89
Full 6.47 0.104 0.145 20.7 0.89

Table 1. Quantitative comparison of single-view novel view
synthesis on ShapeNet cars [12, 78]. † As reported by [96].

Common Objects in 3D (CO3D) [58], an unconstrained
real-world dataset — to our knowledge, our work is the first
to attempt single-shot NVS on this dataset while including
its complex backgrounds. Our method improves upon the
state-of-the-art for all tasks. For additional results, please
refer to the videos contained in the supplement.

Baselines and implementation details. For ShapeNet
and CO3D, we compare our method to PixelNeRF [104],
a state-of-the-art NeRF-based method for NVS, and View-
Former [39], a transformer-based, geometry-free approach
to NVS. For ShapeNet, we additionally provide a comparison
with EG3D-PTI [8], which is based on a state-of-the-art 3D
GAN for object-scale scenes, and a numerical comparison
with 3DiM [96], a recent geometry-free diffusion method for
NVS. For Matterport3D, we compare our method against the
state-of-the-art on this dataset: Look Outside The Room [59],
a transformer-based, geometry-free NVS method designed
for room-scale scenes, and to additional SOTA methods,
including SynSin [97] and GeoGPT [64] in Tab. 2.

Metrics. We evaluate the task of novel view synthesis
along three axes: ability to (1) recreate the image quality
and diversity of the ground truth dataset, (2) generate novel
views consistent with the ground truth, and (3) generate
sequences that are geometrically consistent. For (1), we
use distribution-comparison metrics, FID [28] and KID [6],
which are commonly used to evaluate generative models
for image synthesis. For (2), we use perceptual metrics
LPIPS [107] and DISTS [20], which measure structural
and texture similarity between the synthesized novel view
and ground-truth novel view. For completeness, we include
PSNR and SSIM, although the drawbacks of these metrics
are well-studied: these raw pixel metrics have been shown
to be poor evaluators of generative models as they favor
conservative, blurry estimates that lack detail [67, 65].
For (3), we provide COLMAP [71, 72] reconstructions of
generated video sequences, a standard evaluation for 3D
consistency in 3D GANs [73, 9, 8]. Dense, well-defined
point clouds are indicative of geometrically consistent frames.
We calculate Chamfer distances between reconstructions
of the ground-truth images and reconstructions of generated
sequences to quantitatively evaluate geometrical consistency.
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Figure 5. Generating new views from more (bottom) or less
(top) ambiguous conditioning information. PixelNeRF [104] is
constrained to output deterministic novel views and renders an
average of all plausible renderings that are consistent with the
input view. In comparison, our method samples the conditional
distribution, leading to sharp but different realizations. In the last
column, we show the per-pixel standard deviation of the novel
view and show that unseen areas are more ambiguous, i.e., vary
more from one sample to the other. Pixel-wise standard deviation is
computed over 50 samples. Dark pixels indicate higher ambiguity.

Figure 6. COLMAP reconstructions from video sequences
produced by our method are dense, well-defined, and highly similar
to reconstructions of the ground-truth images, demonstrating a high
degree of geometric consistency, as measured by Chamfer distance.
The three rows show results on ShapeNet, Matterport3D, and CO3D,
respectively.

4.1. ShapeNet
We standardize our training and evaluation on the single-

class, single-view NVS benchmark described in [104, 78, 39].
The ShapeNet training set contains 2,458 cars, each with 50
renderings randomly distributed on the surface of a sphere.
For evaluation, we use the provided test set with 704 cars,
each with 250 rendered images and poses on an Archimedean
spiral. All evaluations are conducted with a single input
image. For our model, we evaluate both independently
generated frames and frames generated with autoregressive
conditioning. In addition to our model and the baselines, we
provide additional comparisons to several ablative variants of
our approach, which are discussed in more detail in Sec. 4.4.

Fig. 4 provides a qualitative comparison against baselines
for single-view novel view synthesis on ShapeNet. In contrast
to PixelNeRF, which predicts a blurry mean of the conditional

distribution, our method (Ours Full) generates sharp realiza-
tions. While ViewFormer also produces sharp images due to
training with a perceptual loss, its renderings fail to transfer
some small details, such as headlight shape, from the input.

