
DiffRate : Differentiable Compression Rate for Efficient Vision Transformers

Mengzhao Chen1,2†‡, Wenqi Shao2‡, Peng Xu2,3, Mingbao Lin4, Kaipeng Zhang2, Fei Chao1,
Rongrong Ji1∗, Yu Qiao2, Ping Luo2,3

1Key Laboratory of Multimedia Trusted Perception and Efficient Computing,
Ministry of Education of China, School of Informatics, Xiamen University

2OpenGVLab, Shanghai AI Laboratory 3The University of Hong Kong 4Tencent Holdings Ltd

Abstract

Token compression aims to speed up large-scale vision
transformers (e.g. ViTs) by pruning (dropping) or merg-
ing tokens. It is an important but challenging task. Al-
though recent advanced approaches achieved great suc-
cess, they need to carefully handcraft a compression rate
(i.e. number of tokens to remove), which is tedious and
leads to sub-optimal performance. To tackle this problem,
we propose Differentiable Compression Rate (DiffRate), a
novel token compression method that has several appeal-
ing properties prior arts do not have. First, DiffRate en-
ables propagating the loss function’s gradient onto the com-
pression ratio, which is considered as a non-differentiable
hyperparameter in previous work. In this case, different
layers can automatically learn different compression rates
layer-wisely without extra overhead. Second, token pruning
and merging can be naturally performed simultaneously in
DiffRate, while they were isolated in previous works. Third,
extensive experiments demonstrate that DiffRate achieves
state-of-the-art performance. For example, by applying
the learned layer-wise compression rates to an off-the-shelf
ViT-H (MAE) model, we achieve a 40% FLOPs reduction
and a 1.5× throughput improvement, with a minor accu-
racy drop of 0.16% on ImageNet without fine-tuning, even
outperforming previous methods with fine-tuning. Codes
and models are available at https://github.com/
OpenGVLab/DiffRate.

1. Introduction
Vision Transformer (ViT) [7] has rapidly developed

and achieved state-of-the-art performance in various vision

tasks such as image classification[26], object detection [45],

and semantic segmentation [36, 12, 15, 16]. Due to the

flexibility in handling various input formats, ViT has also

∗Corresponding authors: Rongrong Ji (rrji@xmu.edu.cn)
† This work was done during his internship at Shanghai AI Laboratory.
‡ Equal Contribution

Figure 1: Comparison of different token compression
methods including token pruning EViT [23], token merging

ToMe [1] and our method. Pruned tokens are represented

by black and non-border, while merged tokens are repre-

sented by patches with the same inner and border color.

(a) shows that our method achieves better top-1 accuracy

on ImageNet with FLOPs of 2.3G when compressing pre-

trained Deit-S [32] without fine-tuning. (b) and (c) show

that previous methods typically focus on either pruning or

merging tokens using hand-picked compression rate with

the guidance of performance. But our method leverages

both approaches simultaneously to achieve more effective

compression using the differentiable compression rate with

gradient optimization.

been widely applied to self-supervised learning [13] and

other modalities [9, 37]. Despite the remarkable success,

ViTs suffer from the intensive computational complexity

that increases quadratically with the token length in the self-

attention layer, presenting a challenge for practical applica-

tions. Therefore, it is crucial to improve the efficiency of

ViTs in order to make them more widespread.

In pursuit of efficient ViTs, various network compres-

sion techniques such as weight pruning [39, 34], quanti-

zation [27, 42], distillation [17, 35] and so on have been

investigated. Among them, token compression[29, 1, 23]

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17164

has emerged as a promising approach to reduce redundancy

in ViT for several appealing properties. First, token com-

pression can be applied without any modifications to the

network structure by exploiting the input-agnostic nature of

transformers. Second, token compression is orthogonal to

previous compression methods, making it a complementary

approach to existing techniques [34, 4].

