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Abstract

Thanks to the excellent global modeling capability of at-
tention mechanisms, the Vision Transformer has achieved
better results than ConvNet in many computer tasks. How-
ever, in generating hierarchical feature maps, the Trans-
former still adopts the ConvNet feature aggregation scheme.
This leads to the problem that the semantic information
of the grid area of image becomes confused after feature
aggregation, making it difficult for attention to accurately
model global relationships. To address this, we propose the
Hierarchy Aware Feature Aggregation framework (HAFA).
HAFA enhances the extraction of local features adaptively
in shallow layers where semantic information is weak, while
is able to aggregate patches with similar semantics in deep
layers. The clear semantic information of the aggregated
patches, enables the attention mechanism to more accu-
rately model global information at the semantic level. Ex-
tensive experiments show that after using the HAFA frame-
work, significant improvements have been achieved relative
to the baseline models in image classification, object detec-
tion, and semantic segmentation tasks.

1. Introduction
The success of Transformer [37, 7, 18] in natural lan-

guage processing (NLP) has inspired the research of Vision
Transformer in the field of computer vision [9]. Benefiting
from the excellent global modeling and asymmetric data
processing abilities of Transformer, Vision Transformers
have witnessed new state of the arts in various vision tasks
like image classification [9, 24, 34, 42, 35], object detection
[2, 59, 11, 54] and semantic segmentation [55, 44, 31, 38].

Compared to Convolutional Neural Networks (Con-
vNets), Transformers inherently have better global model-

*Hongmin Liu is the corresponding author

Figure 1. Comparison of feature aggregation based on Fixed Grids
and the proposed Hierarchy Aware Feature Aggregation (HAFA).
Left: An image is conceptualized into multiple fixed grids. In
the shallow layers, the sampling center is fixed at the grid center,
while in the deep layers, the semantic information is fragmented
across multiple grids, leading to inaccurate semantic segmenta-
tion. Right: In the shallow layers, HAFA adaptively changes
the sampling center through learning, enhancing local information
perception. In the deep layers, HAFA aggregates semantic similar
patches to ensure the integrity of semantic information. Compared
to the fixed grids in the left figure, HAFA performs better in se-
mantic segmentation due to its hierarchy aware way of conducting
adaptive feature aggregation.
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ing capabilities. This is because the attention mechanism
can directly model global relationships, so the Transformer
does not need to establish global relationships through
downsampling using sliding windows, as is the case of
ConvNets. Nevertheless, in order to directly incorporate
the Transformer into existing frameworks for downstream
tasks[2, 59, 55, 48], it is still crucial to generate hierarchical
feature maps for the Transformer. However, currently al-
most all Transformers, such as Swin Transformer [24] and
PVT [40], still generate hierarchical feature maps follow-
ing the downsampling method of ConvNets. As shown on
the left side of Figure 1, in this paradigm, the image is di-
vided into multiple fixed grids and downsampling is per-
formed using a fixed-size sliding window to generate hier-
archical feature maps. It is worth noting that this approach
can lead to a serious problem: one object may be separated
into multiple grids, results in the complete semantic infor-
mation of objects being destroyed, in other words, multiple
fragmented semantic information of different objects can be
contained within a same grid. After downsampling with a
fixed-size sliding window, the semantic information within
the grid becomes confused, which further leads to inaccu-
racy in modeling global relationships through attention. As
a result, downstream tasks may suffer from inaccurate seg-
mentation or missed segmentation.

To address the above issue of ConvNets paradigm in
building hierarchical vision Transformers, we propose a Hi-
erarchy Aware Feature Aggregation framework (HAFA).
Specifically, HAFA consists of two parts: a Semantic In-
formation Aggregation (SIA) module and a Local Adap-
tive Feature Aggregation (LAA) module. The SIA mod-
ule utilizes clustering to group patches with similar seman-
tics in the feature space, which will be later aggregated for
global relationship modeling using Transformer. Due to the
fact that only patches with similar semantic information are
aggregated, the semantic information is not confused after
aggregation, which allows for accurate modeling of global
relationships. Consequently, this approach effectively im-
proves over inaccurate or missed segmentation in down-
stream tasks. As clustering in the feature space will result
in missing of spatial distribution of patches, we propose
to preserve the fine-grained spatial distribution of patches
in the SIA module by conducting patch merging only on
queries in Transformer. On the other hand, the quality of
establishing deep semantic information largely depends on
the extraction of shallow features, and Transformers tend
to learn better local texture information in shallow learn-
ing than other layers, it is still necessary to use Transformer
in the early stages. However, clustering shallow features
is noisy due to the weaker semantic information contained
in them. Therefore, we propose a Local Adaptive Feature
Aggregation module (LAA) for shallow layers. LAA learns
from the local texture information obtained by the model,

