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Abstract

Sparsely activated Mixture-of-Experts (MoE) is becom-
ing a promising paradigm for multi-task learning (MTL).
Instead of compressing multiple tasks’ knowledge into a sin-
gle model, MoE separates the parameter space and only
utilizes the relevant model pieces given task type and its
input, which provides stabilized MTL training and ultra-
efficient inference. However, current MoE approaches
adopt a fixed network capacity (e.g., two experts in usual)
for all tasks. It potentially results in the over-fitting of
simple tasks or the under-fitting of challenging scenar-
ios, especially when tasks are significantly distinctive in
their complexity. In this paper, we propose an adaptive
MOoE framework for multi-task vision recognition, dubbed
AdaMV-MoE. Based on the training dynamics, it auto-
matically determines the number of activated experts for
each task, avoiding the laborious manual tuning of opti-
mal model size. To validate our proposal, we benchmark
it on ImageNet classification and COCO object detection
& instance segmentation which are notoriously difficult to
learn in concert, due to their discrepancy. Extensive ex-
periments across a variety of vision transformers demon-
strate a superior performance of AdaMV—-MoE, compared
to MTL with a shared backbone and the recent state-of-the-
art (S§0TA) MTL MoE approach. Codes are available on-
line: https://github.com/google—research/
google-research/tree/master/moe_mt1.

1. Introduction

Multi-task vision recognition aims to simultaneously
solve multiple objectives, which is commonly required in
real-world applications. For instance, robotics [64] need to
learn how to pick, place, cover, rearrange, and align objects
simultaneously; autonomous vehicles [42] are expected to
concurrently perform drivable area estimation, lane detec-
tion, pedestrian detection, and more. Classic multi-task
learning (MTL) methods [52, 60, 28, 48, 67, 85, 51] learn a
shared representation among different tasks and attach task-
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Figure 1. The multi-task vision recognition performance of vari-
ous ViT architectures on ImageNet classification (y-axis), COCO
object detection and instance segmentation (z-axis) benchmarks.
Averaged results of detection’s AP (%) and segmentation Apmask
(%) are reported. Markers * and O denote ours and baseline ap-
proaches, respectively. A larger marker indicates more floating
point operations (FLOPs) are used for inference. ViT-Small* is a
reduced backbone variant with half transformer layers.

specific heads. Following the generic trend in visual recog-
nition, recent MTL works leveraged Vision Transformers
(ViTs) [25, 68, 49, 10] as the new unified backbone [7, 5].

However, such MTL models with a single backbone suf-
fer from unstable training and inefficient inference. As
pointed out by [56, 81, 17], the shared parameters might
receive conflicted update directions from different objec-
tives, and this negative competition usually leads to poor
training convergence, biased representations, and inferior
performance. Meantime, existing MTL regimes usually
activate the whole network backbone, regardless of what
tasks come. It causes a waste of computations in potential
since various real-world MTL systems [64] perform one or
a few tasks at each moment, which may only require the
relevant model pieces. The sparsely activated Mixture-of-
Experts (SMoE) serves as an encouraging remedy for tack-
ling these two MTL bottlenecks. Specifically, a pioneering
study [46] inserts SMoE layers into the MTL ViT by replac-
ing its dense feedforward network with a series of sparsely
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activated MoE experts (e.g., multilayer perception (MLP)).
Then, task-dependent routing policies are enforced to se-
lect a subset of task-relevant experts. Impressive results are
demonstrated with this MTL MoE [46].

Despite these preliminary investigations, key challenges
still persist in building an effective MTL system: How to
determine an appropriate network capacity for each task in
MTL? By treating it as a hyperparameter, performing the
manual tuning for each task is laborious and infeasible due
to the entanglement between tasks. Thus, a fixed model size
across all tasks is a conventional setup of existing MTL ap-
proaches (e.g., always using 4 experts in [46]). However,
this rigid and sub-optimal design potentially sacrifices the
learning of certain tasks, since excessive or insufficient net-
work capacity leads to either over-fitting or under-fitting in
simple or complex scenarios, respectively [72]. The dis-
advantages will be further amplified when optimizing mul-
tiple tasks with a substantial variation in task complexity.
Take image classification and object detection tasks as ex-
amples. First, the common benchmarks for classification
have a lower input resolution like 32 x 32 for CIFAR [40]
and 224 x 224 for ImageNet [24], while object detection is
normally evaluated on the COCO [47] dataset with a higher
resolution of 640 x 640 or 892 x 892. Second, to obtain a sat-
isfying performance, the routine network for detection [9] is
usually larger than the ones for classification [69], such as
ResNet-101 [34] versus ResNet-50. Third, as for the task
objectives, object detection contains both object localiza-
tion and recognition, and thus is more complicated than
classification which can be essentially regarded as a sub-
task. As discovered in [18, 33], their mismatched learning
goals emphasize different feature proprieties (i.e., location
invariant [8] versus sensitive). Given such heterogeneity of
task complexity, these two tasks are notoriously difficult to
learn together with a shared feature extractor and unified
model size. An adaptive mechanism is therefore demanded.