Existing token compression approaches typically include

token pruning [29, 23, 20] and token merging [1]. As shown

in Fig. 1(a), token pruning preserves informative tokens by

measuring the importance of tokens with a defined met-

ric. It can easily identify irrelevant background tokens with

low importance. On the other hand, token merging com-

presses tokens by merging them with a large semantic sim-

ilarity, which can not only discard some background tokens

but also merge less informative foreground tokens. How-

ever, both pruning and merging handcraft a compression

rate (i.e. the ratio of removed tokens and total tokens) for

each transformer layer as shown in Fig. 1(b), which has two

drawbacks. First, since model complexity metrics such as

FLOPs are related to compression rates in each layer, it is te-

dious for practitioners to set layer-wise compression rates in

order to meet the complexity constraints while retaining the

performance of ViTs as much as possible. Second, infor-

mative foreground tokens are prone to being discarded with

a hand-picked compression rate, which results in perfor-

mance degradation. As shown in Fig. 1(a), when compress-

ing tokens at fixed rates, token pruning such as EViT [23]

removes most of the informative foreground tokens while

token merging [1] also merges many important foreground

tokens into a single token, leading to a sudden drop of top-1
accuracy on ImageNet.

To tackle the above issues, this work proposes a unified

token compression framework called Differentiable Com-

pression Rate (DiffRate), where both pruning and merging

compression rates are determined in a differentiable man-

ner. To achieve this goal, we propose a novel method,

namely Differentiable Discrete Proxy (DDP) module. In

DDP, a token sorting procedure is first performed to identify

important tokens with a token importance metric. Then, a

re-parameterization trick enables us to optimally select top-

K important tokens with gradient back-propagation. In this

way, all input images would have the top-K important to-

kens preserved, making it possible for parallel batch com-

putation. Notably, the optimization process of DiffRate is

highly efficient and can converge within 3 epochs (i.e. 2.7

GPU hours for ViT-B).

Thanks to the inclusion of differentiable compression

rates, DiffRate can leverage the benefits of token pruning

and merging by seamlessly integrating both techniques into

a forward pass. This is possible because both token prun-

ing and merging are capable of determining the optimal

set of tokens to preserve. As shown in Fig. 1(a), DiffRate

can prune most irrelevant background tokens and preserve

detailed foreground information, leading to a good trade-

off between efficiency and performance. With the learned

compression rate, DiffRate achieves state-of-the-art perfor-

mance in compressing various ViTs. For example, DiffRate

can compress an off-the-shelf ViT-H model pre-trained by

MAE [13] with 40% FLOPs reduction and 50% through-

put improvement with only 0.16% accuracy drop, outper-

forming previous methods that require tuning the network

parameter.

Our contributions are summarized as follows:

• We develop a unified token compression framework,

Differentiable Compression Rate (DiffRate), that in-

cludes both token pruning and merging, and formulate

token compression as an optimization problem.

• DiffRate employs a Differentiable Discrete Proxy

which consists of a token sorting procedure and a re-

parameterization trick to determine the optimal com-

pression rate under different computation cost con-

straints. To our knowledge, it is the first study to ex-

plore differentiable compression rate optimization in

token compression.

• Through extensive experiments, we demonstrate that

DiffRate outperforms previous methods and achieves

state-of-the-art performance on the off-the-shelf mod-

els. We hope that DiffRate can advance the field of

token compression and improve the practical applica-

tion of Vision Transformers (ViTs).

2. Related Work
Token Compression Several recent studies have at-

tempt compress redundancy token according token prun-

ing [23, 29, 8, 40, 31, 21, 20, 38, 24, 34] and token merg-

ing [1, 43, 30, 28]. However, most of these methods focus

on designing metrics to distinguish redundant tokens, while

ignoring the token compression schedule in each block.

Some methods, such as VTC-LFC [34] and ViT-Slim [4]

combine token prune with weight prune and determine the

number of prune tokens using threshold-based approaches,

which is also highly influenced by the hand-picked hyper-

parameters. In contrast, our proposed method can learn the

token compression schedule in a differentiable form. Fur-

thermore, we consider both token merging and token prun-

ing in the token compression process, resulting in a better

trade-off between speed and accuracy.

Differentiable Neural Architecture Search. There are

also many works [25, 3, 11] attempted to search for neu-

ral architecture in a differentiable manner. For example,

DARTS [25] and ProxylessNAS [3] learn the probabilities

of each candidate operation and select the operation with

the highest probability as the final architecture. DMCP [11]

17165

is the approach most similar to proposed DiffRate, as it

searches for the channel number of convolution in each

layer. However, the differentiable method used in chan-

nel pruning cannot be directly applied to token compres-

sion. Firstly, the definition of search space is different. The

search space for channel pruning is the channel, while for

token compression, it is the token. Channels in the same po-

sition represent the same feature, while tokens are position-

agnostic. Secondly, the output channel number in each

layer is independent to other layers while the token must

be pruned once it is discarded in previous layers. As of

now, no approach has been proposed for differentiable to-

ken compression rate.