adaptively changes the sampling center of the patch, and
enhances the capture of local, especially edge information.
Since the LAA module is feature-adaptive, it can effectively
capture local information and avoid the loss of local infor-
mation, such as edge information, caused by fixed grid seg-
mentation and down-sampling by sliding windows. This ul-
timately helps to address the problem of incomplete seman-
tic information construction in deep layers. In summary,
the proposed HAFA framework uses the LAA module to
enhance the learning of local texture information in shallow
layers, enabling deeper layers to establish high-quality se-
mantic information. In deep layers, the SIA module enables
the model to establish global relationships more accurately.
LAA and SIA modules work together in a hierarchy-aware
way.

The contributions are summarized as follows:

• A novel hierarchical feature aggregation framework
called HAFA is proposed, which can be applied as a
plugin to Transformers, resulting in a significant im-
provement in performance with only a negligible in-
crease in computational cost.

• Two feature-adaptive aggregation modules (LAA and
SIA) are introduced in HAFA, which contribute to
build hierarchical Vision Transformers with differ-
ent and dynamic relationship modeling in a hierarchy
aware way.

• Extensive experimental results indicate that HAFA
consistently improves over various models, especially
in downstream dense prediction tasks, with notable
improvements on small object detection and semantic
segmentation.

2. Related Works
2.1. Vision Transformer

The Transformer is a major architecture in natural lan-
guage processing and has recently been extended to the
computer vision domain. ViT [9] proposed a pure Trans-
former architecture and demonstrated the enormous poten-
tial of Transformers in visual tasks. As ViT heavily re-
lies on large amounts of data, DeiT [34] introduced several
training strategies to enable ViT to be trained on smaller
ImageNet-1k datasets. Due to the quadratic complexity in
ViT, some works were focused on improving the attention
computation, with [8, 47, 46] using sparse attention to re-
duce computational complexity. Inspired by CNN mod-
els and the requirement for dealing with dense prediction
tasks, [24, 40, 36, 49] and other works explored the fea-
ture pyramid structure of Transformers, which is different
from the fixed token length in ViT. Subsequently, Trans-
formers towards downstream tasks have also been proposed
[4, 12, 19, 20, 58].
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2.2. Hierarchical Feature Aggregation

The importance of hierarchical feature maps for down-
stream dense prediction tasks has been well demonstrated
in CNNs [22, 15, 16, 30]. Recently, there has been an in-
creasing number of works on generating hierarchical fea-
ture maps in Vision Transformers. Previous works can be
divided into two categories: fixed grids based methods and
dynamic features based ones. One popular fixed-grid hi-
erarchical feature map generation method is Swin Trans-
former [24], which combines patches at the same position
in adjacent windows into a new one. PVT [40] uses 2D
convolution to fuse adjacent small patches into a larger one.
However, such methods can result in confusion and frag-
mentation of semantic information within patches, leading
to inaccurate modeling of global information. Therefore,
dynamic feature-based hierarchical feature map generation
has been proposed. In the LIT [28], MLPs are used instead
of Transformer Blocks in the shallow layers. At each stage,
the sampling center of the patch is changed by predicting
an offset, and the patches with the modified center offset
are aggregated to generate hierarchical feature maps. Dy-
namicViT [29] and ViT-Slim [3] adopt a strategy of remov-
ing redundant patches in the image and retaining relatively
important ones to form hierarchical feature maps. Dynam-
icViT achieves this by using a predictor to select important
patches, while ViT-Slim uses network architecture search.
EviT [21] selects the top K tokens with the highest average
values across all heads, and retains them for the next stage
of fusion, while the remaining tokens are fused together.
TCformer [52] aggregates redundant patches through clus-
tering algorithms, generating more patches on the target
object to capture more information. To incorporate more
object information into the hierarchical feature maps, PS-
ViT [50] iteratively moves the center of the patch towards
the object during each iteration. DAT [43] incorporates the
concept of deformable convolution into each block to gen-
erate dynamic attention. Token Merging [1] leverages co-
sine similarity to assess the similarity of tokens within each
block and progressively merges similar tokens, thereby in-
creasing the model’s throughput.

