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Abstract

The vision community is undergoing the unprecedented
progress with the emergence of Vision-Language Pretrain-
ing Models (VLMs). Prompt learning plays as the holy grail
of accessing VLMs since it enables their fast adaptation to
downstream tasks with limited resources. Whereas existing
researches milling around single-prompt paradigms, rarely
investigate the technical potential behind their multi-prompt
learning counterparts. This paper aims to provide a princi-
pled retrospect for vision-language multi-prompt learning.
We extend the recent constant modality gap phenomenon to
learnable prompts and then, justify the superiority of vision-
language transfer with multi-prompt augmentation, empiri-
cally and theoretically. In terms of this observation, we pro-
pose an Energy-based Multi-prompt Learning (EMPL) to
generate multiple prompt embeddings by drawing instances
from an energy-based distribution, which is implicitly de-
fined by VLMs. So our EMPL is not only parameter-efficient
but also rigorously lead to the balance between in-domain
and out-of-domain open-vocabulary generalization. Com-
prehensive experiments have been conducted to justify our
claims and the excellence of EMPL.

1. Introduction
Recent years have witnessed the rise of multimodal intel-

ligence, in particular, Vision-Language Pre-training models
(VLMs), e.g., CLIP [40], ALIGN [24], achieving down-
stream tasks in low resources by converting the prior knowl-
edge behind large language models (LLMs) [10, 4]. Given a
pair of image encoder (e.g., ResNet [19], ViT [11], etc) and
text encoder (i.e., LLMs), VLMs align visual features with
their corresponding textual description embeddings via con-
trastive learning [12, 18, 56]. So provided a text known as
prompt, VLMs may rapidly adapt to diverse tasks [12, 32]
by matching harmony visual patterns with the textual de-
scription. The principle sheds a new light in computer vi-
sion for in-domain and out-of-domain generalization.

The impressive cross-modal transferability behind VLM

*indicate corresponding author.

Figure 1. The overview of cross-modal single-prompt learning and
multi-prompt learning (MPL). With more prompt templates, MPL
brings new opportunities and challenges as discussed in the com-
munity, yet seldom giving a systematic investigation and solution.

typically owes to the problem-customized prompting style,
yet demanding a great magnitude of trials and errors for se-
lecting the ideal prompt template from a pool of candidates.
Tedious workloads are consumed and do not guarantee the
optimal prompt template either. Instead of the prompt engi-
neering, prompt learning / tuning [55] sidesteps the obsta-
cle using soft prompting: outside of the words related with
what we are interested in, the rest of textual slots in the tem-
plate are replaced by a sequence of learnable context vec-
tors ahead of the text encoder. In this principle, the optimal
prompt template could be achieved by fine-tuning the learn-
able context vectors along with the given textual semantic
while keeping the rest parameters of VLMs frozen for the
optimization. The data-driven merit increasingly arouses a
flood of interests in the community [54, 42, 46].

Despite the significant progress, existing work of prompt
learning focused on a single template whereas multi-prompt
learnable context templates remain under-explored (Fig.1).
Recent NLP advance argue that instructing LLMs via more
prompts may trigger its underlying in-context learning abil-
ity to master new skills [4]. In this regard, multi-prompting
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is also deemed to be a promising trend for VLMs. On the
other hand, existing studies remain confused of how multi-
ple prompts work for VLMs, particularly from two aspects.
The first is vision-language transferrability [53]. Prompt
augmentation eliminates the average cross-modal transfer
shift while [54] showed that increasing the scale of con-
text vector tokens resulted in the detrimental effect, im-
plying a larger cross-modal disparity. The second is open-
vocabulary (OV) generalization, i.e., the model awareness
of unseen classes. Different from multple textual descrip-
tions, learning with more prompts suggests more parame-
ters. It casted a doubt of overfitting to training classes and
put unseen classes at the risk of model generalization [5].

In this paper, we provided several principled insights to
understand multi-prompt learning empirically and theoret-
ically. We first consider the cross-modal embedding space
following the constant modality-gap phenomenon found by
[53]. With regards to our empirical observations, we ex-
tend the conclusion to learnable prompts to show that more
learnable prompts might reduce the constant modality gap
more significantly. In terms of constant modality gaps, we
further proved the existence of cross-modal unidentifiabil-
ity issue: a paradox confusing the cross-modal model with a
single prompt template in visual recognition. It could be re-
strained by multi-prompting empirically, thus, interpreting
why multi-prompt learning could outperform single prompt
for the sake of vision-language transferrability.

In terms of our retrospect, the main challenge of multi-
prompt learning refers to its generalizability. Derived from
this concern, we propose a new methodology Energy-based
Multi-Prompt Learning (EMPL) for striking the balance be-
tween in-domain generalization and open-vocabulary gen-
eralization abilities. EMPL implicitly defines an energy-
based [27] prompt distribution that simultaneously use im-
age and prompt as the variable.With this regard, our method
could be rigorously treated as modeling the uncertainty to
explore the image-prompt embedding pairs with concepts
out of the training domains, whereas also well generalizes to
examples belonging to in-domain classes. The prompts are
iteratively generated via a stochastic Markov Chain Monte
Carlo (MCMC) sampler [50], which is parameter-efficient,
sensitive of input knowledge from vision-text encoders, and
more importantly, general enough to cooperate with exist-
ing prompt learning strategies to upgrade the performances.
Experiments are comprehensively conducted to validate our
claims and the superiority of our approach.