In this paper, we propose AdaMV-MoE, to address the
aforementioned key barriers, by seamlessly customizing the
current state-of-the-art (SOTA) MTL MoE [46]. To be spe-
cific, an adaptive expert selection mechanism is proposed
to automatically determine the number of experts (or model
capacity) in use for different vision tasks. We monitor the
validation loss to adaptively determine activating more/less
experts to prevent under-fitting/over-fitting. Our contribu-
tions are summarized below:

* We target the problem of multi-task vision recognition,
and tackle the key challenge of choosing a suitable net-
work capacity for distinctive tasks. According to train-
ing dynamics, our algorithm controls the task-specific
model size in an adaptive and automatic manner.

* We introduce a customized MoE to resolve image clas-

sification, object detection, and instance segmentation
simultaneously, which used to be a troublesome com-

bination for MTL. Visualization of our learned task-
specific routing decisions is provided and exposes spe-
cialization patterns, particularly for image contents.

* Extensive experiments are conducted to reveal the ef-
fectiveness of AdaMV-MoE in MTL, as shown in Fig-
ure 1. For example, our approaches surpass the vanilla
MTL ViT with a shared feature extractor, by a signif-
icant performance margin of {6.66% ~ 7.39% accu-
racy, 0.87% ~ 1.13% AP, 0.84% ~ 0.89% AP™ak}
for {image classification, object detection, instance
segmentation} on ImageNet and COCO datasets with
UViT-Base backbones [16].

2. Related Works

Multi-Task Learning (MTL). MTL resolves multiple
objectives and produces corresponding predictions for in-
put samples. It has been investigated for a long history,
and numerous solutions are proposed ranged from classic
learning algorithms [78, 36, 89, 4, 80, 43, 23, 41] to mod-
ern deep neural networks. Deep learning methods gener-
ate shared feature representations to model the common in-
formation across tasks, which can be categorized into two
groups, i.e., encoder- and decoder-focused pipelines. The
former [52, 60, 28, 48] allows the task interactions in the
encoder and attaches task-specific heads on top of it as inde-
pendent decoders. For example, [52] and [48] advocate the
linear combination and attention mechanism to learn shared
encoder representations among tasks, respectively. The lat-
ter [77, 87, 86, 70] first creates initial task-dependent fea-
tures from decoders and then aggregates them to form the
final per-task prediction. Such pipelines consume heavy
computations since they need to at least execute all tasks
once for the initial decoder features, which limits their prac-
tical usage in resource-constrained scenarios. In this paper,
we mainly study encoder-focused architectures.

A conventional encoder architecture is a convolutional
neural network (CNN) [48, 63, 84, 85]. As ViTs emerge,
IPT [11] leveraged transformer-based models to solve mul-
tiple low-level vision tasks. [54] and [01] adopt similar ar-
chitectures for the tasks of {object detection, semantic seg-
mentation} and {scene and action understanding, score pre-
diction} in the video, respectively. [7] further involves vi-
sion tasks from 3D domains. Our work considers jointly
learning classification, object detection, and instance seg-
mentation with ViT-based models. Note that it is highly
non-trivial since classification and detection & segmenta-
tion emphasize location invariant [8] and sensitive features
respectively, which potentially contradict each other. Be-
sides, another theme in MTL investigates how to share and
separate parameter spaces for learning task-agnostic and -
specific knowledge respectively [66, 71, 55, 6, 46].