The proposed HAFA belongs to the category of dynamic
feature-based hierarchical feature map generation. Com-
pared to existing methods, HAFA does not use the same fea-
ture aggregation method in all stages. Instead, in the shal-
low layers, HAFA uses the LAA module to enhance percep-
tion of local discriminative information, and in the deeper
layers, it adopts the SIA module, which is capable of aggre-
gating patches with similar semantic information. Because
the information learned by the model from shallow to deep
layers goes from local to global, HAFA could be a more nat-
ural and accurate method. Compared to DynamicViT [29],
HAFA can be directly applied in downstream dense tasks
and show better performance. Compared to DAT [43] and

Token Merging [1], our method applies token merging be-
tween different stages to generate hierarchical features. It is
worth to point out that LIT and TCformer are two extreme
cases of HAFA (refer to Section 4.4). In addition, we ex-
perimentally found that the feature aggregation scheme of
LIT [28] may cause unconvergence in some backbone net-
works (will be explained in Section 4.4). Compared to TC-
former [52], our method can achieve higher accuracy and
twice the inference speed with only 40% of the training re-
sources consumed.

3. Method

In this section, we will first introduce the overall struc-
ture of the HAFA framework, followed by detailed intro-
ductions to the LAA module and the SIA module, and fi-
nally, we will discuss some details of HAFA.

3.1. Framework Overview

Figure 2 illustrates the proposed Hierarchy Aware Fea-
ture Aggregation (HAFA) framework built up on the Pyra-
mid Vision Transformer backbone (PVT) [40], although
extensions to other Vision Transformers are straightfor-
ward (see Table 6). Specifically, the HAFA framework
adopts different feature aggregation schemes based on the
features learned by the model at different stages. For ex-
ample, targeted LAA and SIA modules are proposed in the
shallow and deep layers of the model, respectively. It is
worth noting that there is no additional explicit positional
encoding after the SIA module.

3.2. Local Adaptive Feature Aggregation

Directly using a fixed grid to segment images and aggre-
gating features using a sliding window in the shallow layers
of the model can disrupt local information, especially edge
information, as shown in Figure 1. However, edge informa-
tion is crucial for establishing high quality semantic infor-
mation later on. Therefore, We propose a Local Adaptive
Feature Aggregation (LAA) module, which can adaptively
enhance the capture of local information and preserve more
edge information.

As shown in the bottom left of Figure 2, given the in-
put feature map F = RC×H×W , where C, H and W are
the feature channel dimensions, height, and width, respec-
tively. The initial coordinates of the sampling point are reg-
ular grids denoted as PI ∈ R2×(n×n), where (n× n) rep-
resents the number of sampled features, and the produced
coordinates for sampling by LAA module are denoted as
PE ∈ R2×(n×n). Instead of learning the sampled coordi-
nates directly, we choose to learn the offset with respect to
the regular grids inspired by the deformable CNN [5], De-
noting the learned offset being Of ∈ R2×(n×n), the sam-
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Figure 2. Overview of the proposed Hierarchy Aware Feature Aggregation (HAFA) framework. HAFA first employs the LAA module at
the end of the first two stages to enhance perception of local discriminative information. Then, the SIA module is utilized before the final
stage to aggregate patches with similar semantic information, in order to better model global relationships.

pling coordinates can be represented as:

PE = PI +Of , (1)

Based on the coordinates, a new patch is formed using
bilinear interpolation based on the sampling coordinates of
the patch, and the new patch is finally aggregated. After
aggregation, the resulting feature map will have rich and
high quality local information, which can help deep models
better establish high quality semantic information.