2. Related Work
Vision-Language Pre-trained (VLM) models. VLM

models, which unify the two most commonly used modali-
ties, vision and language, have gained great popularity due
to the success of pre-trained models [4] in CV and NLP.
Among numerous VLM models [40, 24], CLIP [40] is the

most widely used and representative one. It utilizes a pair
of image and text encoders to receive information from both
modalities and leverages a large amount of paired image and
text data collected from the Internet. In contrast to other
VLM models that use Masked language modeling [25, 30],
Masked region prediction [47, 45], etc., CLIP utilizes fea-
ture vectors from both encoders to train with the Contrastive
Learning [40] strategy, which successfully aligns the feature
space of both modalities and has been widely employed for
a variety of downstream tasks [17, 15, 34].

Prompt learning. Prompt tuning [38, 41], a tech-
nique derived from the field of natural language process-
ing (NLP), has gained great popularity [55, 54, 31] in the
field of VLP in recent years, which has the ability to un-
leash the potential of pre-trained multimodal models. CoOp
[55] , a well-known text branching technique, eliminates
the need for manual prompt design by transforming input
context tokens into learnable vectors. CoCoOp [54], its
successor, overcomes its generalization issues by taking vi-
sual features into account when creating prompts. Bahng
et al.[2] propose a visual prompt approach by adding task-
specific, learnable visual signals into images. Additionally,
prompt learning has been employed to equip VLP mod-
els with the ability to tackle a variety of tasks, including
open-vocabulary object detection [12], semantic segmenta-
tion [32, 42], and scene graph generation [20].

Multi-prompt learning. More recently, the advantages
of building multiple context templates for prompt learning
have been empirically verified. For instance, [31, 9] pro-
vided a distributional point of view to model the learnable
template, in which the diversity across templates were em-
phasized; [5] trained multiple prompts by decreasing the
cross-modality optimal transport [39, 6] across the prompt
embeddings and visual embeddings to match different vi-
sual aspects by different templates; [14] learns different
prompts to specify domain information, etc. These work
demonstrate the promising outlook of multi-prompt learn-
ing for VLMs, whereas their solutions are typically heurstic
and specific, limited to inspire the research in this thread.

3. Background
Here we give a brief review of cross-modal prompt engi-

neering and learning, then generalize the notations to multi-
prompt strategies prepared for the elaboration of our work.

Contrastive Language-Image Pre-training. CLIP con-
sists of a pair of visual encoder f and text encoder h, which
take ResNet / ViT and BERT [10] as their backbones.Given
an image x with its labelc contained in the description y(c),
CLIP extracts a feature f=f(x) by the visual encoder, then
taking the text encoder h(·) to align f with the text embed-
ding hc=h

(
y(c)

)
generated from y(c), e.g., “a cropped

photo of {c}”. f and h are trained with tons of image-
caption pairs to bridge the modalities by contrastive repre-
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sentation learning based on the prediction probability:

P (class = c|x) =
exp

(
sim(f,hc)/γ

)∑K
i=1 exp

(
sim(f,hci)/γ

) , (1)

where c is supposed to classify into the K classes {ci}Ki=1;
sim(·, ·) denotes a metric function such as cosine similarity,
and γ denotes the temperature of Softmax.

Prompt Learning. The template y(·) is engineered be-
fore matching f and hc by CLIP. Instead, CoOp [55] learns
a set of vectors v={v1,v2, · · · ,vm} to replace y(·), each
of which was understood as a pseudo word embedding
and m denotes the length of the learnable word slots. So
prompting becomes hv(c)={v1,v2, · · · ,vm,v(c)} where
v(c) denotes the embedding of the class name of c. There-
fore given a pre-trained CLIP, CoOp tunes the prompt pa-
rameter v to achieve a downstream task with a frozen CLIP:

Pv(class=y|x) =
exp

(
sim(f,hv(c))/γ

)∑K
i=1 exp

(
sim(f,hv(ci))/γ

) , (2)

in which hv(c) can be specified to represent a wider range
of prompt learning paradigms [54, 42].

Generic Notations of Multi-prompt Learning. Most
existing work of multi-prompt engineering and learning are
derived from Eq.1 and Eq.2, therefore we may extend their
notations to generally represent the multi-prompt methods.
In particular, we employ H

(
c;V

)
instead of hc to denote

a set of prompts composed of a vocabulary V and contains
the word c. CLIP-derived prompt engineering approaches
can be generally concluded into:

P (x)[c] =
exp

(
sim(f(x),H(c;V))/γ

)∑K
i=1 exp

(
sim(f(x),H(ci;V))/γ

) , (3)

where sim(·, ·) denotes a generic metric to estimate the
difference between the feature f(x) and the multi-prompt
embeddings H(c;V). If H(c;V) can be learned, we use
ϕ={θ,v} to denote the context v and other learnable pa-
rameters θ, then rewrite Eq.3 by Hϕ(c;V):

Pϕ(x)[c]=
exp

(
sim(f(x),Hϕ(c;V))/γ

)∑K
i=1 exp

(
sim(f(x),Hϕ(ci;V))/γ

) . (4)

In terms of task goals, the vocabulary V in Eq.4 is only inter-
ested in the words related with the task, which has already
summed up a set of multi-prompt learning methods [31, 6].