3. Differentiable Compression Rate
In this section, we first briefly introduce a transformer

block and existing compression approaches, and then

present our Differentiable Compression Rate (DiffRate) to

build a unified token compression technique.

Transformer Block. Token compression in ViTs oper-

ates in each transformer block. Given the input token of the

l-th block Xl ∈ R
N×D where N and D are the token length

and token size, respectively, the forward propagation of the

transformer block is expressed as follows:

X̂l = Xl+Attention(Xl),Xl+1 = X̂l+MLP(X̂l), (1)

where l ∈ [L] and L is the network depth. Moreover,

Attention and MLP represent the self-attention and the

MLP modules in the transformer block, respectively. In

Eqn. (1), X̂l is the output token of Attention.

Token Pruning and Merging. As shown in Fig. 2, exist-

ing token compression methods usually remove redundant

tokens from X̂l by token pruning or merging, as given by

X̂l
p ← fp(X̂

l, αl
p) or X̂

l
m ← fm(X̂l, αl

m), (2)

where fp, fm are pruning and merging operations,αl
p, α

l
m

are their compression rates, and X̂l
p ∈ R

N l
p×D, X̂l

m ∈
R

N l
m×D are their outputs which are then fed into MLP

in Eqn. (1). Hence, the pruning and merging compression

rate for each block is defined as αl
p = (N − N l

p)/N and

αl
m = (N −N l

m)/N , respectively. For example, EViT [23]

preserves the important tokens while fusing unimportant to-

kens between Attention and MLP under the guidance of

an importance metric. ToMe [1] merges similar tokens of

X̂l in both foreground and background. Note that Dynam-

icViT [29] prunes tokens after MLP, but we find that it also

works well when it operates after Attention. Although these

approaches achieved great success, they need to carefully

handcraft a compression rate block-wisely, which is tedious

and leads to sub-optimal performance as shown in Fig. 1(a).

Unified Formulation of DiffRate. To mitigate this

problem, we propose Differentiable Compression Rate

Figure 2: Token compression in a transformer block.

(DiffRate), a unified token compression method, to search

compression rates optimally. Given a pre-trained model

W∗, the objective of token compression is to minimize the

classification loss Lcls on a training dataset (X,Y) with

target FLOPs T . This can be formulated as an optimization

problem as follows:

α∗
p,α

∗
m = arg min

αp,αm

Lcls(W
∗(X),Y|αp,αm), (3)

s.t. F(αp,αm) ≤ T, 0 ≤ αl
p, α

l
m ≤ 1, (4)

X̂l = fc(X̂
l, αl

p, α
l
m), l ∈ [L] (5)

where αp = {αl
p}Ll=1 and αm = {αl

m}Ll=1 represent prun-

ing and merging compression rates across all blocks, re-

spectively. Moreover, F(αp,αm) denotes the correspond-

ing FLOPs, which can be expressed as a differentiable way

of the compression rates. Eqn. (5) shows that DiffRate com-

presses X̂l with operation fc and compression rates αl
p and

αl
m in each transformer block. Finally, α∗

p and α∗
m are ob-

tained by differentiably learning in DiffRate.

With the unified formulation of token compression,

DiffRate is capable enough to express various compression

methods. In detail, when fc = fp, α
l
m = 0, DiffRate

represents token pruning with differentiable pruning com-

pression rate αl
p. when fc = fm, αl

p = 0, DiffRate turn

into differentiable token merging. In this work, we set

fc = fm ◦ fp, meaning that tokens are first pruned and then

merged. In this case, DiffRate seamlessly integrates token

pruning and token merging through differentiable compres-

sion rates.

However, it is challenging to solve the optimization

problem in Eqn. (3-5) with gradient-based methods for ViTs

as compression rates are not differentiable. Directly learn-

ing 0-1 masks for tokens as did in channel pruning [19] is

infeasible because each image may drop different numbers

of tokens. This makes it hard to parallelize the computa-

tion. For example, DynamicViT [29] and SPViT [20] main-

tain a mask vector for each input image, but they still need

to manually design compression rates to ensure that all im-

ages preserve the same number of tokens. The following

section introduces a novel technique for the differentiable

search of compression rates.