3.3. Semantic Information Aggregation

To address the problem of grid semantic confusion
that arises from aggregating features using the ConvNets
paradigm and ultimately causes the attention mechanism
failing to model global information correctly, we propose a
Semantic Information Aggregation (SIA) module. The SIA
module can aggregate patches with similar semantic infor-
mation to avoid the semantic confusion. As shown in the
bottom right of Figure 2, the SIA module mainly consists
of two parts: patch clustering and merging.

Clustering. The purpose of clustering is to group
patches with similar semantic information into a semantic
group. When clustering patches, we use a density peak clus-
tering algorithm based on K-nearest neighbors (DPC-KNN)
[10, 52]. The reason for utilizing this clustering algorithm
will be explained in Section 3.4. DPC-KNN involves two
assumptions. Firstly, the local density of a cluster center is
higher than that of the surrounding data points. Secondly,

the centers of different clusters are far apart. This introduces
two concepts, local density and relative distance.

Firstly, for the calculation of local density, we utilized a
Gaussian kernel. Given N patches and k-nearest neighbor-
ing data points, the Euclidean distance was used to represent
the distance between data points:

dij = ∥xi − xj∥ 2 , (2)

The formula for calculating the local density is as fol-
lows:

ρi = exp

−1

k

∑
xj∈KNN(xi)

(dij)
2

 , (3)

Here, x represents a data point, dij represents the dis-
tance between data point xi and xj , ρi represents the local
density of point xi, and KNN (xi) represents the set of
k-nearest neighboring data points of xi, denoted as xj ∈
KNN (xi).

The second concept is relative distance δi, which refers
to the minimum distance between data point i and any other
point with higher local density. Regards to data points with
maximum local density, the relative distance is assumed to
be the maximum value by default.

δi = min
j:ρj>ρi

(dij) , i = 1, 2, · · · , N (4)

In order to satisfy two conditions simultaneously,
namely large local density ρi and large relative distance σi,
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the score ρi×σi for every data point can be calculated. The
data points with the highest scores are then selected as the
cluster centers, and the remaining data points are assigned
to the cluster centers with the closest feature distance.

Merging. After clustering, each semantic group may
contain a different number of patches, and different patches
may contribute differently. Therefore, inspired by [52, 29],
we use a predictor to quantify the importance p of each
patch.

yi =
∑
j∈Ci

pj∑
j∈C pj

xj , j = 1, 2, · · · ,m (5)

yi represents the new patch after merging, Ci represents
the ith cluster, and m is used to represent the number of
patches in cluster.

Spatial distribution Reserving. The clustering algo-
rithm in SIA only categorizes patches into different seman-
tic groups based on semantic information in the feature
space. Therefore, patches within the same semantic group
are only semantically related and may not necessarily from
adjacent regions. This can result in a loss of spatial distri-
bution for the same semantic group after merging. To pre-
serve fine-grained spatial distribution, our SIA module only
performs clustering on the Q vector while adopting the im-
plicit positional encoding module proposed by [42] on the
K and V vectors. Due to the inclusion of the original spatial
distribution information in K and V , the clustered Q is ca-
pable of preserving fine-grained spatial distribution through
attention calculation based on K and V . For comparison,
we will also show the results obtained by clustering Q, K,
and V simultaneously in the model analysis section. The
attention calculation is as follows:

Attention (Q,Kp, Vp) = softmax

(
QKT

p√
dk

)
Vp, (6)

In this equation, Q represents the new patches generated
by clustering and merging, while Kp and Vp represent the
keys and values respectively, which have undergone posi-
tional encoding. dk represents the channel number of the
queries.