In Tab. 1, we report the quality of novel renderings pro-
duced by our method and baselines, as measured by FID [28],
LPIPS [107], DISTS [19], PSNR, and SSIM [94]. As a
generative model, our method creates sharp, diverse outputs,
which closely match the image distribution; it thus scores
more favorably in FID than regression baselines [104, 39],
which tend to produce less finely detailed renderings. Our
method outperforms baselines in LPIPS and DISTS, which
indicates that our method produces novel views that achieve
greater structural and textural similarity to the ground truth
novel views. We would not expect a generative model to
outperform a regression model in PSNR and SSIM, and
indeed, renderings from PixelNeRF achieve higher scores
in these pixel-wise metrics than realizations from our model.
However, we note that the one-step denoised prediction of our
model (described in Sec. 3.4) is able to match PixelNeRF’s
state-of-the-art PSNR and SSIM. While our method with
autoregressive conditioning does not surpass 3DiM [96],
it achieves competetive scores with a lighter weight model
(90M vs 471M params) and fewer diffusion steps (25 vs 512).

In Fig. 5, we demonstrate that for a given observation, our
model is capable of producing multiple plausible realizations.
When conditioning information is reliable, such as when the
query view is close to the input view, ambiguity is low and
samples are drawn from a narrow conditional distribution.
For more ambiguous inputs, such as when the model is
tasked with recreating regions that were occluded in the input
image, our model produces plausible realizations with more
variation. In contrast, regression-based methods such as Pix-
elNeRF deterministically predict the mean of the conditional
distribution and are therefore unable to create high quality
realizations when the target view is far from conditioning
information and the conditional distribution is large.

Fig. 6 shows that our method can also achieve high
geometrical consistency when combined with autoregressive
generation as validated by dense point cloud reconstruction
and the Chamfer distance to the ground truth.

4.2. Matterport3D

Beyond ShapeNet, we seek to show the effectiveness of
our method on the Matterport3D (MP3D) dataset that features
building-scale, real-world scans. We use the provided code of
[59] to sample trajectories of embodied agents and generate
6,000 videos for training and 200 videos for testing, using the
provided 61/18 training and test splits. We train our model by
sampling random pairs of input and target images from the
same video sequence, where 50% of input views are drawn
from within ten frames of the target view and the rest are sam-
pled randomly from the video sequence. The rest of the train-
ing procedure is equivalent to the one we use with ShapeNet.

For evaluation, we randomly select an input frame in the
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Figure 7. Qualitative comparison on Matterport3D [11] for NVS.
Given a single input image (1st col.), we autoregressively run
our method and LOTR [59] for 10 frames to synthesize novel
view images (2nd and 3rd columns). Ground truth images for the
corresponding query camera poses are shown in the fourth column.
Best viewed zoomed-in.

KID↓ LPIPS↓ DISTS↓ PSNR↑ SSIM↑
LOTR [59] (10 f.) 0.050 0.33 0.27 16.57 0.49
Ours (10 f.) 0.002 0.14 0.14 20.80 0.71
SynSin-6X∗ [97] 0.072 0.48 0.34 14.89 0.41
GeoGPT∗ [64] 0.039 0.33 0.27 16.47 0.49
LOTR [59] 0.027 0.25 0.22 18.00 0.55
Ours 0.002 0.09 0.11 22.79 0.79

Table 2. Quantitative comparison of single-view novel view
synthesis on Matterport3D [11]. Here, we use KID since it provides
an unbiased estimate when the number of images is small. “10 f.”
indicates novel view synthesis for 10 frames from the input image
(used 5 frames for the bottom rows). *For SynSin and GeoGPT, we
obtained the rendered images from the authors of LOTR.