17166

(a) Token Sorting (b) Compression Rate Re-parameterization

Figure 3: Pipeline of Differentiable Discrete Proxy. (a) Token Sorting: the input N tokens are sorted based on the im-

portance metric class attention Ac. With pruning rate αp and merging rate αm, we first prune Nαp least important tokens,

then merge N(αm − αp) unimportant tokens with similar ones among the remaining tokens. (b) Compression Rate Re-

parameterization: the approach translate compression rate α into the combination with discrete rate C and learnable proba-

bility ρ. The top part is attention masking [29], which simulates token dropping by mask during training.

4. Differentiable Discrete Proxy

To make compression rates differentiable, our main idea

is to preserve the top-K important tokens for all images,

which can not only allow for parallel batch computation but

also retain the performance of the original ViTs as much

as possible. To achieve this, we introduce a novel method

called the Differentiable Discrete Proxy (DDP), which com-

prises two critical components: a token sorting procedure

to identify important tokens with a token importance met-

ric and a re-parameterization trick to optimally select top-K
important tokens with gradient back-propagation. The over-

all pipeline of DDP is illustrated in Fig. 3.

4.1. Token Sorting

Token Importance Metric. To find top-K importance

tokens, we sort tokens by token importance metric, which

has been well established in the literature. Here, we employ

the class attention Ac ∈ R
1×N as the importance metric

following EViT [23]. The interaction between class atten-

tion and image tokes can be written by:

Ac = Softmax
(
qcK

T /
√
D
)
, and Xc = AcV, (6)

where qc ∈ R
1×D, K ∈ R

N×D, V ∈ R
N×D and

Xc ∈ R
1×D denote the query vector of class token, the

key matrix, the value matrix, and the class token of the self-

attention layer. From Eqn. (6), the class attention Ac mea-

sures how much each image token contributes to the class

token. Higher class attention indicates a more significant

influence of the corresponding image token on the final out-

put, implying greater importance [5, 23]. We also investi-

gate other importance metrics in the ablation study as shown

in Table 4a.

Pruning and Merging in DiffRate. With the token im-

portance established in Eqn. (6), it is natural to remove to-

kens with low importance, such as those representing se-

mantically irrelevant backgrounds by following principles

in token pruning [23, 29]. As shown in Fig. 3a, we prune

Nαp unimportant tokens in the l-th transformer block.

Notely, we drop the superscript l of compression rate to

simplify the notation. After that, we use cosine similarity to

measure the similarity between N(αm − αp) unimportant

tokens and the remaining tokens. For similar token pairs,

we generate a new token by directly average them. Through

the above sorting-pruning-merging pipeline, the number of

tokens to be pruned and merged in each block is optimally

determined with learnable compression rate in our DiffRate.

Hence, DiffRate can seamlessly integrate token pruning and

merging.

4.2. Compression Rate Re-parameterization

DDP uses a re-parameterization trick to make pruning

and merging compression rates differentiable. We simplify

the notation by using a single variable α to represent both

compression rates.

Re-parameterization with Discrete Rates. In essential,

making compression rate differentiable is to determine how

many tokens should be discarded with optimality guarantee.

To tackle this problem, we re-parameterize the compression

rate as a learnable combination of multiple candidate com-

pression rates. Specifically, we introduce a discrete com-

pression rate set, denoted as C = {C1, C2, ..., CN}, where

Ck = k−1
N represents the top (k− 1) least important tokens

should be removed. By assigning learnable probabilities ρk
to each candidate compression rate Ck with

∑N
k=1 ρk = 1,

17167

the compression rate can be written as

α =

N∑
k=1

Ckρk. (7)

By using discrete candidate rates as the proxy, the optimiza-

tion problem of learning compression rates can be translated

into the problem of learning the probabilities ρk.

Token-Level Mask. As shown in Fig. 3b, with Ck and

ρk, the probability that the k-th important token is com-

pressed can be calculated as

π1 = 0, πk = ρN+2−k + · · ·+ ρN−1 + ρN , k ≥ 2 (8)

where π1 = 0 indicates that the most important token

is always retained. From Eqn. (8), it is easy to see that

πk ≤ πk+1. Therefore, our DiffRate with DDP aligns with

the fact that less important tokens should have a larger com-

pression probability. To make the training and inference

consistent, we convert πk into a 0-1 mask as given by,

mk =

{
0, πk ≥ α,

1, πk < α,
(9)

where mk = 1 indicates that the k-th token is preserved,

and vice versa.

