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Abstract

Transformer-based detectors (DETRs) are becoming
popular for their simple framework, but the large model
size and heavy time consumption hinder their deployment
in the real world. While knowledge distillation (KD) can
be an appealing technique to compress giant detectors into
small ones for comparable detection performance and low
inference cost. Since DETRs formulate object detection as
a set prediction problem, existing KD methods designed for
classic convolution-based detectors may not be directly ap-
plicable. In this paper, we propose DETRDistill, a novel
knowledge distillation method dedicated to DETR-families.
Specifically, we first design a Hungarian-matching logits
distillation to encourage the student model to have the exact
predictions as those of the teacher DETRs. Then, we pro-
pose a target-aware feature distillation to help the student
model learn from the object-centric features of the teacher
model. Finally, in order to improve the convergence rate of
the student DETR, we introduce a query-prior assignment
distillation to speed up the student model learning from
well-trained queries and stable assignment of the teacher
model. Extensive experimental results on the COCO dataset
validate the effectiveness of our approach. Notably, DE-
TRDistill consistently improves various DETRs by more
than 2.0 mAP, even surpassing their teacher models.

1. Introduction

Object detection aims to locate and classify visual ob-
jects from an input image. In the early works, the task was
typically achieved by incorporating convolution neural net-
works (CNNs) to process the regional features of the input
image [26, 19], in which a bunch of inductive biases were
included, such as anchors [26], label assignment [41] and
duplicate removal [1]. Recently, transformer-based object
detectors like DETR [2] have been proposed where detec-
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Figure 1. The performance of our DETRDistill on three
transformer-based detectors: Conditional DETR [25], Deformable
DETR [43], and AdaMixer [11]. We adopt ResNet-101 and
ResNet-50 for the teacher and student models, respectively. Our
DETRDistill yields significant improvements compared to its stu-
dent baseline, and even outperforms its teacher model.

tion is treated as a set prediction task which significantly
simplifies the detection pipeline and helps the users free
from the tedious tuning of the hand-craft components, e.g.,
anchor sizes and ratios [26].

Although the transformer-based detectors have achieved
state-of-the-art performance [21, 17, 11], they suffer from
an expensive computation problem, making them difficult
to be deployed in real-time applications. In order to acquire
a fast and accurate detector, knowledge distillation [14]
(KD) is an appealing technique. Normally, KD methods
transfer knowledge from a heavy-weighted but powerful
teacher model to a small and efficient student network by
mimicking the predictions [14] or feature distributions [27].

In the research area of object detection, there have var-
ious kinds of KD methods been published [37, 36, 39, 27,
4, 18, 12, 42, 38, 32, 29]. However, most of these methods
are designed for convolution-based detectors and may not
directly apply to transformer-based DETRs due to the de-
tection framework differences. There are at least two chal-
lenges: ❶ logits-level distillation methods [14, 42] are un-
usable for DETRs. For either anchor-based [41] or anchor-
free [31] convolution-based detectors, box predictions are
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Table 1. Comparison on several CNN-based region weighted fea-
ture distillation approaches on AdaMixer [11].

Method #Epoch4 #Epoch8 #Epoch12
AP AP AP

Baseline w/o KD 35.0 38.7 42.3
FGD [37] 34.4(-0.6) 39.1(+0.4) 40.7(-1.6)
FKD [40] 35.9(+0.9) 39.5(+0.8) 42.2(-0.1)
MGD [38] 36.3(+1.3) 39.8(+1.1) 42.3(+0.0)
FGFI [34] 35.6(+0.6) 39.3(+0.6) 42.6(+0.3)
FitNet [27] 36.4(+1.4) 39.6(+0.9) 42.9(+0.6)

closely related to the feature map grid and thus naturally
ensure a strict spatial correspondence of box predictions for
knowledge distillation between teacher and student. How-
ever, for DETRs, box predictions generated from the de-
coders are unordered and there is no natural one-to-one cor-
respondence of predicted boxes between teacher and stu-
dent for a logits-level distillation. ❷ Feature-level distil-
lation approaches may not suitable for DETRs. Due to
the feature generation mechanism being different between
convolution and transformer [27], the region of feature ac-
tivation for the interested object varies a lot. As Fig. 2
shows, the active region of a convolution-based detector
is almost restricted inside the ground-truth box while the
DETR detector further activates regions in the background
area. Therefore, directly using previous feature-level KD
methods for DETRs may not necessarily bring performance
gains and sometimes even impair the student detectors as
presented in Table 1.