3.4. Discussions

Why is DPC-KNN? Firstly, this clustering method was
employed in previous works [52] and showed good perfor-
mance. To make a fair comparison, we also adopted the
same clustering method. Secondly, due to the fact that clus-
tering is only used prior to the final stage, the size of the
feature maps is relatively small at this stage. After compar-
ing multiple clustering algorithms, we found that there was
no obvious difference in the time cost. Finally, DPC-KNN
can perform clustering on dense data with arbitrary shapes,

Figure 3. Illustration of Transforming from Vision Tokens to Fea-
ture Maps. From left to right are patches after clustering and merg-
ing, the dictionary that records the category relationship between
tokens before and after clustering, and the transformed feature
maps. The tokens after clustering can be converted to feature maps
based on the relationship indicated by the dotted box.

especially non-spherical clusters, while many clustering al-
gorithms are only applicable to convex data sets, such as
K-means [25].

Transform between Vision Tokens and Feature Maps.
After merging patches from different semantic groups sep-
arately, the relative positions between the newly generated
patches become relative disordered. Therefore, direct con-
version between the feature map and Vision Tokens is not
feasible. As shown in Figure 3, to address this issue, we use
a dictionary to preserve the category of each token corre-
sponding to the clustering process. It should be noted that
the dictionary only records the category of each token and
does not include any specific data. Based on the correspond-
ing relationships between categories recorded in the dictio-
nary, the tokens that have been clustered can be converted
into the corresponding feature maps. Conversely, to convert
a feature map into tokens, the process is reversed.

4. Experiments

4.1. Image Classification on ImageNet-1K

Setting. We first evaluate the proposed HAFA on the
ImageNet-1k dataset [6], which includes 1.28 million train-
ing images and 50k validation images from 1,000 cate-
gories. To ensure a fair comparison, all of our models were
trained on the training set and the top-1 accuracy was re-
ported on the validation set. We apply random cropping,
random horizontal flipping [32], label smoothing regular-
ization [33], mixup [53], CutMix [51], and random eras-
ing [56] as data augmentations. During training, we use a
mini-batch size of 128, and employ AdamW [27] with mo-
mentum of 0.9 and weight decay of 5 × 10−2. The initial
learning rate is set to 1× 10−3 and decreases following the
cosine schedule [26]. All models are trained for 300 epochs
from scratch on eight A40 GPUs. According to benchmark,
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Method #Param (M) GFLOPs Top-1 Acc (%)
ResNet18 [15] 11.7 1.8 68.5
DeiT-Tiny/16 [34] 5.7 1.3 72.2
PVT-Tiny [40] 13.2 1.9 75.1
PVT-Tiny(HAFA) 14.6 1.9 77.5 (+2.4)
ResNet50 [15] 25.6 4.1 78.5
ResNeXt50-32x4d [45] 25.0 8.0 79.5
DeiT-Small/16 [34] 22.1 4.6 79.9
HRNet-W32 [39] 41.2 8.3 78.5
PVT-Small [40] 24.5 3.8 79.8
PVT-Small(HAFA) 25.8 3.8 80.1 (+0.3)
ResNeXt101-64x4d [45] 83.5 15.6 81.5
ViT-Base/16 [9] 86.6 17.6 81.8
DeiT-Base/16 [34] 86.6 17.6 81.8
PVT-Large [40] 61.4 9.8 81.7
PVT-Large(HAFA) 62.7 9.8 82.2 (+0.5)

Table 1. Image classification performance on the ImageNet
validation set. “#Param” refers to the number of parameters.
“GFLOPs” is calculated under the input size of 224 × 224.

we apply a center crop on the validation set, i.e., a 224×224
patch is cropped to evaluate the classification accuracy.

Result. In Table 1, we observe that inserting HAFA into
PVT only adds a small number of parameters and does not
significantly affect GFLOPs relative to the original PVT.
This is because clustering itself does not participate in end-
to-end training and does not have additional learnable pa-
rameters. Additionally, clustering is only used in the last
stage, where the feature map is relatively small and does
not contribute much to computational cost. The final ex-
perimental results demonstrate that the accuracy of mod-
els of different sizes has been improved, particularly the
Tiny model. The latency of PVT-HAFA is as follows: Tiny:
7.0ms (+1.4), Small: 11.0ms (+1.5), Large: 24.8ms (+1.3).
The numbers in the brackets represent the increase com-
pared to the latency without HAFA (i.e., PVT). Due to
the additional operations induced in the proposed HAHA
framework, HAHA needs about 1.5ms more for inference.
Notwithstanding, the HAFA framework has demonstrated
its capacity to achieve substantial improvements in down-
stream tasks. For instance, in semantic segmentation tasks,
the performance of PVT-Tiny-HAFA even surpasses that of
the original PVT-Small model, as depicted in Table 2.