Figure 8. Regression-based models, such as the one-step variant
of our approach, struggle to model ambiguity and therefore fail to
create plausible renderings far from the input. Generative sampling
enables plausible synthesis in ambiguity. When combined with
autoregressive generation, we are able to explore areas that were
completely occluded in the input.

test video set (one input frame for each test video), and run ten
steps of autoregressive synthesis, following the test camera
trajectory; we calculate metrics using all ten synthesized
frames. Beyond 10 frames, input and the target frusta rarely

Figure 9. Loop closure test on Matterport3D [11]. We run
our method and LOTR [59] on a small cyclic rotation angle
trajectory (0◦→15◦→45◦→15◦). Without 3D representations,
transformer-based methods, such as LOTR, rely on interpreting raw
camera parameters, resulting in weak spatial awareness. Our 3D
feature representation more effectively aggregates past observations
and provides better loop closure. Best viewed zoomed-in.

overlap, making comparisons against ground truth frames
less meaningful. We compare against Look Outside the
Room (LOTR) [59], the current state-of-the-art (SOTA) for
single-view NVS on Matterport3D that outperforms prior
NVS works (i.e., [97, 62, 64, 40]). We additionally compare
against SynSin [97] and GeoGPT [64], using the 5-frame
renderings provided by the authors of LOTR. Note that, since
the trajectories of embodied agents are randomly sampled,
the trajectories used for these two baselines are different
from those used for our method and LOTR. This comparison
measures performance on 200 random trajectories, which is
statistically meaningful and the results align with the trends
reported in LOTR. For all baselines, we downsample the
outputs to our output resolution, i.e., 1282, and compute the
aforementioned metrics against the ground truth images. To
measure the realism of the outputs, we choose KID [6], as
it is known to be less biased than FID when the number of
test images is small (we use 2000 images).

The results, summarized in Tab. 2, show that our approach
generates novel view predictions that outperform baselines
in terms of quality and consistency with the input view. Fig. 7
supports the trends observed in the metrics—our NVS is
noticeably more accurate and realistic than the current SOTA.

In Fig. 9, we compare against LOTR on a cyclic trajectory.
Our method produces better loop closure, indicating higher
geometric consistency and showing the effectiveness of
incorporating 3D priors. Fig. 6 additionally validates the
consistency of our results with superior reconstructed point
clouds and Chamfer distances.

4.3. Common Objects in 3D (CO3D)

We challenge our method with real-world scenes from the
Common Objects in 3D (CO3D) [58] dataset with complete
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Figure 10. While PixelNeRF produces severe artifacts when the
rendering view is far away from the input and ViewFormer requires
masks for training on this dataset, our method generates compelling
sequences from single-views on challenging, real-world objects of
the CO3D dataset [58].

KID↓ LPIPS↓ DISTS↓ PSNR↑ SSIM↑
PixelNeRF [104] 0.210 0.705 0.487 16.26 0.271

O
ur

s One-Step 0.106 0.641 0.492 16.78 0.331
Full 0.012 0.369 0.446 15.48 0.266

Table 3. Quantitative comparison of single-view novel view
synthesis on CO3D [58].

backgrounds. To our knowledge, no prior method has at-
tempted single-shot NVS on CO3D without object masks. We
train our method on the hydrant category of the CO3D dataset,
which contains 726 RGB videos of real-world fire hydrants.
Most videos contain a walkaround trajectory looking in at
the hydrant spanning between 60 and 360 degrees, and most
videos consist of about 200 frames. We use a 95:5 train/test
split to train our model. CO3D is a highly unconstrained
and extraordinarily difficult benchmark: scene scale, camera
intrinsics, complex backgrounds, and lighting conditions are
highly variable between (and sometimes within) scenes.

Fig. 10 compares predictions from our method against
baselines on CO3D. Our method produces plausible and
sharp foregrounds and backgrounds that do not deteriorate in
quality with increasing distance from the source pose. While
we include a qualitative comparison against ViewFormer
for reference, we exclude it from numerical comparisons
because of its reliance on object masks. Fig. 6 demonstrates
the degree of geometric consistency that is attainable by
our approach. Tab. 3 additionally provides a quantitative
comparison against PixelNeRF. On complex scenes rife with
ambiguity, the generative nature of our approach enables
synthesis of plausible realizations.