Mixture-of-Experts (MoE). MoE duplicates some net-
work components into a series of copies (named experts)
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Figure 2. Overview of our framework. AdaMV-MoE contains both ViT (left) and SMoE (middle) layer, where the SMoE layer is built by
replacing the original multi-layer perceptron (MLP) with a sparsely activated mixture of experts (MLPs). It enables multi-task learning by
leveraging task-specific router networks (right). Each router network determines how many (adaptive) and which (specialized) experts

are appropriate to activate the given task.

and embraces the conditional computation in an input-
dependent way [37, 39, 12, 82]. The earliest variant of
MokEs densely activates all experts for each input, and there-
fore it is computation-intensive [26]. Later on, [62, 44, 27]
advocate a sparsely activated style for utilizing experts,
called sparse MoE (SMoE). It greatly reduces the cost at
both the training and inference stages, which grants impres-
sive scalability and even allows enormous language mod-
els with trillions of parameters [27]. The effectiveness of
SMokEs has been widely proved in various NLP [62, 44, 91,
, 93, 38] and vision [58, 26, 2, 30, 74, 79, 1, 57] tasks.
Particularly, the pioneering work [58] offers the first vision
transformer-based SMoE for the image recognition task.
With further investigations, several downsides of SMoE
are revealed, including: 4) Training instability. [92] con-
ducts a trade-off study of SMoE between its training sta-
bility and quality, where they show many classic tricks
like gradient clipping stabilize training but sacrifice perfor-
mance and the router z-loss [92] seems to bring a win-win
case. 1) Poor specialization. The ideal outcome of SMoE
is to divide and conquer certain tasks by tackling each piece
problem with selected experts [3, 32, 51, 53, 15]. Yet it
is hard to reach unless explicitly enforcing specialization
and trimming down the redundancy among experts [ 3] like
pre-defining a diverse expert assignment [22] or involving
multiple routing policies [32]. i7i) Representation collapse.
Naively trained SMoE is prone to load imbalance, e.g.,
only a few experts are frequently used while the others are
scarcely activated. To alleviate this issue, [62] adds Gaus-
sian noises to router networks; [44, 27] propose an auxiliary
loss as the regularization; [45] formulates and solves a bal-
anced linear assignment problem; [ 1] distributes the top-k

relevant input for each expert; [59, 93] adopt deterministic
hashing and stochastic routing; and [ 4] promotes diversity
during training, respectively. In this paper, we not only ex-
amine the aforementioned bottlenecks but also investigate
new properties of routers such as policy convergence.

Several recent studies also explore the possibility of
SMOoE in the MTL scenarios. To be specific, [51, 3, 32,

, 90] use task-dependent router networks to select rel-
evant parts of the model with a fixed size for each task.
They show positive results in small-scale applications like
classification for medical signals [3], digital number im-
ages (MNIST) [32], and recommendation systems [51].
[46] works on the efficient on-device MTL with a model-
accelerator co-designed SMoE.

3. Methodology
3.1. Revisiting Sparse Mixture of Experts

SMoE [62] is proposed to scale up the model capac-
ity while maintaining low per-inference costs. In this
work, we consider SMoE for ViTs [25, 58], which in-
serts SMoE layers into every other transformer block. The
SMoE layer contains a router network R and several ex-
perts f1, fo, -+, fg, where E is the number of experts. The
expert module can be a few fully connected [62, 58] or con-
volutional layers [73], and we duplicate multi-layer percep-
tions (MLP) as expert networks shown in Figure 2. Note
that MLPs in ViTs contain around 2/3 of total parameter
counts, and [29, 20] demonstrate their significance as mem-
ory networks to store substantial knowledge.

Another key component in SMoE layers, i.e., R, ac-
tivates the top-k expert networks with the largest scores
R(x); associated with input embedding @, where i is the
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expert index. Normally, the number of selected experts k is
fixed and much smaller than the total number of experts E,
which suggests the sparsely activated fashion of SMoE. The
expert distribution can be formally depicted as below:

y = R(@)i- fi(x),R(x) = TopK(sottmax(g(®)), k),

_J v ifvisthetop k
TopK(v, k) = { 0 otherwise

where f;(x) stands for the feature representations produced
from the expert f;, which is weighted by R (x); to form the
final output y. The network g is the learnable part within a
router R and it usually is one or a few layers MLP [62, 27].
TopK is a function that discards the small elements ranked
after k. To reduce the negative effects of the imbalanced
loading (or representation collapse [19]), we introduce reg-
ularization terms to balance the expert assignments, follow-
ing the design and default hyperparameters in [58].