In each vision transformer block, we instantiate two in-

dependent re-parameterization modules to learn both prun-

ing and merging compression rates. Thus, it generates two

token-level masks, namely the pruning mask and the merg-

ing mask, denoted mp
k and mm

k for each token, respectively.

Note that the token removed in last block must also be com-

pressed in this block. Hence, the final mask is defined as

mk = mk ·mp
k ·mm

k , (10)

where mk on the right-hand side is the mask for the k-th

token in the last block.

Attention Masking. To preserve the gradient back-

propagation chain, we convert token dropping into atten-

tion masking with mask mk in Eqn. (10) following Dynam-

icViT [29]. To achieve this, we construct an attention mask

M with the same dimensions as the attention map for each

self-attention operation:

Mi,j =

{
1, i = j,

mj , i �= j.
. (11)

The attention mask prevents the interaction between all

compressed tokens and the other tokens, except itself. We

then use this mask to modified the Softmax operation in the

next self-attention module:

S =
QKT

√
D

, Ŝi,j =
exp(Si,j)Mi,j∑N
k=1 exp(Si,k)Mi,k

, (12)

Algorithm 1 Differentiable Compression Rate.

Input: training dataset (X,Y), pretrained model weight

W∗, target FLOPs T , DDP with discrete compression rate

{Ck}Nk=1 and learnable probabilities {ρk}Nk=1.

Output: block-wise pruning compression rate αp = {αl
p}Ll=1

and merging compression rate αm = {αl
m}Ll=1.

1: for (x,y) in (X,Y) do
2: calculate αp and αm with {ρk}Nk=1 by Eqn. (7).

3: calculate pruning mask {mp
k}Nk=1 by Eqn. (9).

4: calculate merging mask {mm
k }Nk=1 by Eqn. (9).

5: sorting → pruning → merging in Sec. 4.1

6: attention masking with Eqn. (11-12)

7: calculate classification loss: Lcls(W
∗(x),y)

8: calculate FLOPs loss: Lf = (F(αp,αm)− T)2

9: calculate optimization objective: L = Lcls + λfLf

10: backward L to ρk with Eqn. (14)

11: update ρk by gradient

12: end for
13: return αp and αm

where Q ∈ R
N×D is the query matrix, S ∈ R

N×N is the

original attention map before SoftMax, and Ŝi,j is actually

used to update tokens. Eqn. (11-12) enables propagation the

loss function’s gradient onto the mask m.

5. Training Objective
We solve the optimization problem in Eqn. (3-5) by min-

imizing the total loss as given by

L = Lcls + λfLf (αp,αm), (13)

where Lf = (F(αp,αm) − T)2 is the loss to constraint

the FLOPs. The hyper-parameter λf balances the two loss

terms, and we set it to 5 by default in our experiments.

During network back-propagation, we utilize the

straight-through-estimator (STE) [14] to calculate the gra-

dient of Eqn. (11). Hence, we can calculate the gradient of

L with respect to ρk using the chain rule:

∂L
∂ρk

=

N∑
j=1

∂L
∂mj

∂mj

∂πj

∂πj

∂ρk
≈

N∑
j=1

∂L
∂mj

∂πj

∂ρk
. (14)

Since ρk is differentiable through Eqn. (14), the compres-

sion rate α can be optimized with gradient back-propagation

by Eqn. (7).

Overall Algorithm. The overall training algorithm of

DiffRate is illustrated in Algorithm 1. It consists of three

steps: forward model with ρk (Lines 2-6), calculating op-

timization objective (Lines 7-9), backward propagation and

ρk update in DDP (Lines 10-11). The DiffRate algorithm

finds the optimal compression rate by updating ρk in a dif-

ferentiable form, and the resulting compression rate can be

directly applied to off-the-shelf models.

17168

Extension to Other Complexity Metrics. Our DiffRate

model offers flexible differentiable compression rates that

can be supervised using various computational complexity

metrics, such as FLOPs and latency. To investigate its po-

tential, we employed Gemmini [10], a framework for gener-

ating deep learning accelerators that can produce a diverse

set of realistic accelerators based on a flexible architecture

template. Using Gemmini, we conducted a co-search of the

design space for compression ratios αp and αm, as well as

accelerator parameters β simultaneously. The loss function

in Eqn. (13) becomes

L = Lcls + λfLf (αp,αm)

+ λlaLla(αp,αm,β) + λpwLpw(αp,αm,β),
(15)

where Lla and Lpw are loss functions to constraint latency

and power consumption in Gemmini accelerator, respec-

tively. λla and λpw are their strengths. By minimizing L,

DiffRate can further learn optimal α∗
p,α

∗
m satisfying vari-

ous resource constraints, and the optimum β∗ can be imple-

mented in FPGA board. The details are in Appendix B.