To address the above challenges, we propose DETRDis-
till, a knowledge distillation framework specially designed
for detectors of DETR families. Precisely, DETRDistill
mainly consists of three components:

(1) Hungarian-matching logits distillation: To solve the
challenge ❶, we use the Hungarian algorithm to find an op-
timal bipartite matching between predictions of student and
teacher and then the KD can be performed in the logits-
level. However, since the number of boxes predicted as pos-
itive in the teacher model is quite limited, doing KD only
on positive predictions does not bring a significant perfor-
mance gain. Instead, we propose to introduce a distillation
loss on the massive negative predictions between the teacher
and student model to fully make use of the knowledge ly-
ing in the teacher detector. Moreover, considering DETR
methods typically contain multiple decoder layers for a cas-
cade prediction refinement, we also create a KD loss at each
stage to have a progressive distillation.

(2) Target-aware feature distillation: According to the
analysis in challenge ❷, we propose utilizing object queries
and teacher model features to produce soft activation masks.
Since the well-trained teacher queries are closely related to

Figure 2. Visualization of the (a) ground-truth boxes and active
region from (b) ATSS [41] and (c) AdaMixer [11].

various object targets, such generated soft masks will be
object-centric and thus make soft-mask-based feature-level
distillation to be target-aware.

(3) Query-prior assignment distillation: Since the
queries and decoder parameters are randomly initialized in
the student model, unstable bipartite assignment in the stu-
dent model leads to a slow convergence rate as presented
in [17]. While we empirically find that well-trained queries
in the teacher model can always produce a consistent bi-
partite assignment as shown in Fig. 7, we thus propose to
let the student model take teacher’s queries as an additional
group of prior queries and encourage it to produce predic-
tions based on the stable bipartite assignment of the teacher
network. Such a distillation successfully helps the student
model to converge fast and achieve better performance.

In summary, our contributions are in three folds:
• We analyze in detail the difficulties encountered by

DETRs in the distillation task compared with traditional
convolution-based detectors.

• We propose multiple knowledge distillation methods
for DETRs from the perspective of logits-level, feature-
level, and convergence rate, respectively.

• We conduct extensive experiments on the COCO
dataset under different settings, and the results prove the
effectiveness and generalization of our proposed methods.

2. Related Work
2.1. Transformer-based Object Detectors

With the excellent performance of Transformer [33] in
natural language processing, researchers have also started
to explore the application of Transformer structure to vi-
sual tasks [23, 7, 24]. However, the DETR training pro-
cess is extremely inefficient, so many follow-up works have
attempted to accelerate convergence. One line of work
tries to redesign the attention mechanism. For example,
Dai et al. [43] propose Deformable DETR, which con-
structs a sparse attention mechanism by only interacting
with the variable sampling point features around the ref-
erence points. SMCA [10] introduces Gaussian prior to
limit cross-attention. AdaMixer [11] designs a new adap-
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Figure 3. The overall architecture of our approach. It consists of a transformer-based teacher detector with a large backbone, a congener
detector with a lightweight backbone, and the proposed distillation modules: (i) Hungarian-matching Logits Distillation (ii) Target-aware
Feature Distillation, and (iii) Query-prior Assignment Distillation. We omit the original training supervision for clear formulation.

tive 3D feature sampling strategy without any encoder and
then mixes sampled features in the channel and spatial di-
mension with adaptive weights.

Another line of work rethink the meaning of the query.
Meng et al. [25] visualize that it is ineffective for DETR to
rely on content embedding in the cross-attention to locate
object extremity and therefore propose decoupling queries
into the content part and position part. Anchor-DETR [35]
directly treats the query’s 2D reference points as its posi-
tion embedding to guide attention. DAB-DETR [22] intro-
duces width and height information besides location to the
attention mechanism to model different scale objects. DN-
DETR [17] introduces the query denoising task to acceler-
ate the training. Group-DETR [6] and H-DETR [15] im-
prove performance by increasing positive samples as aux-
iliary groups in the decoder training. Unlike the previous
work, we expect to improve the performance of small mod-
els through distillation.

2.2. Knowledge Distillation in Object Detection

Knowledge distillation is a commonly used method for
model compression. [14] first proposes this concept and
applies it in image classification. They argue that soft la-
bels output by the teacher contains “dark knowledge” of
inter-category similarity compared to the one-hot encoding,
which contributes to the model’s generalization. Attention
transfer [39] focuses the distillation on the feature map and
transfers knowledge by narrowing the attention distribution
of the teacher and student instead of distilling output logits.