4.2. Semantic Segmentation on ADE20K

Setting. ADE20K [57] is a widely used semantic seg-
mentation dataset, consisting of 150 categories with 20210,
2000, and 3352 images allocated for training, validation,
and testing, respectively. All the compared methods was
evaluated using the Semantic FPN [17] framework. The
backbone network of our method was initialized with the
pre-trained Imagenet-1k model, and the newly added lay-
ers were initialized using the Xavier method. The initial
learning rate was set to 0.0001 and the model was opti-
mized using the AdamW optimizer. we train our models for

Semantic FPNBackbone #Param(M) GFLOPs mIoU(%)
ResNet18 [15] 15.5 32.2 32.9
PVT-Tiny [40] 17.0 33.2 35.7
PVT-Tiny(HAFA) 18.7 33.2 40.1 (+4.4))
ResNet50 [15] 28.5 45.6 36.7
PVT-Small [40] 28.2 44.5 39.8
PVT-Small(HAFA) 29.9 44.5 43.8 (+4.0)
ResNeXt101-64x4d [45] 86.4 103.9 40.2
PVT-Large [40] 65.1 79.6 42.1
PVT-Large(HAFA) 66.8 79.6 43.6 (+1.5)

Table 2. Semantic segmentation performance of different back-
bones on the ADE20K validation set. “GFLOPs” is calculated
under the input scale of 512 × 512.

40k iterations with a batch size of 16 on eight A40 GPUs.
The learning rate is decayed following the polynomial de-
cay schedule with a power of 0.9. We randomly resize and
crop the images to 512 × 512 for training, and rescale to
have a shorter side of 512 pixels during testing.

Result. As shown in Table 2, the insertion of HAFA
resulted in a significant improvement in the semantic seg-
mentation task. It improved the performance of the Tiny,
Small, and Large models by 4.4, 4.0, and 1.5 points, re-
spectively. Surprisingly, after inserting HAFA, the Tiny and
Small models exceeded the performance of the Small and
Large models without HAFA, achieving a significant im-
provement across model scales. This is because HAFA ag-
gregates feature maps based on the semantic information of
patches during feature map generation. At the same time, it
better captures local information, especially edge informa-
tion, in the shallow layers. Therefore, HAFA has a signif-
icant advantage in semantic segmentation tasks. Based on
the visualization results in Figure 4, we can observe a sig-
nificant improvement in segmentation accuracy using our
method.

4.3. Object Detection on COCO

Setting. Object detection and instance segmentation are
performed on the COCO2017 dataset [23]. All of our mod-
els are trained on the training set with 118k images and
evaluated on the validation set with 5k images. We validate
the effectiveness of different backbones with Mask R-CNN
[14]. We use the model pre-trained on ImageNet-1k to ini-
tialize the backbone and Xavier [13] initialization for the
newly added layers. Our models are trained with a batch
size of 16 on eight A40 GPUs and AdamW [27]. with an
initial learning rate of 0.0001 and a weight decay of 0.0001.
The training duration is set to 12 epochs.

Result. As shown in Table 3, the insertion of HAFA
resulted in an improvement of 3.1, 1.4, and 0.9 points in
the Tiny, Small, and Large models, respectively, in the ob-
ject detection task. It also achieved a good improvement
in the instance segmentation task. It is worth noting that
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Mask R-CNN
Backbone #Param