4. Embedding Geometry behind Prompts
The core of CLIP-derived prompt learning hinges on the

prompt template’s ability to solve vision tasks with text em-
beddings as inquiry proxies. The cross-modal transferabil-
ity is achieved for a pair of an image x and its description

y(c) if a vision classifier outputs similar predictions on their
embeddings. While given a matched image-text pair, the
embeddings extracted by CLIP counter-intuitively persisted
a modality gap [53, 28]. Our work demonstrated this ge-
ometrical phenomenon also widely exist in prompt learn-
ing with virtual description v(c) and results in cross-modal
non-identifiability issues in single-prompt learning. To this,
the technical merit of multi-prompt strategies can be veri-
fied from the view of cross-modal transferrability.

Modality Gaps between Images and Prompts. As pro-
posed in [28], the modality gap is caused by contrastive op-
timization and can be categorized into two types: the indi-
vidual-level modality gap g(x,y) differentiates the embed-
dings for a image-text pair (x,y); the class-level modality
gap g(c) differentiates the average between the embeddings
for images and text related with the class c, namely,

g(x,y) =f(x)−h(y), ∀
(
x,y

)
∼ PX×Y ;

g(c) =Ex∼PX|cf(x)−Ey∼PY|ch(y).
(5)

Observed across a range of contrastive multimodal models,
the modality gaps g(x,y) and gc could be approximated
by a constant vector [53]. These embedding geometrical
properties provide a new explanation why prompt learning
can outperform CLIP: learning to prompt might implicitly
reduce the modality gap constant between image-text pairs.

To procure the evidences of our guessing, we investigate
the embedding geometry derived from the prompt embed-
dings extracted from the single-prompt learner CoOp [55]
and multi-prompt learner ProDA [31]. The means and vari-
ances of the magnitude (|g|) and direction (cos(g,Egg)) are
estimated to justify whether the individual and class modal-
ity gaps can be approximated by a constant vector1. In
Fig.2, CoOp and three ProDA variant models with different
scale of prompts preserve the average gaps with trivial vari-
ances in their magnitudes and directions, thus, their modal-
ity gaps have been approximated by some constant vectors,
respectively. On account of this observation, prompt learner
differ in their modality gap magnitudes: CoOp trained from
CLIP can further minimize the gap magnitude, however, un-
derperforms ProDA with the prompt augmentation strategy:
adding prompts notably leads to closing the modality gaps.
Hence the failure of the overextended scale of prompts more
likely results from the overfitted model rather than the in-
competence of bridging the modality disparity.

Cross-modal Non-identifiability Issue. In terms of the
modalitygap, there is a issue that might happen if we use a
single template to prompt a cross-modal contrastive model.
Concretely, let’s consider two images xi, xj with mutually
exclusive concepts in visual realism, e.g., xi belongs to c1,
c2 and xj belongs to c2, c3. Given a single prompt tem-
plate v to convey these concepts, feature-embedding pairs

1We follows the same evaluation setup in [53].
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Figure 2. Magnitude (M) and Direction (D) of individual modality
gap (IMG) and class modality gap (CMG) on MsCOCO [29]. We
gradually increase the number of prompts by switching models as
CLIP→CoOp→ProDA→ProDA(x2)→ProDA(x4), to observe the
change of IMG and CMG.

(f(xi), hv(c1)), (f(xi), hv(c2)), and (f(xj), hv(c2)) are
supposed to be approximated by the individual-level modal-
ity gap constant vector c. Given this, we can prove f(xj)
far away from hv(c1) with the same constant vector c,

Proposition 1. Individual-level cross-modal non-
identifiability (Informal) Suppose a single-prompt learning
model

(
f(·), hv(·)

)
satisfies the constant individual-level

modality gap. Given each pair of images x1, x2 with
mutually exclusive concepts, it is not able to distinguish
them by single-prompting with their exclusive concepts.

The formal statement and proof refer to our Appendix.A.
Derived from the result, the image xi and xj can not be dis-
tinguished in terms of the proxy v(c1), which should have
been distinguished since the concept c1 is exclusive for the
image xi in terms of the image xj .

Here we discussed a simple case for illustrating the issue:
suppose we having a pair of horse (mutual concept) images,
where the first image refers to the scene of a man (exclusive
concept) riding a horse and the second describes that horses
and cows (exclusive concept) drink nearby a river. Prompt-
ing the images by the given captions is capable to differen-
tiate the images in terms of their exlusive concepts man and
cow. However, given a single prompt only built with learn-
able context vectors in v, inquiring with cow or man is hard
to classify these images if the context optimization satisfies
the constant modality gap pressumption, in which the sin-
gle template was optimized to overlook the other descrip-
tive information beyond the classes (e.g., riding and nearby
river). The case is general since the images with mutually
exclusive concepts may also refer to semantic information
incorporated from the visual encoder [54].