FitNet [27] proposes mimicking the teacher model’s

intermediate-level hints by hidden layers. [4] first applies
knowledge distillation to solve the multi-class object detec-
tion. [18] thinks that the background regions would intro-
duce noise and proposes distilling the regions RPN sam-
pled. DeFeat [12] distills the foreground and background
separately. FGD [37] imitates the teacher regarding fo-
cal regions and global relations of features, respectively.
LD [42] extends soft-label distillation to positional regres-
sion, causing the student to fit the teacher’s border predic-
tion distribution. MGD [38] uses masked image model-
ing (MIM) to transform the imitation task into a generation
task. In addition to the above CNN-based distillation, some
works involve vision transformers. DeiT [32] transfers in-
ductive biases into ViT [9] from a CNN-teacher through a
distillation token and achieves competitive performance in
the classification task. ViDT [29] performs KD on patch
tokens and proposes a variation of the transformer detector.
However, such a distillation cannot be applied to the DETR-
families directly. Our work analyzes the unique phenomena
of different components of DETR and proposes a universal
distillation strategy.

3. A Review of DETR
DETR [2] is an end-to-end object detector that includes

a backbone, Transformer encoders, learnable query embed-
dings and decoders. Given an image I , the CNN back-
bone extracts its spatial features and then Transformer en-
coders (some variants do not require encoders [11]) will en-
hance the feature representation. With the updated features
F ∈ RHW×d, query embeddings Q ∈ RN×d are fed into
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several Transformer (typically six) decoders, where d is the
feature dimension, N is the fixed number of queries. The
operations in each decoder stage are similar: Firstly, ex-
ploiting self-attention to establish the relationship between
queries to capture the mutual information. Secondly, in-
teracting queries with image features via flexible cross-
attention to aggregate queries with valuable semantic in-
formation. Thirdly, a feed-forward network (FFN) decodes
each query into ŷi = (ĉi, b̂i) including predicted categories
and bounding boxes.

In the training stage, the principle of label assignment
is to minimize the matching cost between model prediction
and ground truth (GT) to get a bipartite matching with Hun-
garian algorithm [16]. The optimal matching is solved as
follows:

σ̂ = argminσ

N∑
i=1

Lmatch(yi, ŷσi), (1)

where σi is a permutation of N elements and σ̂ is the op-
timal assignment. yi = (ci, bi) is i-th GT where ci is the
target class (which may be ∅) and bi is the GT box. Lmatch

is a pair-wise matching cost:

Lmatch(yi, ŷσi
) = Lcls(ci, ĉσi

) + 1{ci ̸=∅}Lbbox(bi, b̂σi
),

where Lcls and Lbbox denote the classification and
bounding-box losses respectively. Therefore, each GT in
the DETR will correspond to only one positive sample
query, and all the rest queries are seen as negative samples.
The final detection loss function is defined as:

Ldet(y, ŷσ̂) =

N∑
i=1

Lmatch(yi, ŷσ̂i), (2)

where the location regression of negative samples is not
subject to any supervision.

4. Our Approach: DETRDistill
In this section, we introduce the details of our proposed

DETRDistill, which consists of three components: (1)
Hungarian-matching Logits Distillation; (2) Target-aware
Feature Distillation; (3) Query-prior Assignment Distilla-
tion. Fig. 3 shows the overall architecture of DETRDistill.

4.1. Hungarian-matching Logits Distillation

One of the most common strategies for knowledge dis-
tillation is to directly align the predictions at the logits-level
between the two models. However, query-based predic-
tions in a set form [17] make it difficult for DETRs to or-
derly correspond the teacher’s results to that of the student.
To achieve this goal, we reuse the Hungarian algorithm to
match the predictions from the teacher to that of the student
one-to-one.

Formally, let ŷT and ŷS denote the predictions from
the teacher and student model, conforming to ŷT ={
{ŷT pos

i }Mpos

i=1 , {ŷT neg
j }Mneg

j=1

}
and ŷS = {ŷSi }Ni=1, where

Mpos and Mneg denote the number of positive and nega-
tive predictions of teacher model. M =Mpos +Mneg and
N are the total numbers of decoder queries for the teacher
and student, respectively. M is usually greater than or equal
to N . Since teacher’s positive predictions are target closely
related, one straightforward idea is to treat them as knowl-
edgeable pseudo GTs and utilize the Hungarian algorithm
to find a matching σ̂pos between these positive predictions
ŷT pos and the ones of student ŷS . Then the logits-level KD
can be achieved

Lpos
logitsKD(ŷ

T pos, ŷSσ̂pos) =

N∑
i=1

Lmatch(ŷ
T pos
i , ŷSσ̂pos

i
).