6. Experiments
This section presents extensive experiments to verify our

proposed DiffRate. Sec. 6.1 provides training details. Sec.

6.2 compares DiffRate with previous compression tech-

niques. The ablation study and visualization are presented

in Sec. 6.3 and Sec. 6.4, repsectively.

6.1. Implementation Details

In this section, we conduct a series of experiments on

ImageNet-1k [6] using DeiT [32], MAE [13], and LV-

ViT [18]. We initialize the backbone models with pre-

trained models and fix them to train the learnable probabil-

ities in DDP with the objective function in Eqn. (13). The

DDP is trained for 3 epochs using a learning rate of 1e−2.

Once the compression rate of DDP is determined, it can be

directly applied to off-the-shelf models. We also fine-tune

the model optionally for 30 epochs using a learning rate of

1e−5 after determining the compression rate, denoted by the

superscript “†” in the table for differentiation. All through-

put measurements are taken during inference on an A100

GPU with a batch size of 1024 and fp16. The other exper-

imental setups follow most of the training techniques used

in DeiT [32], and additional details can be found in Ap-

pendix A. Note that our DiffRate is highlighted in the tables

in gray, and bold denotes the best results.

6.2. Comparison with state-of-the-art

Compression Schedule. In Fig. 4, we compare the com-

pression rate obtained by DiffRate with three other token

pruning schedules, including EViT [43], ToMe [1], and ran-

domly sampled schedules. We evaluate the FLOPs and ac-

Table 1: Token compression on the off-the-shelf models.
We directly apply EViT [23], ToMe [1], and the proposed

DiffRate to off-the-shelf models, i.e. without updating the

network parameters of pre-trained models.

Model Method FLOPs imgs/s Acc.

ViT-S (DeiT)

Baseline [32] 4.6 5039 79.82

EViT [23] 2.3 8950 73.83

ToMe [1] 2.3 8874 77.99

DiffRate 2.3 8901 78.76
EViT [23] 3.0 6807 78.50

ToMe [1] 2.9 6712 78.89

DiffRate 2.9 6744 79.58

ViT-B (DeiT)

Baseline [32] 17.6 2130 81.83

EViT [23] 8.7 4230 74.61

ToMe [1] 8.8 4023 77.84

DiffRate 8.7 4124 78.98
EViT [23] 11.5 2886 80.37

ToMe [1] 11.5 2834 80.58

DiffRate 11.5 2865 81.50

ViT-B (MAE)

Baseline [13] 17.6 2130 83.72

EViT [23] 8.7 4230 75.15

ToMe [1] 8.8 4023 78.86

DiffRate 8.7 4150 79.96
EViT [23] 11.5 2886 82.01

ToMe [1] 11.5 2834 82.32

DiffRate 11.5 2865 82.91

ViT-L (MAE)

Baseline [13] 61.6 758 85.95

EViT [23] 29.7 1672 81.52

ToMe [1] 31.0 1550 84.24

DiffRate 31.0 1580 84.65
EViT [23] 39.6 1089 85.06

ToMe [1] 42.3 1033 85.41

DiffRate 42.3 1045 85.56

ViT-H (MAE)

Baseline [13] 167.4 299 86.88

ToMe [1] 92.9 500 86.01

EViT [23] 99.1 512 85.54

DiffRate 93.2 504 86.40
ToMe [1] 103.4 442 86.29

EViT [23] 112.9 432 86.32

DiffRate 103.4 450 86.72

LV-ViT-S

Baseline [18] 6.6 3630 83.30

EViT [23] 3.9 5077 79.77

DiffRate 3.9 5021 82.56

curacy on the ImageNet-1k validation dataset using an off-

the-shelf ViT-B (DeiT) and investigate three token compres-

sion options: only pruning, only merging, and a combina-

tion of pruning and merging, as depicted in Sec. 4.1. We can

observe that DiffRate performed almost optimally, regard-

less of the token compression setting and FLOPs constraint.