What’s worse, the class-level modality gap resembles the
tragedy across different groups, arousing the chaos to iden-
tify embedding sets belonging to different concepts:

Proposition 2. Population-level cross-modal non-

identifiability (Informal) Suppose a single-prompt learning
model

(
f(·), hv(·)

)
satisfies the constant individual-level

modality gap. Given image groups X1, X2 have mutually
exclusive concepts, it is not able to distinguish the groups
via single-prompting with their group-specific concepts.

The existence of non-identifiability validates the remark-
ably more effecting of multi-prompt learning strategy com-
pared with single-prompt learning: learning to prompt with
multiple templates suggests remodeling the diversity of cap-
tions that could helpfully alleviate the issues. It is reflected
by evaluating different prompt models on their prediction
consistencies to images with mutually exclusive classes.
Some evidences agreed with our conjecture in our empir-
ical studies on Language-to-Image Retrivel and Multi-label
classification (Appendix.C).

5. Energy-based Multi-prompt Learning
In the previous section, we discussed why multi-prompt

learning benefits the cross-modal transferrability, though it
does not reflect a model’s generalization ability to adapt the
cases beyond the prompt-tuning stage. The OV generaliza-
tion is remarkable in CLIP yet it might rapidly deteriorate
by prompt-tuning the backbone due to the traded-off perfor-
mance on in-domain images. Subsequent techniques devel-
oped to resist the degeneration [55] were barely motivated
by the multi-prompt learning charateristics. It is somehow
because multi-prompt learning with more templates is sup-
posed to bring more learnable context tokens, increasing the
risk of overfitting. Our concern rises from this regard:

Is there a multi-prompt learning algorithm
that simultaneously benefit the cross-modal transferrability

(in-domain) and the OV generalization (out-domain)?

To kill the two birds with one stone, we reinterpret multi-
prompt learning from a persepective of energy-based mod-
els (EBMs) [27], where mutiple prompt templates are re-
produced by drawing instances from an underlying EBM-
based prompt distribution. The paradigm of Energy-based
Multi-Prompt Learning (EMPL) is briefly shown in Fig.3
and we further elaborate the methodology to demonstrate
its potential to address our concern.

Energy-based Models. The formulation of EBMs con-
sists of an energy function E(·) :RD→ R that maps a D-
dimensional datapoint into a scalar. It is implemented by a
neural network with the parameter θ, then Eθ(·) is trained
to assign the low energy to observed configurations of vari-
ables and deliver the high energy to unobserved ones. So
given a dataset without the knowledge of its underlying den-
sity p(Z), EBMs enable p

(EBM)
θ (Z) = exp(−Eθ(Z))∫

z∈Z exp(−Eθ(z))
to

approximate the density function. The variable Z in EBMs
mostly refers to images or image features in previous work
[16, 36, 49]. In contrast, our EMPL depends on an energy

22193



function Eϕ(Z)=Eϕ(X,H) with Z constructed by the im-
age variable X and the prompt variable H . Therefore the
multiple prompts in Hϕ (Eq.4) are obtained via drawing
prompt instances from a EBM-based conditional prompt
distribution p

(EBM)
ϕ (H|X), i.e.,

∀ x ∼ p(X) = PX ,

Hϕ ∼ p
(EBM)
ϕ (H|x) = exp(−Eϕ(x, H))∫

H∼H exp(−Eϕ(x, H))
,

(6)

in which H denotes the space of soft prompts and the energy
function is derived from the contrastive score Pϕ(·) in Eq.4.

Energy-based Open-vocabulary Learning. Given an
open vocabulary V , we elaborate the meta-learning objec-
tive with the energy function Eϕ(X,H) for improving in-
domain and out-of-domain generalization. Instead of a K-
word vocabulary in Eq.4, the open vocabulary V demands a
meta-classifier of predicting arbitrary classes across visual
recognition tasks. So EMPL is suggested to incorporate all
the words in V and accordingly, Eϕ(X,H) should support
meta-learning to achieve a set of K-class visual recognition
tasks. Each task is constructed by K ′ (0<K ′<K) observed
classes and the other K−K ′ classes refer to the unseen class
names that have appeared in the open vocabulary V . Hence
given each task Ti with K−K ′ observed classes Vi and un-
seen classes Ui, we define the task-specific energy function
Eϕ(X,H; Ti) to capture the out-of-domain uncertainty:

Eϕ(X,H; Ti) =log
∑
c∼Ui

Pϕ(X,H)[c]

=log
∑
c∼Ui

exp
( sim(f(X),H(c;Vi∪Ui))

γ

)∑K
i=1 exp

( sim(f(X),H(c;Vi∪Ui))
γ

) , (7)

in which x, Hϕ from Eq.4 is rewritten into X , H , respectiv-
ley, for representing random variables in the energy function
in the range of the training data distribution. Eϕ(X,H; Ti)
derived from Eϕ(X,H) is suggested to meta-learn unseen
concepts in Ui across different tasks during training. Then,
EMPL objective is defined as

min
ϕ

ETi

[
Ep(X,H|Ti)

[ ∑
c∼Vi

− logPϕ(X,H)[c]
]

︸ ︷︷ ︸
Generic prompt learning goal

−λE
p
(EBM)