(3)
However, we empirically find that such a naive KD only

brings minor performance gains as presented in Table 8. We
postulate that the number of positive predictions is quite
limited (only 7 per image on average while the total number
of queries usually exceeds 100) and the distilled informa-
tion highly coincides with GTs. On the other hand, a large
number of negative predictions of the teacher model are ig-
nored and we argue that these predictions are valuable.
Negative location distillation. Since the teacher model is
usually well-optimized, the generated positive predictions
and the negative ones may have an obvious difference so
that the Hungarian algorithm can produce a plausible as-
signment, i.e., these negatively predicted boxes will stay off
the object targets. While the randomly initialized student
network may not have such an effect and the student’s nega-
tive predictions may entangle with positive ones. Therefore,
we propose to create a distillation to leverage the knowledge
lying in the teacher’s negative predictions.*

Lneg
logitsKD(ŷ

T neg, ŷSσ̂neg ) =

N∑
i=1

Lmatch(ŷ
T neg
i , ŷSσ̂neg

i
),

(4)
where σ̂neg denotes the assignment between ŷT neg and ŷS .
Progressive distillation. Considering DETR decoders typ-
ically contain multiple stages and stage-wise supervision is
included by default [2], we further propose to introduce the
KD losses in Eq. 3 and 4 into each decoder stage to have a
progressive distillation

LlogitsKD =

K∑
k=1

Lpos
logitsKD[k] + Lneg

logitsKD[k], (5)

where K is the number of decoder stages. Lpos
logitsKD[k] and

*Since the classification in the teacher’s negative predictions may not
necessarily always be predicted as background, KD is only done on boxes.
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Lneg
logitsKD[k] denote the positive KD loss and negative KD

loss on k-th decoder stage respectively.
Please note that we transfer knowledge from the teacher

model’s stage-by-stage outputs to the student model’s cor-
responding stage, but not simply using the teacher’s last
stage output to supervise all stages of the student model.
It is because we think the teacher model will contain differ-
ent knowledge at different stages as observed in the recent
work [3] and the former distillation strategy can make full
use of the knowledge in the teacher model and the empirical
results in Table 9 verify our argument.

4.2. Target-aware Feature Distillation

Detection performance is highly determined by feature
representations generated from the feature pyramid network
(FPN), this can be attributed to their rich semantic informa-
tion related to object targets. Therefore, we argue that dis-
tilling the teacher model’s knowledge at the feature-level is
necessary. The typical manner to mimic the spatial features
of a teacher model can be calculated as

LfeatKD =
1

dHW

∥∥∥ψ ⊙
(
F T − ϕ(F S)

)∥∥∥2
2
, (6)

where F T ∈ RH×W×d and F S ∈ RH×W×dS

denote fea-
ture representations produced by the teacher and student
model, respectively. H and W denote the height and width
of the feature and d is the channel number of teacher’s
feature. ϕ is a learnable dimension adaptation layer to
transform the student’s feature into d dimension. ⊙ is the
Hadamard product of two matrices. ψ ∈ RH×W denotes a
soft mask for the selection of knowledgeable regions in var-
ious KD methods, e.g., Romero et al. [27] treat the mask
as a matrix filled with 1. Wang et al. [34] generate the
mask based on the IoU scores between anchor boxes and
GT ones. Sun et al. [30] utilize the Gaussian mask to cover
the GT boxes. Different from the above approaches, we pro-
pose to construct the soft mask for DETRs by calculating
the similarity matrix between query embeddings and fea-
ture representations. Formally, given a whole set of queries
QT ∈ RM×d of the teacher model, the selection mask can
be obtained

ψ =
1

M

M∑
i=1

ψi, where ψi = F T ·QT
i , (7)

where QT
i ∈ R1×d is the i-th teacher’s query and M de-

notes the number of decoder queries of the teacher’s model.
However, we empirically find such a vanilla distillation

approach works poorly as shown in Table 2. We postulate
the reason is that not all object queries of the teacher should
be equally treated as valuable cues. Based on the predic-
tions generated from the teacher queries, Fig. 4 presents
some visualizations of query-based masks {ψi} and we can

Table 2. Ablation on feature-level distillation.

Setting AP APS APM APL

Baseline w/o KD 42.3 25.3 44.8 58.2
KD w/ Eq. 7 41.9(-0.4) 24.4 44.9 57.4
KD w/ Eq. 9 43.5(+1.2) 25.4 46.7 60.0

Figure 4. Visualization of the attention mask of queries. (a) The
original image and (b-c) the attention masks generated by the
queries responsible for the human and surfboard prediction, re-
spectively. The query corresponding to (d) relates to both the hu-
man and the surfboard. (e) and (f) are the masks generated by the
samples with low-quality scores.

find that masks with low-prediction scores attend out of the
object regions.