(M) APb APb
50 APb

75 APb
s APb

m APb
l APm APm

50 APm
75

ResNet18 [15] 31.2 34.0 54.0 36.7 - - - 31.2 51.0 32.7
PVT-Tiny [40] 32.9 36.7 59.2 39.3 21.6 39.2 49.0 35.1 56.7 37.3
PVT-Tiny(HAFA) 34.5 39.8 (+3.1) 62.6 43.3 23.3 42.7 53.3 37.1(+2.0) 59.4 39.3
ResNet50 [15] 44.2 38.0 58.6 41.4 - - - 34.4 55.1 36.7
PVT-Small [40] 44.1 40.4 62.9 43.8 22.9 43.0 55.4 37.8 60.1 40.3
PVT-Small(HAFA) 45.8 41.8 (+1.4) 64.4 45.7 26.0 44.6 56.1 38.9 (+1.1) 61.5 41.9
ResNeXt101-64x4d [45] 101.9 42.8 63.8 47.3 - - - 38.4 60.6 41.3
PVT-Large [40] 81.0 42.9 65.0 46.6 24.7 45.4 59.4 39.5 61.9 42.5
PVT-Large(HAFA) 82.7 43.8 (+0.9) 65.6 48.0 26.1 46.2 59.8 40.1 (+0.6) 62.8 43.2

Table 3. Object detection and instance segmentation performance on COCO val2017. APb and APm denote bounding box AP and
mask AP, respectively.

by analyzing the detection results of models with different
sizes, we can make several observations. The Tiny model
shows a significant improvement in detecting medium-sized
and large objects. This is because the global modeling ca-
pability of the Tiny model is relatively poor, while HAFA
merges patches with similar semantic information, enabling
the model to more accurately model global relationships.
On the other hand, the Small and Large models show a
greater improvement in detecting small objects. Although
relatively larger models can model better global relation-
ships, the destruction of local information in the shallow
layers may prevent small objects from establishing com-
plete semantic information in the deep layers, resulting in
missed detections. However, HAFA enhance perception of
local discriminative information in shallow layers, enabling
smaller models to establish complete semantic information
in deeper layers. The visualization results will be presented
in the supplementary materials.

4.4. Model Analysis

In this section, we first explain why HAFA consists of
two LAAs and one SIA module. Secondly, we demonstrate
the importance of the proposed position encoding module in
SIA. Finally, we will present the performance of our frame-
work on other backbones.

Why two LAA modules and one SIA module? We
conducted a series of experiments on ImageNet-1k to
demonstrate the superiority of our method by replacing
modules at different stages. To ensure a fair comparison,
we employed the same PVT-v2 backbone as the previous
work [52], which was a special case of our method. As
shown in Table 4, we first replaced all stages with SIA mod-
ules, as was done in [52]. Subsequently, we gradually re-
placed SIA modules with LAA modules until all modules
were LAA. We observed that the highest Top-1 accuracy
could be achieved when the first two stages used LAA mod-
ules, while the last stage used SIA. Notably, when all stages
used LAA, the model failed to converge by directly employ-

ing the PVT-v2-B1 training parameters. The discussion of
how to alter the training strategy is beyond the scope of our
paper.

We believe that in the shallow layers, the model primar-
ily learns local information rather than semantic informa-
tion. Therefore, using the SIA module in the shallow layers
may not achieve the desired effect of aggregating patches
with similar semantics; instead, it may introduce additional
noise. According to our experiments, we found that the
clustering results of SIA modules in the first stage had over
95% similarity with those of direct convolution. After re-
placing the SIA module in the first stage with LAA, the
model achieved a 0.3% improvement. After further replac-
ing the SIA module in the second stage with the LAA mod-
ule, we observed that the difference in accuracy between the
two approaches was relatively modest. To conduct a more
comprehensive comparison between the two strategies, we
measure their latency as detailed in Table 4. To balance the
accuracy and inference speed, we selected a solution that
used LAA module in the first two stages and SIA module
in the last stage. To further show the effectiveness of this
approach, we gradually replaced stage 3 and stage 2 with
Conv2d layers, resulting in a decrease in the Top-1 accu-
racy by 0.5% and 0.7%, respectively. In addition, gradually
replacing stage 1 and stage 2 with Conv2d layers both led
to a reduction in the Top-1 accuracy by 0.5%.

Spatial distribution Reserving. In order to address the
issue of missing spatial distribution of images after cluster-
ing, we perform clustering only on Q in the SIA module and
use implicit positional encoding in K and V . We reserved
the spatial distribution of images after clustering through
the attention mechanism. As shown in Table 5, we discuss
two different experimental setups: 1) clustering applied to
Q, K, and V , and 2) clustering applied only to Q with im-
plicit positional encoding inserted into K and V .