ϕ
(X,H|Ti)

[
Eϕ(X,H; Ti)

]
︸ ︷︷ ︸

EBM uncertainty modeling

]
,

(8)

where p(X,H|Ti) denotes the image-prompt training pairs
extracted with their labels for achieving the maximum log-
likihood prompt-tuning goal in terms of the task Ti (the first
term); p(EBM)

ϕ
(X,H|Ti) represents the image-prompt joint

distribution derived from the task-specific energy function

Figure 3. The paradigm of EMPL (best viewed in color). Briefly
speaking, EMPL defines a prompt distribution based upon a EBM
with the variables lying in the image feature and prompt embed-
ding spaces. It categorizes an image with multiple prompts itera-
tively drawn from the EBM-based distribution by SGLD samplers.

Eϕ(X,H; Ti). It is noteworthy that, ϕ denotes the param-
eter frozen of the current iteration, hence p

(EBM)

ϕ
(X,H|Ti)

is only available of generating image-prompt training pairs
to compute the expectation for the second term.The hyper-
parameter λ balances the strengths between in-domain im-
age recognition and open-vocabulary concept exploration.

The energy function Eϕ(X,H; Ti) interacts with prompt
learning by the second term, encouraging the low energy in
terms of the image-prompt pairs extracted from p(X,H|Ti),
in turn, stay high if the p

(EBM)

ϕ
(X,H|Ti) deviates from the

marginal image-prompt distribution p(X,H|Ti). The train-
ing process can be proved to endow the image-prompt pairs
with a profound property:

Proposition 3. Provided an arbitrary task Ti constructed to
classify an image into either observed classes Vi with ava-
iable training images or unseen classes Ui without unavail-
able training images, if p(X,H|Ti) denotes the marginal
distribution of image-prompt pairs extracted from training
data distribution, and pϕ(X,H|Ui) =

∑
c∼Ui

Pϕ(X,H)[c]
denotes the distribution of image-prompt contrastive pre-
diction marginalized over all unseen classes in Ui, the opti-
mization objective of EMPL (Eq.8) encourages p(X,H|Ti)
and pϕ(X,H|Ui) negatively correlate with each other.

The theoretical result derived from uncertainty modeling
[49], enlightens us to understand the superiority of EMPL.
In particular, when a well-trained EMPL model is provided
with in-domain images, the energy-based prompt distribu-
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tion is encouraged to assign a low contrasive score to any
prompt without matching the images with correct classes
since in-domain image-prompt pairs well match p(X,H|Ti)
so that squeezes the value of Pϕ(X,H)[c] for all c that
falls within Ui. With images drawn from the other do-
mains or unseen classes, the image-prompt pairs are far
from p(X,H|Ti), equivalently to increase pϕ(X,H|Ui) for
exploring the proper matching between the images and the
unseen classes in Ui.

SGLD Sampling and Prompting. It is pivotally impor-
tant of sampling image-prompt pairs from the energy-based
distribution p

(EBM)
ϕ (·) since it does not only provide train-

ing instances for the second term in Eq.8 but also generate
Hϕ to categorize x by the multi-prompting (Eq.6). We em-
ploy Stochasitc Gradient Langevin Dynamics (SGLD) [50]
to alternatively execute the sampling process2:

xt+1 = xt − α

2

∂Eϕ(x
t,ht)

∂xt
+
√
αϵ1, ϵ1 ∼ N (0; I),

ht+1 = ht − α

2

∂Eϕ(x
t+1,ht)

∂ht +
√
αϵ2, ϵ2 ∼ N (0; I),

(9)
where t and α denote the iteration and the step-size in the
stochastic process; ϵ1 and ϵ2 are random noises drawn from
a Gaussian distribution, respectively. The sampling process
run in the feature space of xt+1 and the embedding space
of ht+1. It significantly reduces the computational burden.

Comparison with Other Prompt-Distribution Meth-
ods. Although previous multi-prompt learning efforts [31,
1] have treated prompts as instances drawn from a distribu-
tion, our EMPL are predominant from some aspects. Con-
cretely, the previous methods draw prompts from a spe-
cific type of density function or have to maintain a pre-
defined context vector collection. Instead, EMPL defines
the prompt distribution via a EBM derived from multi-
prompt learning objective, where multiple prompts are dy-
namically drawn via executing a SGLD process, requiring
little extra parameters beyond the base contexts. It prevents
multi-prompt learning from the higher risk of overfitting.
Besides, the EBM-based prompt distribution typically gen-
erates dynamic prompts conditioned on the visual feature. It
resembles the spirit of CoCoOp distinct from other works.

6. Experiments

In this section, we conduct comprehensive experiments
to evaluate EMPL with diverse prompt learning approaches
across three tasks, e.g., base-to-new generalization, cross-
domain generalization, and cross-dataset transfer learning.
It provides the answer of our previous concern.

2In terms of the meta-learning formulation in Eq.8, Eϕ(·, ·) is replaced
by Eϕ(·, ·; Ti) to denote the SGLD sampling process executed for the task.

Table 1. Comparison of single-prompt and multi-prompt learn-
ing baselines in the base-to-new generalization setting. H (Har-
monic mean [51]) measures the generalization trade-off. Different
background colors indicate the corresponding group of abalating
EMPL for CoOp and ProDA.