According to the observation, we propose to utilize
teacher queries selectively for generating the mask ψ.
Specifically, we use the quality score proposed in [8] as the
measurement

qi = (ci)
γ · IoU

(
bGT
i , bpred

i

)1−γ

, (8)

where ci and bpred
i denote the classification score and the

predicted box from the i-th teacher’s query, respectively.
bGT
i is the corresponding bipartite matched GT box. γ =
0.5 is a hyperparameter for balancing the weight of classi-
fication scores and box IoUs. Then the target-aware quality
score serves as an indicator to guide which query should
contribute more to the knowledge distillation and the KD
loss in Eq. 6 can be extended as

LfeatKD =

M∑
i=1

qi

MdHW

∥∥∥ψi ⊙
(
F T − ϕ

(
FS

))∥∥∥2
2
. (9)

4.3. Query-prior Assignment Distillation

Since the queries and decoder parameters in DETR are
normally randomly initialized for model optimization, a
query may be assigned to different objects in different train-
ing epochs and thus lead to an unstable bipartite graph
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matching and a slow convergence speed [17]. In the set-
ting of KD, the training of student DETR also suffers from
the same problem. However, we empirically observe that
the well-optimized queries in the teacher model can consis-
tently achieve a stable bipartite assignment between differ-
ent decoder stages as presented in Fig. 7 and it is intuitive to
utilize the knowledge of the teacher model to improve the
stability of the training of the student model. Based on this
motivation, we propose Query-prior assignment distillation.

Specifically, given teacher query set QT , and we can ob-
tain the corresponding assignment permutation σ̂T from the
teacher for any given input-GT pairs. We propose to input
the teacher query embeddings QT into the student model
as an additional group of prior queries and directly use the
teacher’s assignment σ̂T to generate detection results for
loss calculation

LassignKD(y, ŷ
S
σ̂T
i
) =

M∑
i=1

Lmatch(yi, ŷ
S
σ̂T
i
). (10)

This proposed KD loss will help the student model treat
the teacher queries as a prior and encourage the student de-
tector to achieve a stable assignment as much as possible.
As shown in Fig. 7, the matching stability of the student
model has been greatly improved with the proposed distilla-
tion loss. Please note that such an additional teacher query
group is only used during training and the student model
will use its default query set for final evaluation.

4.4. Overall Loss

To sum up, the total loss for training the student DETR is
a weighted combination of Eq. 2, Eq. 5, Eq. 9, and Eq. 10:

L = Ldet + λ1LlogitsKD + λ2LfeatKD + λ3LassignKD.

where λ1 = 1, λ2 = 20, λ3 = 1 are balancing weights
of the proposed three KD loss terms. Since our distillation
method follows the common DETR paradigm, it can be eas-
ily applied to a variety of detectors in DETR-families.

5. Experiments
5.1. Experiment Setup and Implementation Details

Dataset. The challenging large-scale MS COCO bench-
mark [20] is used in this study, where the train2017 (118K
images) is utilized for training and val2017 (5K images) is
used for validation. We use the standard COCO-style mea-
surement, i.e., average precision (mAP) for evaluation.
DETR models. Three different DETR detectors are
evaluated, including Deformable DETR [43], Conditional
DETR [25], and AdaMixer [11]. We choose these three
models for their representative model framework and their
excellent performance. In the ablation study, we choose

Table 3. Results for distillation on identical number of encoder
and decoder stages for the teacher and student networks.

Detector Setting Epoch AP APS APM APL

AdaMixer
(100 Queries)

Teacher 12 43.6 25.4 46.8 60.7
Student 12 42.3 25.3 44.8 58.2
FGD [37] 12 40.7(-1.6) 23.4 43.3 55.8
MGD [38] 12 42.3(+0.0) 24.5 45.0 58.9
FitNet [27] 12 42.9(+0.6) 24.7 45.8 59.4
Ours 12 44.7(+2.4) 26.7 47.6 61.0

Deformable DETR
(300 Queries)

Teacher 50 45.5 27.5 48.7 60.3
Student 50 44.1 27.0 47.4 58.3
FGD [37] 50 44.1(+0.0) 25.9 47.7 58.8
MGD [38] 50 44.0(-0.1) 25.9 47.3 58.6
FitNet [27] 50 44.9(+0.8) 27.2 48.4 59.6
Ours 50 46.6(+2.5) 28.5 50.0 60.4

Conditional DETR
(300 Queries)

Teacher 50 42.4 22.6 46.0 61.2
Student 50 40.7 20.3 43.8 60.0
FGD [37] 50 40.4(-0.3) 19.7 43.8 59.5
MGD [38] 50 41.2(+0.5) 20.6 44.6 60.5
FitNet [27] 50 41.0(+0.3) 20.2 44.3 59.9
Ours 50 42.9(+2.2) 21.6 46.5 62.2

AdaMixer as the baseline for ablation and analysis for its
easy training and quick convergence.
Implementation details. Our codebase is built on MMDe-
tection toolkit [5]. All models are trained on 8 NVIDIA
V100 GPUs. Unless otherwise specified, we train the
teacher model for 1× schedule (12 epochs) or 50 epochs
using ResNet-101 [13] as the backbone with Adam opti-
mizer and train the student model with the same learning
schedule using ResNet-50 [13] as the backbone following
each baseline’s settings.