We found that clustering only applied to Q yielded better
reserved of the spatial distribution of images and resulted
in the best performance. This method resulted in a Top-1
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Figure 4. Visualization results of semantic segmentation. It includes the original image (the 1st column), the semantic clustering map
produced by SIA (the 2nd column), the segmentation results with the HAFA framework (the 3rd column) or not (the 4th column).

ImageNet-1k Latency
Backbone Stage1 Stage2 Stage3 Top-1

Acc(%) (ms)

SIA SIA SIA 79.4 38.5
LAA SIA SIA 79.7 23.8
LAA LAA SIA 79.8 16.3PVT-v2-B1 [41]

LAA LAA LAA — —

Table 4. Abalation experiments were conducted by using different
modules at different stages. We conducted tests on an RTX3090
with an image resolution of 224x224 to compare the inference
speeds of different solutions. “—” indicates the occurrence of
training collapse.

accuracy increase of 0.4%, an improvement of 0.4 box AP
and 0.2 mask AP on COCO, and an increase of 0.3% mIoU
on ADE20K. This indicates that clustering only on Q, with
the insertion of implicit positional encoding in K and V ,
can reserved the spatial distribution prior to clustering to
some extent, thus verifying the effectiveness of our method.

Effects of HAFA on other Backbones. We inserted

ImageNet COCO ADE20K
Clustering

Top-1 Acc(%) APb APm mIoU(%)
Q K V 77.1 39.4 36.9 39.8

Q 77.5 (+0.4) 39.8 (+0.4) 37.1 (+0.2) 40.1 (+0.3)

Table 5. The results of using fine-grained spatial distribution re-
serving in the SIA module on different tasks using the PVT-Tiny
backbone network.

HAFA into other mainstream backbones and trained them
on ImageNet-1k. The Top-1 accuracies are shown in Ta-
ble 6, from which we can see that the improvement is uni-
versal and so the proposed HAFA generalizes well to other
Transformer backbones. Concurrently, we perform a com-
parative analysis between HAFA and the closely related
DynamicViT [29]. As evidenced by Table 6, when Dy-
namicViT [29] and HAFA employ models with compara-
ble parameter quantities, PVT-v2-B2-HAFA achieves supe-
rior performance. Additionally, when employing an identi-
cal Swin backbone and retaining an equivalent 25% token
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Method #Param (M) GFLOPs Top-1 Acc (%)
PVT-v2-B1 14.0 1.9 78.7
PVT-v2-B1(HAFA) 14.6 1.9 79.8 (+1.1)
PVT-v2-B2 25.4 4.0 82.0
DynamicViT-LV-S/0.5 26.9 3.7 82.0
PVT-v2-B2(HAFA) 26.0 4.0 82.5 (+0.5)
Swin-T 30.8 4.5 81.3
Dynamic-Swin-T/0.25 29.8 4.0 77.8
Swin-T(HAFA) 29.1 4.5 81.7 (+0.4)

Table 6. Integrating HAFA with other backbones and comparing
with similar works. “#Param” refers to the number of parameters.
“GFLOPs” is calculated under the input scale of 224 × 224. The
value of 0.5 represents that each stage retains 50% of the total
number of tokens, while HAFA defaults to 0.25 (standard feature
pyramid ratio)

within each stage, HAFA demonstrates a higher level of ac-
curacy.

5. Conclusion
In this paper, we propose a Hierarchy Aware Feature Ag-

gregation framework (HAFA) that can adopt different fea-
ture aggregation schemes based on the features learned by
the model at different stages. We employ the Local Adap-
tive Feature Aggregation (LAA) module in the shallow lay-
ers of the model to enhance perception of local discrimina-
tive information. In the deep layers of the model, we use the
Semantic Information Aggregation (SIA) module to aggre-
gate patches with similar semantic information, helping the
attention mechanism to model global relationships more ac-
curately. Experimental results show that the baseline model
achieved significant improvements in multiple tasks after
integrating into the HAFA framework.
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