Single-prompt Multi-prompt learning

CLIP CoOp CoCoOp ProDA PLOT∗ CoOp ProDA

(+EMPL) (+EMPL)

Base 69.34 82.66 80.47 81.56 75.90 82.73 (+0.07) 82 (+0.44)

New 74.22 63.22 71.69 72.29 67.6 70.93 (+7.71) 73.27 (+0.98)

H 71.69 71.65 75.83 76.65 71.8 76.38 (+4.73) 77.39 (+0.74)

6.1. Experimental Setup

Benchmarks. The three tasks with fifteen datasets eval-
uate cross-modal prompt learners from different aspects. In
terms of the base-to-new generalization and cross-dataset
transfer setups, it takes ImageNet [8], Caltech101 [13] for
normal object recognition; SUN397 [52] for scene recogni-
tion; UCF101 [44] for action recognition; DTD [7] for tex-
ture classification; EuroSAT [21] for satellite image classifi-
cation; and OxfordPets [37], StanfordCars [33], Flowers102
[35], Food101 [3], FGVCAircraft [26] for fine-grained im-
age recognition derived from diverse scenarios. For the do-
main generalization, it trains models on ImageNet, then re-
port the evaluation on ImageNetV2 [43], ImageNet-Sketch
[48], ImageNet-A [23], and ImageNet-R [22]. The evalua-
tion metric refer to the average accuracies and we addition-
ally report the Harmonic mean [51] for base-to-new gener-
alization, which is broadly regarded to judge the traded-off
performances between the base and new classes.

Baselines. Beyond our methodology and CLIP [40], we
consider CoOp [55], CoCoOp [54], ProDA [31], and PLOT
[5] for our comparison. Their backbones are typically de-
rived from the open-source CLIP3, in which CoOp, Co-
CoOp are supposed to be the single-prompt learning base-
lines and ProDA, PLOT denote the multi-prompt learning
baselines (We take PLOT∗ instead of PLOT to indicates its
backbone distinct from other baselines). Note that EMPL is
orthogonal to most existing prompt-tuning based methods
and can be deployed to improve their strategies by energy-
based multi-prompting. In this regard, our implementation
for EMPL are derived from CoOp and ProDA4, whereas
their original objectives have been considered as the first
term of Eq.8 and their prompt generations are substituted by
our SGLD-based sampler rather than their primitive strate-
gies. We use EMPL(+CoOp) and EMPL(+ProDA) to rep-
resent their marriages, respectively.

Implementation. EMPL(+CoOp) and EMPL(+ProDA)

3https://github.com/openai/CLIP
4EMPL might also suit CoCoOp and PLOT in the spirit whereas it is

prohibitively implemented by their open-source versions due to the heavy
memory consumption for training.
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Figure 4. The performance change in base classes in 11 datasets.

are implemented with the public codes of CoOp and ProDA,
in which we reformulate their learning objectives by intro-
ducing an energy-based function derived from the learnable
contexts to specify SGLD-based samplers. The details of
SGLD-based sampler and open-vocabulary meta-learning
strategy refer to our Appendix.

6.2. Base-to-new Generalization

Task setup. It requires the prompt learner trained for
few-shot generalization on the 10 datasets with three dif-
ferent random seeds. Each dataset is divided into two dis-
joint subsets with base classes and new classes, where base-
line models are trained with base classes via few-shot learn-
ing and evaluated on both base and new classes in the test
dataset. For a fair comparison, we follow the dataset split
and the number of shots in [54] during training.

Results. Due to the space limitation, we report the aver-
age base-class and new-class accuracis along with their Har-
monic mean over all datasets in Table.1, then providing the
performance ablation for each dataset (Fig.4,5). As demon-
strated in Table.1, CoOp is a competitive rival in Base-class
generalization with regard to its outperformance compared
with other baselines beyond the range of our EBML. But its
superiority remains a doubt of overfitting because its accu-
racy rapidly drops while coming to the unseen classes. The
performance discrepancy could be greatly mitigated when
CoOp takes the prompts generated by EMPL. The marriage
leads to +7.71 performance gain on the new classes, driv-
ing the Harmonic mean to 76.38 that sufficiently defeats all
single-prompt learning baselines. CoCoOp is famous as a
complementary strategy to CoOp, while its pipeline suffers
from the low inference efficiency due to its instance-specific
prompt scheme demanding an independent forward pass for
each prompt. With this regard, CoCoOp hardly becomes, or
combines with a multi-prompt strategy and thus, inevitably
fall behind all ProDA variants. Notice that, EMPL endows
ProDA with visually-encoded information conducted by the
SGLD-based prompting scheme (Eq.9). It results in the up-
permost trade off in the base-to-new generalization .

We further ablate EMPL in the CoOp and ProDA across
all datasets. As shown in Fig.4, EMPL benefits the majority
of tasks (7 of 10 in CoOp and 6 of 10 in ProDA) with mod-
erate margins whereas also produces unexpected negative

Figure 5. The performance change in new classes in 11 datasets.