5.2. Main Results

In this section, we mainly present experimental results
on several kinds of settings: (1) identical number of encoder
and decoder stages for teacher and student; (2) various num-
bers of encoder and decoder stages for teacher and student.
We further provide more experimental results on other set-
tings to demonstrate the effectiveness of our approach, such
as (3) distillation from larger transformer backbone, (4) dis-
tillation to lightweight backbones and (5) self-distillation.

Distillation on identical number of encoder and decoder
stages. The results are presented in Table 3. We can find
that FitNet [27] brings stable performance gains on all the
DETR variants, while MGD [38] and FGD [37] cannot
work well for Transformer-based detectors and even may
cause degradation of the results. However, it is obvious
that our approach significantly enhances the student’s per-
formance and surpasses all other methods by a large margin
on various detectors. Specifically, DETRDistill gains 2.4
AP on the AdaMixer, 2.5 AP on the Deformable DETR,
and 2.2 AP on the Conditional DETR, which validates the
effectiveness of our approach.

Distillation on different number of encoder and decoder
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Table 4. Results for distillation on different number of encoder
and decoder stages for the teacher and student networks. The per-
formance of the teacher model is 36.2 AP.

#Enc./Dec. Setting AP APS APM APL

6/6 Student 33.0 13.8 35.1 50.9
Ours 38.1(+5.1) 18.2 41.0 58.2

6/3 Student 30.3 12.7 32.5 46.8
Ours 36.6(+6.3) 15.2 39.8 56.0

3/6 Student 33.0 13.9 35.9 49.0
Ours 37.7(+4.7) 17.4 40.8 57.3

3/3 Student 29.9 12.8 32.2 45.6
Ours 35.7(+5.8) 14.4 38.7 53.8

stages. Since the student model is usually smaller than
the teacher model, there is no guarantee that both teacher
and student have the same number of transformer encoder
and decoder stages. Therefore, we also conduct experi-
ments on the student model with a reduced number of en-
coders/decoders than that of teachers and explore the criti-
cal factors for them. For this experiment, we choose Con-
ditional DETR with ResNet-101 as the teacher model and
ResNet-50 as the student model. All models are trained
with the 1× schedule (12 epochs). The default number of
encoders and decoders in the teacher model is 6 and we de-
crease the number of encoders and decoders from 6 to 3 for
the student model. For the default progressive distillation,
we simply group the teacher’s decoders and make them fol-
low our progressive strategy as shown in Fig. 5 to handle
the stage mismatch problem.†

The main results are shown in Table 4. It can be seen
that decreasing the number of transformer encoders will not
have a significant impact on the performance, while a reduc-
tion in the number of decoders leads to serious performance
degradation. However, our proposed DETRDistill signifi-
cantly compensates for the performance gap. For example,
with only 3 encoder and decoder stages, our approach helps
the student model achieve 35.7 AP which is superior to the
student model with 6 encoder and decoder stages without
KD.

Distillation from larger transformer backbone. We use
the larger Swin-B [23] backbone and AdaMixer for verifi-
cation and Table 6 shows that our method can still achieve
better performance. It also proves that our distillation is
robust to both CNN and transformer backbones. Besides,
we observe that as the number of parameters in the teacher
model further increases, the relative improvement brought
by distillation to the student is relatively saturated.

†Please note that Target-aware Feature Distillation presented in Sec. 4.2
is performed on the output of transformer encoders, which with the same
resolutions as the input. Thus not affected by the change of encoder stages.

Figure 5. Distillation diagram with different number of decoders.

Table 5. Self-distillation performance on COCO validation set.

Detector Setting AP APS APM APL

AdaMixer

T & S 42.3 25.3 44.8 58.2
FGD 42.0(-0.3) 23.5 44.9 58.5
MGD 41.7(-0.6) 23.0 44.7 58.6
Ours 43.6(+1.3) 26.7 46.2 59.1

Deformable DETR

T & S 44.1 27.0 47.4 58.3
FGD 44.2(+0.1) 26.3 47.8 58.5
MGD 44.2(+0.1) 26.9 47.7 58.6
Ours 46.4(+2.3) 28.9 49.9 60.0

Conditional DETR

T & S 40.7 20.3 43.8 60.0
FGD 40.7(+0.0) 20.2 43.9 59.3
MGD 41.2(+0.5) 20.6 44.6 60.5
Ours 42.5(+1.8) 21.7 46.2 61.4

Table 6. Results of the large Swin-B backbone on AdaMixer.