4.4. Ablation Studies

Choice of intermediate representations. Tab. 1 (bottom)
compares several choices of intermediate representations
within our method. While we have described a specific
approach to the task of generative novel view synthesis using
diffusion, there is ample freedom to choose how D interprets
information from input views. In fact, the simplest approach
forgoes any geometry priors and instead directly conditions
the model on an input view by concatenation. In our exper-
iments, this geometry-free approach struggled compared to
variants that incorporated geometry priors. However, greater
model capacity and effective use of cross-attention [96] may
be key to making this approach work. We additionally com-

Figure 11. Without autoregressive conditioning (top), our method
generates plausible, albeit geometrically incoherent, novel views
conditioned on the input image. With autoregressive conditioning
(bottom), our method generates plausible sequences that achieve
greater geometric consistency between frames.

pare against an “Explicit” intermediate representation similar
to our described approach but without the MLP decoder;
while slightly faster, this representation generally produced
worse results. We compare to the one-step inference mode
of our method on ShapeNet in Fig. 4 and Tab. 1, on MP3D
in Fig. 8, and on CO3D in Tab. 3. Like regression-based
methods, it obtains excellent PSNR and SSIM scores but
lacks the ability to generate plausible results far from the
input. On Matterport3D, Fig. 8 illustrates the motivation
of using a generative prior for long-range synthesis. While
the quality of regression-based predictions rapidly degrades
with increasing ambiguity, a generative model can create
a plausible rendering even in regions with little or no
conditioning information, such as behind an occlusion.

Effect of autoregressive generation. Although autore-
gressive conditioning slightly trades off image quality
(Tab. 1), Fig. 11 demonstrates the necessity of autoregressive
conditioning for generating geometrically consistent
multi-view images. Without autoregressive conditioning,
independently sampled frames are each plausible, but lack
coherence—when conditioning information is ambiguous,
e.g., when the model is predicting novel views far from the
input view, it samples from a wide conditional distribution
and accordingly, subsequent frames exhibit significant
variance. Autoregressive conditioning effectively conditions
the network not only on the source image, but also on
previously generated frames that closely overlap with the
current view, helping narrow this conditional distribution.

Additional studies. Additional ablations, including
experiments that evaluate out-of-distribution extrapolation,
classifier-free guidance, effect of number of input views,
stochastic conditioning, and effect of distance to input views,
can be found in the supplement.

5. Discussion
Conclusion. We proposed a generative novel view syn-
thesis approach from a single image using geometry-based
priors and diffusion models. Our hybrid method combines
the benefit of explicit 3D representations with the generative
power of diffusion models for generating realistic and
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3D-aware novel views, demonstrating the state-of-the-art
performance in both object-scale and room-scale scenes. We
also demonstrate the compelling results on a challenging
real-world dataset of CO3D with background — a challenge
never attempted. While our results are not perfect, we believe
we presented a significant step towards a practical NVS
solution that can operate on a wide range of real-world data.

Limitations and future work. While our method effec-
tively combines explicit geometry priors with 2D diffusion
models, the output resolution is currently limited to 1282 and
the diffusion-based sampling is not fast enough for interactive
visualization. Since our model can leverage existing 2D
diffusion architectures for U , it can directly benefit from
future advances in the underlying 2D diffusion models. While
our method achieves reasonable geometrical consistency, it
can still exhibit minor inconsistencies and drift in challenging
real-world datasets, which should be addressed by future
work. While our method can operate for novel view synthesis
from a single view during inference, training the method
requires multi-view supervision with accurate camera poses.
In this work, we implemented our method using a 3D
feature volume representation. Possible future work includes
investigating other types of intermediate 3D representations.

Ethical considerations. Diffusion models could be
extended to generate DeepFakes. These pose a societal threat,
and we do not condone using our work to generate fake
images or videos with the intent of spreading misinformation.
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