Table 2. Comparison of single-prompt and multi-prompt learning
baselines for cross-domain generalization.(best viewed in color)

Source Target
ImageNet -V2 -Sketch -A -R

CLIP 66.73 60.83 46.15 47.77 73.96
CoOp 71.51 64.20 47.99 49.71 75.21

CoOp(+EMPL) 70.89 ↓ 64.91 ↑ 48.64 ↑ 51.27 ↑ 76.01 ↑
CoCoOp 71.02 64.07 48.75 50.63 76.18
ProDA 71.41 65.14 46.78 51.62 75.67

ProDA(+EMPL) 71.17 ↓ 64.79 ↓ 48.42 ↑ 52.35 ↑ 76.84 ↑

effects to CoOp and ProDA for the minority. It probably
owes to the conservative tendency to the observed classes
for open-vocarbulary meta-learning, in which the energy
function aims to maintain the exploitation-exploration bal-
ance between in-domain classes and out-of-domain classes
(Proposition.3). Notwithstanding, the base-class predomi-
nances of CoOp and ProDA go on without sacrificing the
new-class generalizability in Fig.5.

6.3. Cross-domain Generalization

Task setup. Distinct from the base-to-new setup, cross-
domain generalization attempts to examine the baselines in
terms of their resiliences against domain shift and adversar-
ial robustness: models trained in ImageNet are evaluated on
its four target dataset variants for different purposes.

Results. As reported in Table.2, our EMPL enhances the
cross-domain accuracis of CoOp and ProDA in seven out
of eight situations with diverse type of distribution shifts. It
fails in the cases with the source data for training (ImageNet
for CoOp) or with a mild distribution shift (ImageNet-V2
for ProDA). In terms of the cases containing significant vi-
sual difference (ImageNet-Sketch), out-of-distribtuion shift
(ImageNet-R) and natural adversarial noises (ImageNet-A),
our EMPL consistently emerged victorious for the general-
ization across domains.

6.4. Cross-dataset Transfer

Task setup. We finally evaluate the baselines in the more
challenging cross-dataset transfer setups, whose fundamen-
tals are allowed to totally change across datasets (different
tasks across different domains). In this case, the baseline
prompt contexts are trained on ImageNet, then, required to
access on the other target datasets with distinct knowledge.
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Table 3. Comparison of single-prompt and multi-prompt learning baselines for cross-dataset transfer.(best viewed in color)

Source Target
ImageNet Caltech101 OxfordPets StanfordCars Flower102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Avg

CoOp 71.51 93.7 89.14 64.51 68.71 85.35 18.47 64.15 41.92 46.39 66.55 63.88
CoOp(+EMPL) 70.89 94.16 90.21 65.29 71.52 86.21 23.16 67.13 46.93 47.34 68.07 66.49

CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
ProDA 71.41 94.65 90.22 64.81 70.69 85.57 22.23 68.23 43.33 45.78 67.86 65.89

ProDA(+EMPL) 71.17 94.63 91.24 65.67 71.76 86.29 23.97 67.98 47.21 46.87 68.44 66.81

Figure 6. The trending curves when changing the value of λ and
the number of new words for training (best viewed in color).

Results. As demonstrated in Table.3, all baselines per-
form similarly in the source training set while behave differ-
ently across diverse target datasets, and in most cases, the
multi-prompt learners outperform the single-prompt learn-
ers. In particular, EMPL variants outperform the other base-
lines in seven datasets and more importantly, they have sig-
nificantly benefited their basic models with the accuracy in-
creases in 18 of 20 transfer scenarios. More typically on the
target datasets such as FGVCAircraft, SUN397, and DTD,
EMPL raised their accuracies more than 3% and besides, it
does not introudce any extra parameters to acheive this goal.
On the other side, we also observe that EMPL results were
not the state of the art (ImageNet, Caltech101, Flower102,
and SUN397). The ImageNet case is similarly explained
as what happened in Table.2-3, i.e., the boost by EMPL
is largely due to the new-class generalization. So testing
EMPL on the source data may deemphasize this merit. As
to Caltech101, Flower 102, and SUN397, it is observed that
EMPL just slightly underperform the state-of-the-art mod-
els, e.g., ProDA is 94.65 yet EMPL(+ProDA) is 94.63. As
the number of promptgs was fixed to 8, their performances
might be further improved by prompt augmentation.

6.5. Analysis

The number of prompts. The size of prompts used for
each prompting inference sufficiently affects the final per-
formance for arbitrary prompt distribution methods. So we
provide the ablation for evaluating EMPL with the prompt
number used for training. We evaluate EMPL variant model
derived from CoOp based on DTD dataset, then, observe
the change of the base-class, new-class accuracies, and their
Harmonic means. As reported in Fig.7, the performance of

Figure 7. The statistic and trending curves when changing the
number of prompt samples for training (best viewed in color).

EMPL could be increased by drawing more prompt embed-
dings from the energy-based distribution.