3.2. AdaMv-MoE: Adaptive Multi-Task Vision
Recognition with Mixture-of-Experts

Overview of AdaMV—-MoE Our proposed framework, i.e.,
AdaMV-MoE, consists of task-dependent router networks
and an adaptive expert selection (AES) mechanism. As de-
scribed in Figure 2, input token embeddings are fed into
corresponding router networks based on their task types.
The task-dependent routers then choose the most relevant
experts and aggregate their features for different tasks. The
number of selected experts is dynamically decided accord-
ing to the in-time training dynamics with AES.

Task-dependent Routing Policies. Let R ; represents the
router for the task j, and all expert networks {f;}|%=;
are shared across tasks. The SMoE equipped with task-
dependent router networks is defined as:

Y; = ZRj(w)rfi(m)aRj(w) = TopK(softmax(g;(x)), k;),

where k; and y; are the task-specific number of activated
experts and output, respectively. As supported by Section 4,
the discrepancy among different routing policies brings the
entanglement of parameter spaces, resulting in mitigated
gradient conflicts of MTL and enhanced performance.

Adaptive Expert Selection (AES). The optimal network
size for various vision recognition tasks may alter signifi-
cantly, due to the difference in task complexities. It is hard
to conclude manually without laborious trial and error. We
instead adopt an automatic algorithm AES to determine the
k; in a data-driven way. As shown in Algorithm 1, it first
computes the task-specific objective Eial on the validation
set. If £f;al does not decay in the next An iterations, then we
expand the activated model size by updating k; = k; + 1.

Algorithm 1 Adaptive Expert Selection (AES).

1: Input: Expert networks f; (: € {1,2,--- ,E}, routers R;
(j is the task index), the validation set D7, for task j, the
objective function Eial on the validation set.

2: for a given task j do

Initial the number of selected experts as k; < 1;
Initial an indicator Improved as True;
Initial the current best validation loss as £7

3

4

5: val(best)
6: while True do

7

8

9

< 00,

if £7 does not decrease for An iterations then

val(best)
if not improved then
: break;
10: else
11: kj < kj + 1; improved - False;
12: end if
13: end if
14: Continue training the model;
15: if L7, < L1, hest) then
16: E{/al(besw — Eial; improved < True;
17: end if

18: end while

19: kj = k; — 1 and fix kj;

20: Continue training to the target number of iterations.

21: end for

22: Output: AdaMV-MoE with task-dependent top-k; routers.

Existing literature [76] points out that a proper network ex-
pansion creates the possibility for escaping saddle points in
the functional space and further decreases the objective val-
ues. Meanwhile, if L’f,al is larger than the previous best vali-
dation loss Lf} al(best) W€ reduce the selected expert number
by k; = k; — 1. Lastly, k; is fixed and the model is contin-
ually trained under reaching the target number of training
iterations. The above procedures are repeated for all tasks.

4. Experiment
4.1. Implementation Details

Network Backbone. Our experiments focus on ViT-
based backbones, including ViT [25] and its advanced vari-
ant - UViT [16]. Varying the model size, we establish four
ViTs of {ViT-Small*, ViT-Small, ViT-Base, UViT-Base},
of which the details are exhibited in Table 2.

Table 2. Detailed model sizes of (Dense) ViT variants.

Backbones | # Transformer Layers | # Attention Heads | Hidden Dimension | MLP Dimension
ViT-Small* 6 6 384 1536
ViT-Small 12 384 1536

ViT-Base 12 768 3072
UViT-Base 18 384 1536

6
6
6

The backbone first takes input images from the classifi-
cation and detection datasets and then extracts features that
will further be processed by task-specific modules. A lin-
ear classification layer and detection & segmentation heads
from Cascade Mask-RCNN [9] are chosen in our experi-
ments. Following [58], ViT and SMoE layers are arranged
alternatively. More details are in Section A 1.
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Table 1. Multi-task vision recognition performance of our proposed AdaMV-MoE. {Accuracy (%)}, {AP (%), APso(%), AP75(%)}, and
{AP™*k(%)} are reported for | classification (CLS) on ImageNet-1k, object detection (OD), and instance segmentation (IS) on COCO

respectively. # Parameters (M) indicates the adaptively allocated network capacity. ViT-Small*/Small/Base [

] and UViT-Base [16]

backbones are adopted, whose details are recorded in Table 2. ViT-Small* is a reduced variant of ViT-Small with half transformer layers.