Setting Backbone AP APS APM APL

Teacher Swin-B 47.5 29.9 50.1 64.8
Student R-18 38.3 20.9 40.2 53.9
Ours - 41.0(+2.7) 23.9 45.2 56.6

Teacher Swin-B 47.5 29.9 50.1 64.8
Student R-50 42.3 25.3 44.8 58.2
Ours - 45.4(+3.1) 27.3 48.6 61.8

T&S Swin-B 47.5 29.9 50.1 64.8
Ours - 48.7(+1.2) 30.1 51.7 65.1

Distillation on lightweight backbones. In this section, we
further conduct distillation for students with a lightweight
backbone. Specifically, we apply DETRDistill for the stu-
dent model with small backbones, e.g., ResNet-18 [13] and
MobileNetV2 [28] from the teacher model with a ResNet-
101 backbone [13]. The results are shown in Table 10. It is
clear that our proposed distillation method has achieved the
best performance across various settings. For example, we
achieve 2.0/2.6 mAP improvements on AdaMixer, 3.3/3.5
mAP on Deformable DETR, and 2.1/2.7 mAP on Condi-
tional DETR, respectively.

Self-Distillation. Self-distillation [36] is a special case of
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Table 7. Ablation study of each component in DETRDistill. LD
stands for Hungarian-matching Logits Distillation, FD represents
Target-aware Feature Distillation, and AD denotes Query-prior
Assignment Distillation.

Distillation AP APS APM APL

None 42.3 25.3 44.8 58.2
LD 43.7(+1.4) 25.3 46.5 60.7
FD 43.5(+1.2) 25.4 46.7 60.0
AD 42.9(+0.6) 24.5 45.9 59.3

LD + FD 44.3(+2.0) 25.8 47.0 61.0
LD + FD + AD 44.7(+2.4) 26.7 47.6 61.0

knowledge distillation where the teacher and student mod-
els are exactly identical, with the only aim of improving
the model’s performance. For this experimental setting,
we use ResNet-50 as the backbone network and we com-
pare the self-distillation performance of our approach with
FGD [37] and MGD [38] methods. Table 5 shows that our
DETRDistill gains 1.3 mAP, 2.3 mAP, and 1.8 mAP over
the baselines. In contrast, FGD and MGD may hardly bring
performance improvement and sometimes even cause a de-
cline in detection, such as on the AdaMixer detector.

6. Ablation Studies
In this section, we are interested in ablating our approach

from the following perspectives.
Effects of each component. To study the impact of each
component in DETRDistill, we report the performance of
each module in Table 7. Our baseline starts from 42.3 AP.
When logits-level distillation, feature-level distillation, and
query-prior assignment distillation are applied separately,
we can obtain the gain of 1.4 AP, 1.2 AP, and 0.6 AP, re-
spectively. Finally, the AP performance achieves 44.7 when
all three modules are applied together, gaining a 2.4 AP ab-
solute improvement.

Selection of logits distillation. Our default logits distilla-
tion is performed on positive classification predictions, pos-
itive and negative box regressions. We ablate various selec-
tions of these terms in Table 8. We can find that only dis-
tilling on positive predictions can only bring minor perfor-
mance gains. While the distillation on negative box regres-
sion significantly improves the performance. This clearly
verifies the importance of the proposed negative location
distillation proposed in Sec. 4.1.

Necessary of progressive distillation. As presented in
Sec. 4.1, we choose to progressively distill the knowledge
stage-by-stage from the teacher model to the student model,
but not to only use the last stage output of the teacher model.
Table 9 shows that the former choice performs better.

Visualization of selection mask in feature-level distilla-

Table 8. Ablations on the logits selection for distillation.

Pos. Cls. Pos. Reg. Neg. Reg. AP APS APM APL

- - - 42.3 25.3 44.8 58.2
✓ 42.6 24.9 45.4 58.9

✓ 42.6 24.4 45.6 58.8
✓ 43.4 25.2 46.2 60.1

✓ ✓ 42.5 24.9 45.4 58.3
✓ ✓ 43.6 25.2 46.3 60.6

✓ ✓ ✓ 43.7 25.3 46.5 60.7

Table 9. Ablation study on the necessity of progressive distillation.
Last-stage distillation means only using the teacher’s last decoder
stage output to supervise all decoder stages of the student model.