Hyperparameters λ and K−K ′. The open-vocabulary
meta-learning objective (Eq.8) plays a key role of achieving
the trade-off balance in base-to-new generalization. The im-
plemenation is typically related with the hyperparameters λ
and K−K ′: the former determines the sensitivity to explore
visual patterns with new-word prompts; the latter controls
the ratio of how many new words would appear per training
batch. We follow the ablation setup above and then change
the value of λ in the range {0.01,0.1,1}, then, taking the
same evaluation setup by changing the number of unseen
words per training batch in the range {1,2,4,8}. As we have
observed in Fig.6, λ typically trades off the in-domain and
out-of-domain results where its larger value implies the ob-
jective with more attention to explore the uncertainty. It
leads to the rise of new-class generalization, vice and versa.
K−K ′ is also related with the new-class generalization per-
formance: increasing the number of new words leads to the
improvement while it rapidly converges to the bottleneck.

Table 4. The trade-off between performance (the base-to-new gen-
eralization setup in DTD) and computation burden.

Transformer Performance Computation burden
layers Base New H Sec/iter

2 80.61 52.14 63.32 0.048
3 80.71 52.2 63.39 0.072
6 79.41 53.31 63.79 0.143
9 77.28 51.24 61.62 0.278

Positions for SGLD-based sampling. EMPL’s training
and prompting rely on SGLD that runs in the embedding
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Table 5. Image-text retrieval results on MSCOCO and Flick30K.

0% 0.5% 1%

CLIP CoOp CoCoOp EMPL CoOp CoCoOp EMPL

MSCOCO 53.35 53.10↓ 54.50↑ 55.45↑ 53.58↑ 56.40↑ 56.85↑
Flickr30K 83.06 81.90↓ 82.80↓ 83.94↑ 82.71↓ 84.50↑ 85.63↑

space. To justify the concern of backward sampling compu-
tation, we ablate EMPL (+CoOp) variants with the SGLD
sampler applied to different positions in the text encoder
and take sec / iter to measure how long it takes to generate
a prompt embedding with a single RTX 3090 GPU. Table.4
shows that applying the SGLD sampling to the low-level
space incurs huge computation overhead without obvious
performance bonuses. It encourages us to take the two-layer
backward pass to generate prompts across all experiments.

6.6. Vision-Language Information Retrievel

We finally provide the empirical study with respect to
image-text retrieval tasks on MSCOCO and Flickr30K.
We employed Karpathy split to separate MSCOCO into
113/5K/5K and Flickr30K into the amouts of 29,000 / 1,000
/1,000 for training / validation / test sets, respectively. We
further construct the few-shot subsets for prompt tuning,
with 0.5% and 1% instances drawn from their training sets,
respectively. Given this, we train the prompt learners with
these subsets, then evaluate the prompt learners’ perfor-
mance on their corresponding test sets using Recall at 1
(R@1) as our evaluation metric.We focus on the evalua-
tion to CLIP, CoOp, CoCoOp and EMPL (+CoOp), where
CLIP did not join prompt tuning and the other captions took
as images’ class labels. In Table.5, we observe that the
CoOp-based models trained with 0.5% data in MSCOCO
and Flick30K both suffer from the overfitting compared
with CLIP. Encoding visual information by CoCoOp helps
to alleviate, but failed to solve it in Flickr30K. In contrast,
EMPL prevented CoOp from overfitting to the scarce train-
ing subsets to achieve the optimal results. With 1% training
data, EMPL significantly improves CoOp, e.g., +3.37 for
MSCOCO (1%) and +2.92 for Flickr30K (1%), which out-
performed the other baselines.

7. Conclusion, Limitation, and Future Work
In this paper, we have proposed a systematic overview

to vision-language multi-prompt learning. In the discus-
sion scope of CLIP, we revealed why multi-prompt learn-
ing strategies can improve cross-modal transferrability: (1)
multi-prompt learning empirically reduces the modality gap
with prompt augmentation and (2). single prompt learn-
ing provably suffers from non-identifiability issue while
augmenting the prompt may alleviate. Given this oberva-
tions, we propose a new energy-based multi-prompt learn-
ing (EMPL) approach to improve the open-vocabulary gen-
eralization capability with regards to uncertainty modeling.

Our EMPL does not require any extra parameter introduced
for CLIP, while its superiority has been theoretically and
empirically supported by thorough experiments.

The drawback of EMPL mainly comes from its time cost
for the prompt embedding inference . According to our de-
vice for training, we paid the triple time cost more than the
CoOp original version and even more in terms of ProDA-
based EMPL variants. For each inference for testing, we are
encouraged to take double prompt embeddings compared
with training phase to increase the performance, where we
take the most certain class as our prediction results.

According to our discssion, it would be several promis-
ing treads in the future for multi-prompt learning. First, we
only raise the first theoretic concern to multi-prompt learn-
ing since we have discovered the occurence of cross-modal
non-identifiability behind single-prompt learner. Whereas
why and how multi-prompt learners work out, still requir-
ing for more sophisticated analytical studies with respect to
learnability and optimization theories. Second, the prompt
diversity is the key why multi-prompt learners outperform
single-prompt learners. Therefore the research on the topic
related with the prompt diversity is also inspiring. Finally,
multi-prompt learning were always proposed as a time-
consuimg approaches since they have to infer their prompts
multiple times to predict each image. Reducing the infer-
ence cost would be a crucial issue in this field.
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Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebastian
Riedel. Language models as knowledge bases? arXiv
preprint arXiv:1909.01066, 2019. 2
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