Comparisons are conducted with the baseline MTL-ViT and a recent state-of-the-art MTL approach TAPS [

. The total number of

experts E in our AdaMV-MoE is 8. {Dense and Large Dense, Sparse} means that the {entire, partial } network is used for each task at the
training and inference stages, respectively. N. A . denotes “Not Applicable”.

Backbone ‘ Method ‘ Classification Object Detection Instance Segmentatlon‘ # Parameters (M)
| | [Accuracy(%)  AP(%)  APso(%)  APrs(%) APmask(9) | s ope&s
Dense ViT for CLS 73.00 N.A. N.A. N.A. N.A. 11.10  N.A.
Dense ViT for OD & IS N.A. 39.75 61.71 42.77 36.10 N.A. 13.22
VTSmal | P MTL-ViT 68.30 36.35 58.79 38.86 34.01 13.67
PSmall | Large Dense MTL-VIT 70.32 37.74 60.27 40.58 34.97 20.41
Dense TAPS 69.32 36.66 58.97 38.55 34.94 16.62  18.25
| Sparse AdaMV-MoE (Ours) | 72.99 39.04 61.16 42.43 35.76 | 16.33  19.00
Dense MTL-ViT 69.34 41.43 63.45 45.13 37.25 24.32
Large Dense MTL-ViT 71.87 42.07 64.48 45.66 38.07 37.03
ViT-Small | Dense TAPS 74.63 37.38 60.15 39.89 34.74 27.86  30.22
| Sparse AdaMV-MoE (Ours) | 78.41 42.16 64.33 45.73 38.12 | 20.65  34.97
Dense MTL-ViT 74.18 42.63 64.31 46.53 38.30 91.10
Large Dense  MTL-ViT 74.41 42.47 64.19 46.12 38.23 123.87
ViT-Base | Dense TAPS 78.45 42,51 65.28 45.87 38.32 105.26  108.40
Sparse AdaMV-MoE (Ours) | 78.59 42.70 65.12 46.05 38.49 | 112.37  123.00
Dense MTL-UViT 72.26 43.01 64.94 46.92 38.67 34.96
Large Dense  MTL-UViT 72.99 43.27 64.79 47.21 38.62 53.66
UViT-Base | Dense TAPS 77.23 40.58 63.41 43.72 36.94 30.68  41.45
| Sparse AdaMV-MoE (Ours) | 79.65 44.14 65.54 48.17 39.51 | 4295  50.94

Dataset and Task. We examine our methods on Ima-
geNet [24] and MS COCO 2017 [47] datasets, for classi-
fication and detection & segmentation tasks respectively.
ImageNet contains 1.28M training images and 50K testing
images of 1,000 classes, while MS COCO 2017 has 118K
training images and 5K validation images. The input res-
olution is 224 x 224 for classification and 640 x 640 for
object detection & instance segmentation.

Baselines. To support the effectiveness of our propos-
als, we consider three groups of comparison baselines: (1)
Dense ViTs for single-task learning (STL), i.e., ViT for
CLS and ViT for OD & IS. (2) Dense ViTs for multi-task
learning, i.e., MTL-ViT. It shares the full feature extractor
with task-specific heads attached. Large Dense implies a
strengthened baseline that has a larger hidden dimension
and more parameter counts as shown in Appendix Al. (3)
TAPS [71], arecent state-of-the-art multi-task approach that
advocates the task adaptive parameter sharing.

Training and Evaluation Details. The single-task learn-
ing baselines are trained with a batch size of 1,024 and 256
for classification and object detection & instance segmenta-
tion, respectively. For MTL training, the batch sizes for the
two tasks are 1,024 and 128, respectively. During training,
data augmentations are applied for both tasks. For classifi-
cation, we use CutMix [83] and MixUp [65]. As for detec-
tion and segmentation, random scaling augmentations are

employed to enhance the input samples.