Strategy AP APS APM APL

Baseline 42.3 25.3 44.8 58.2
Last-stage Distillation 43.1 25.4 45.9 59.7

Progressive Distillation 43.7 25.3 46.5 60.7

Figure 6. Visualization of selection mask on different FPN stages.

tion. In Sec. 4.2, we have visualized some query-based se-
lection mask ψi in Fig. 4. Here, we are also interested in
the quality weighted mask

∑M
i (qi · ψi) and Fig. 6 presents

two visualizations of this mask on different FPN stages. It
can be seen that the soft masks are activated near the object
targets and retain certain contextual information, which is
in line with our expectations. We also find that the stages
with different strides in FPN have different knowledgeable
regions from the mask. Moreover, it inspires us not to use
ground truth for selection mask generation but to use an im-
mediate query-based selection mask for knowledge distilla-
tion as proposed in Sec. 4.2.

Visualization of instability between predictions from dif-
ferent decoder stages. In Sec. 4.3, we have proposed
a Query-prior Assignment Distillation to speed and stabi-
lize the training of the student model. Here, we present
an analysis of the instability between predictions from dif-
ferent decoder stages to investigate the effectiveness of the
proposed distillation module. We utilize the same metric
proposed by [17] to evaluate bipartite assignment’s insta-
bility. However, our focus is on the stability of match-
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Table 10. Experimental results of DETRDistill on lightweight backbones: ResNet-18 and MobileNetV2 on COCO validation set.

Detector Setting Query Backbone Epoch AP AP50 AP75 APS APM APL

AdaMixer

Teacher 100 ResNet-101 12 43.6 62.8 47.2 25.4 46.8 60.7
Student 100 ResNet-18 12 38.3 56.9 40.9 20.9 40.2 53.9

Ours - - - 40.3(+2.0) 58.0 43.3 22.8 42.4 56.9
Teacher 100 ResNet-101 12 43.6 62.8 47.2 25.4 46.8 60.7
Student 100 MobileNetV2 12 36.6 55.2 38.9 20.4 38.5 51.4

Ours - - - 39.2(+2.6) 56.7 42.2 22.0 41.5 55.4

Deformable DETR

Teacher 300 ResNet-101 50 45.5 64.8 49.5 27.5 48.7 60.3
Student 300 ResNet-18 50 40.0 58.0 43.3 23.0 42.9 53.7

Ours - - - 43.3(+3.3) 61.3 47.2 25.0 46.1 57.1
Teacher 300 ResNet-101 50 45.5 64.8 49.5 27.5 48.7 60.3
Student 300 MobileNetV2 50 38.8 56.8 42.0 23.2 41.7 51.9

Ours - - - 42.3(+3.5) 60.4 46.0 23.5 45.5 56.2

Conditional DETR

Teacher 300 ResNet-101 50 42.4 63.4 44.8 22.6 46.0 61.2
Student 300 ResNet-18 50 35.8 55.8 37.5 15.5 38.3 55.1

Ours - - - 37.9(+2.1) 58.3 39.9 17.4 40.6 57.9
Teacher 300 ResNet-101 50 42.4 63.4 44.8 22.6 46.0 61.2
Student 300 MobileNetV2 50 33.7 54.0 34.8 13.3 36.4 53.0

Ours - - - 36.4(+2.7) 56.7 38.0 15.2 39.5 55.7

ing between different decoder stages, not between differ-
ent epochs. The predictions in the k-th decoder stage
are denoted as Ok =

{
Ok

0 , O
k
1 , . . . , O

k
N−1

}
, where N is

the number of predicted objects, and the GTs are denoted
as T = {T0, T1, . . . , TM−1} where M is the number of
ground truth targets. Then we compute the index vector
Vk =

{
V k
0 , V

k
1 , . . . , V

k
N−1

}
to store the assignment result

of k-th decoder stage as

V k
n =

{
m, if Ok

n matches Tm,
−1, if Ok

n matches nothing . (11)

And the instability (IS) between decoder stage k and stage
k + 1 can be calculated as:

ISk =

N∑
j=0

1(V k
n ̸= V k+1

n ). (12)

We calculate the IS metric on the well-trained teacher
model and the student baseline model. As for the model
with our Query-prior Assignment Distillation, we compute
the IS metric on the immediate checkpoint of the first train-
ing epoch. As Fig. 7 shows, the naive student has higher
instability than the teacher model. But the IS score de-
creases a lot when using the proposed distillation module
for training only one epoch, which clearly verifies that such
a distillation module can help the student model train more
stably and thus speed up the convergence rate.

7. Conclusion

This paper introduces a universal knowledge distillation
framework for DETR-style detectors, named DETRDistill.

Figure 7. The instability (IS) of teacher, student, and student with
our Query-prior Assignment Distillation after training one epoch.

Our method contains three distillation modules: Hungarian-
matching Logits Distillation, Target-aware Feature Distilla-
tion, and Query-prior Assignment Distillation. Extensive
experiments on the competitive COCO benchmark demon-
strate the effectiveness and generalization of our approach.
We hope that DETRDistill can serve as a solid baseline for
DETR-based knowledge distillation in future research.
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