Our ViTs are optimized with AdamW [50], a weight de-
cay of {6 x 1073, 1 x 107, 5 x 10~*}, initial learning
rates (LR) of 3 x 1073, {20,2,10}K iterations warm-up,
and a cosine LR decay schedule for {CLS, OD & IS, MTL}.
Multiple loss functions are involved in the model training,
e.g., a cross-entropy loss for classification as well as the
{class, box, mask} losses from Mask-RCNN for detection
and segmentation. The default hyperparameters of [16] are
inherited in our cases. As for AdaMV-MoE, we add two
auxiliary loss terms of importance and loading regulariza-
tions [58] for router network learning. The coefficients of
these two losses are set to 5 x 1073 [58]. The value of An
is set as 2000 when applying AES, and 1% of the training
samples is randomly held out to construct a validation set
Dya1 for AES. For TAPS and AdaMV-MoE, we first train
the network to solve the classification task for 300K steps,
and simultaneously train with two tasks (CLS and OD &
IS) with additional 200K steps. For {Dense, Large Dense},
it is trained for 200K iterations. The ablation studies on the
training steps are in Appendix A2. Each experiment uses
16 ~ 64 and 8 TPU-v3 for training and inference.

To evaluate the performance of trained ViTs, we re-
port the test accuracy for classification, the validation {AP,
APsg, AP75} for object detection tasks [16], and the vali-
dation AP™ for instance segmentation [16]. Additionally,
the number of activated parameters (in millions) is calcu-
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Figure 3. The routing specialization of AdaMV-MokE at the fined-grained patch level. Upper shows the routing decisions of classification
with ImageNet samples; Botfom presents the routing decisions of object detection and instance segmentation with COCO samples. Here
we only visualize the top-2 selected experts whose indexes are indicated by the color of the patch’s boundary and content.

lated to imply the used model capacity for each task.

4.2. Superior Multi-Task Vision Recognition Per-
formance of AdaMV-MoE

Comparisons with STL and MTL Approaches. We
choose ViT-Small*/Small/Base and UViT-Base network
architectures, considering their vanilla (Dense), widened
(Large Dense), and SMoE (Sparse) variants. All methods
are examined on the benchmark of ImageNet classification
and COCO object detection & instance segmentation. The
comparison results are collected in Table 1, where the fol-
lowing observations can be drawn: @ Our AdaMV-MoE
demonstrates great advantages with a clear performance
margin compared to MTL baselines with a shared ViT
feature extractor, i.e., (Dense, Large Dense) MTL-ViT.
In detail, AdaMV-MoE obtains {(4.69%, 2.67%), (2.69%,
1.30%), (1.75%, 0.79%)}, {(9.06%, 6.54%), (0.73%,
0.09%), (0.87%, 0.05%)}, {(4.41%, 4.18%), (0.07%,

0.23%), (0.19%, 0.26%)}, {(7.39%, 6.66%), (1.13%,
0.87%), (0.84%, 0.89%)} of {Accuracy (%), AP (%),
APk (%)} improvements for ViT-Small*/Small/Base
and UViT-Base, respectively. It validates the effectiveness
of our proposals. @ AdaMV-MoE adaptively allocates ad-
equate network capacity to resolve classification, detection,
and segmentation tasks by activating different amounts of
model parameters. For instance, our proposals spend fewer
parameter counts for CLS while more parameter budgets for
the challenging OD & IS tasks, e.g., 29.65M and 34.97M in
the case of ViT-Small, which aligns with our intuition. &
In additional, AdaMV—-MoE consistently surpasses a recent
SoTA MTL approach, i.e., TAPS [71], by {0.14% ~ 3.78%
Accuracy, 0.29% ~ 4.78% AP, 0.17% ~ 3.38% AP™ask}
on ImageNet and COCO datasets across four ViT back-
bones. Meantime, with ViT-Small*, it reaches competitive
results compared to the single-task learning baselines, fur-
ther showing the superiority of our algorithms.
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Ablation Study of AdaMV-MoE. To investigate the con-
tributions of each component in AdaMV-MoE, comprehen-
sive experiments are conducted with ViT-Small* on multi-
task vision recognition. As shown in Table 3 and Table 4,
we conduct ablation on the router design, the need for adap-
tive network capacity during MTL, and the number of ex-
perts when employing AdaMV-MoE.

Table 3. Ablation studies on AdaMV-MoE of %) router selection,
i.e., task-agnostic R v.s. task-dependent R; i¢) # used experts,
i.e., activating fixed v.s. adaptive number of experts. “Ours w.
task-dependent R and “Ours w. AES” present the same variant,
which is also the one used to produce main results in Table 1.

. ‘ Classification ~ Detection ~ Segmentation
Settings
\ Accuracy(%)  AP(%)  AP™aK(%)

MTL-ViT 68.30 36.35 34.01
MTL-MOoE [46] 72.07 38.53 35.24
Ours w. task-agnostic R 72.56 37.54 34.71
Ours w. task-dependent R 72.99 39.04 35.76
Ours w.o. AES 72.04 38.61 35.23
Ours w. AES 72.99 39.04 35.76

Table 4. Ablation studies on # total experts (E) of our proposed
AdaMV-MoE. MTL-VIT is the baseline that takes ViT as a shared
backbone and multiple heads for different tasks. The backbone
size of MTL-ViT is equal to the one of AdaMV-MoE with E = 1.

. ‘ Classification ~ Detection ~ Segmentation
Settings
‘ Accuracy(%) AP(%) APk (%)

MTL-ViT | 68.30 36.35 34.01
AdaMV-MoE w. E =4 71.74 36.35 34.01
AdaMV-MoE w. E =8 72.99 39.04 35.76
AdaMV-MoE w. E = 16 72.69 36.99 34.05
AdaMV-MoE w. E = 32 72.66 36.30 33.37

> Task-agnostic versus task-dependent routers R. Re-
sults in Table 3 tell that task-dependent routing policies ben-
efit more than their task-agnostic counterpart, and enlarge
the performance gains compared to the MTL-ViT baseline.

> With or without adaptive expert selection (AES).
Equipped with the AES, the activated model size is op-
timized for different tasks, which significantly boosts the
MTL performance. To be specific, our w. AES outper-
forms its variant w.o. AES by {0.95% Accuracy, 0.43%
AP, 0.53% APmaSk} improvements, and a recently invented
MTL-MOoE [46] by {0.92% Accuracy, 0.51% AP, 0.52%
AP™3k1 oqing, which evidence the necessity of a cus-
tomized network capacity for each task. Note that both ours
w.0. AES and MTL-MoE [46] adopt a fixed and unified
model size (or # selected experts) across all vision tasks,
which potentially incurs inferior results.

> The number of experts. Being one of the most impor-
tant hyperparameters in an SMoE design, E roughly reflects
the size of overall parameter spaces that allow explorations
via dynamic routing. Table 4 reports AdaMV-MoE’s results
with {1, 4, 8, 16, 32} experts, where AdaMV—-MoE degrades

into MTL-VIiT if setting E = 1. We find that the perfor-
mance of AdaMV-MoE saturates with more than 8 experts,
and E = 8 seems a “sweet-point” in our multi-task vision
recognition benchmark.

4.3. In-Depth Dissection of AdaMV-MoE

Given the superiority of our AdaMV-MoE, we further
offer an in-depth dissection by studying its ¢) specializa-
tion, 4¢) routing quality, 7¢¢) adequate positions to introduce
SMOoE layers, and iv) mitigation effects on gradient con-
flicts from multiple training objectives.
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Figure 4. Analysis on the routing specialization at the task (Left)
and class (Right) levels. The frequency of expert usage and the
class-wise usage of classification are recorded in Left and Right
figures, respectively. Visualizations are produced by AdaMV-MoE
with ViT-Small. More qualitative results are in Appendix A2.

Q1I: Is the expert selection specialized to different tasks,
classes, and image contents? Yes. One key advantage of
AdaMV-MokE is that it optimizes how many (i.e., adaptive
network capacity) and which (i.e., dynamic routing) experts
to activate for each task and input sample during MTL. We
examine triple levels of routing specializations from coarse
to fine-grained, including task, class, and patch levels.

> Task-level specialization. From Figure 4 (Left), we
find that @ there is an overall balanced loading across ex-
perts, suggesting a sufficient utilization of all model param-
eters; @ relatively, CLS prefers expert 1 & 6 and OD & IS
use expert 1, 3, & 7 more, according to the frequency.

> Class-level specialization. Based on Figure 4 (Right)
which presents the class-wise expert usage of the last SMoE
layer in AdaMV-MoE for classification, we observe that the
expert 6 is preferred by most classes and other expert se-
lections seem to correlate with class types, which coincide
with the findings in [58]. Similar observations also exist for
OD & IS, as shown in Appendix A2.

D> Patch-level specialization. In Figure 3, we visualize
the expert assignments of AdaMV-MoE w. ViT-Small for
each input patch. Specifically, the top-1 and top-2 of acti-
vated experts are implied by the color of the patch’s bound-
ary and content respectively, where different colors repre-
sent diverse experts. @ For classification, most patches
from the background are assigned to two specific experts
associated with the black patch boundary and red patch con-
tent, while varied experts are leveraged to deal with the
main object in the foreground. @ As for the object detection
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and instance segmentation, a clear patch-wise specialization
is presented. For example, different image contents like the
object boundary, the main body of objects, and the back-
ground are processed by distinctive and particular subsets
olf experts. In this way, the task ils divided and conquered.
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Figure 5. Analysis on the representation collapse of the hidden
states from router networks. The diversity of these hidden states is
calculated with Gaussian kernel density estimation and then is vi-
sualized as circle heatmaps. Darker areas have more concentrated
features. A more uniformly distributed circle heatmap means a
more balanced expert usage and a lower risk of representation col-
lapse. Results are produced by AdaMvV-MoE with ViT-Small.
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Figure 6. The convergence pattern of routing policies. Hamming
distance results between routing decisions from different training
iterations are produced by AdaMV-MoE with a ViT-Small* back-
bone. A shallow and a deep SMoE layer are examined.

Q2: What is the quality of learned routing policies?
High quality in terms of less routing collapse and good pol-
icy convergence. We study AdaMV—-MoE’s routing policies
from the perspectives of collapse [ 9] and convergence [21].
@ To study its routing collapse, we plot the diversity of hid-
den features from router networks as shown in Figure 5. The
heatmaps from both CLS and OD & IS demonstrate uni-
formly distributed hidden states, suggesting a balanced ex-
pert assignment and less representation collapse [19] which
are consistent with observations concluded from Figure 4.
® For the policy convergence, we choose a shallow and
a deep SMOE layer of our ViT-Small*, and present the
Hamming distance between routing decisions from differ-
ent training iterations in Figure 6. We notice the routing
converges well after the first 25K iterations and the shallow
SMOoE layer has a higher convergence speed, which enjoys
less routing fluctuation and better sample efficiency [21].
Such high-quality routing policies potentially explain the
superiority of AdaMV-MoE.

Q3: Where should we insert the SMoE layers? Later
layers. For a vision transformer, there are various options

to replace the original ViT layer with an SMoE layer. We
compare different design choices such as adopting SMoE in
the Early, Middle, Later, and Every Two layers, where each
AdaMV-MoE variant has half ViT and half SMoE layers.
Results in Table 5 reveal that only enforcing SMoE to early
layers incurs inferior MTL performance. A possible reason
is that early layers are usually responsible for learning com-
mon features like basic shapes or colors, which should be
shared across classes during vision recognition tasks.

Table 5. Ablation studies on positions of introduced SMoE layers.
Results are produced by AdaMV-MoE with ViT-Small*.

Settings of AdaMV-MoF ‘ Classification Detection ~ Segmentation
‘ Accuracy (%) AP(%) AP™ask (%)
Early Layers 69.38 37.76 34.67
Middle Layers 72.67 38.49 35.04
Later Layers 73.19 38.00 34.92
Every Two Layers ‘ 72.99 39.04 35.76

Q4: Does AdaMV-MoE alleviate the issue of gradi-
ent conflicts from diverse tasks? Yes. First, AdvMV—-MoE
naturally disentangles parameter spaces for different tasks
thanks to its sparse and conditional computing manner.
Second, as shown in Figure 7, for the common parameters
for all tasks, the gradient conflicts are generally reduced by
our proposals, e.g., less negative and more positive cosine
distance between training gradients from CLS and OD.

B Ours

2 O ¥ Baseline

—00.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Figure 7. The distribution of cosine distance between train-
ing gradients computed from classification and detection objec-
tives. Ours (AdaMV-MoE) and Baseline (MTL-ViT) results of
ViT-Small’s last ViT layer are collected.

5. Conclusion

In this paper, we present an adaptive multi-task vision
recognition framework, aiming at the automatic design of
used network capacity for distinctive tasks. Our propos-
als seamlessly customize the current SOTA MTL Mixture-
of-Experts, and optimize the task-specific model size by
adaptively activating or deactivating experts. Extensive in-
vestigations across various ViT architectures consistently
demonstrate the performance improvements from our ap-
proach, on the challenging benchmark of ImageNet clas-
sification and COCO object detection & instance segmen-
tation. Future work includes the extension of multi-modal
multi-task learning like “Pathway” systems.
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