Additionally, DiffRate’s advantage was more prominent at

lower FLOPs constraints, indicating its ability to provide

more appropriate compression rates at larger solution space.

DiffRate also benefited from unified token compression, in-

dicating that it can preserve more information by combining

17169

(a) Pruning (b) Merging (c) Pruning and Merging

Figure 4: Token Compression Schedule Comparison. We test the proposed DiffRate on ViT-B (DeiT) with three token

compression options: (a) Only token pruning like EViT [43], (b) Only token merging like ToMe [1],(c) Pruning and Merging

as depicted in Sec. 4.1. The token compression schedules searched through DiffRate outperform the constant schedules

used in ToMe [1] and EViT [23]. Moreover, the performance of our method is close to optimal when compared to 10, 000
randomly sampled schedules.

the merits of token merging and pruning.

Off-the-shelf. We compare the proposed DiffRate with

EViT [43] and ToMe [1] in the “off-the-shelf” setting, in-

dicating direct use of the pre-trained model without updat-

ing the network parameters. Notably, the compression rate

achieved by DiffRate can be applied to pre-trained mod-

els without any additional computation. As shown in Ta-

ble 1, DiffRate consistently outperforms both EViT [23] and

ToMe [1] across various models. Specifically, DiffRate out-

performs ToMe [1] by 0.14% to 1.14%, and outperforms

EViT [23] by 0.39% to 4.93%. These results demonstrate

the strong potential of DiffRate as an effective post-training

token compression method. More results at other FLOPs

constraints can be found in Appendix C.

With Training. In Table 2, we compare the proposed

DiffRate with several methods that require training the

model, indicating fine-tuning with pre-trained models or

training from scratch. The evaluated methods include

EViT [1] and ToMe [1], which train models from scratch,

and ATS [8], DynamicViT [29], SP-ViT [20], which fine-

tune pre-trained models for 30 epochs. To ensure a fair com-

parison, for DiffRate, we also fine-tune the pre-trained mod-

els for 30 epochs with the searched compression rate. We

can observe that DiffRate still maintains a performance ad-

vantage compared to methods that require training. Specif-

ically, ATS achieves a top-1 accuracy of 79.70% in DeiT-S,

close to our 79.83%. However, it is important to note that

ATS is an input-adaptive token pruning method that cannot

be applied to batch inference, while DiffRate does not suf-

fer this problem. Moreover, we find that DiffRate utilized

with an off-the-shelf model achieves comparable or superior

performance to methods that require training. For instance,

DiffRate attains 79.58% on the off-the-shelf DeiT-S [32],

while EViT and ToMe, after training, only achieve 79.50%

and 79.49%, respectively. Similar results are also observed

in ViT-B (DeiT) and ViT-B/L/H (MAE).

Table 2: Token compression with training. † indicates

fine-tuning the model with searched compression rate for

30 epochs.

Model Method FLOPs imgs/s Acc.

ViT-S (DeiT)

Baseline [32] 4.6 5039 79.82

DynamicViT [29] 2.9 6527 79.30

Evo-ViT [38] 3.0 6679 79.40

EViT [23] 3.0 6807 79.50

ToMe [1] 2.9 6712 79.49

ATS [8] 2.9 - 79.70

SPViT [20] 2.6 - 79.34

DiffRate 2.9 6744 79.58
DiffRate† 2.9 6744 79.83

ViT-B (DeiT)

Baseline [32] 17.6 2130 81.83

EViT [23] 11.5 2886 81.30

ToMe [1] 11.5 2834 81.41

DiffRate 11.5 2865 81.50
DiffRate† 11.5 2865 81.71

ViT-B (MAE)

Baseline [13] 17.6 2130 83.72

ToMe [1] 11.5 2834 82.94

DiffRate 11.5 2865 82.91
DiffRate† 11.5 2865 83.25

ViT-L (MAE)

Baseline [13] 61.6 758 85.95

ToMe [1] 42.3 1033 85.59

DiffRate 42.3 1045 85.56
DiffRate† 42.3 1045 85.71

ViT-H (MAE)

Baseline [13] 167.4 299 86.88

ToMe [1] 103.4 442 86.51

DiffRate 103.4 450 86.72

Multiple Complexity Constraints. In addition, we

supervise DiffRate with three computational complexity

constraints: FLOPs, latency, and power, as detailed in

Eqn. (15). As shown in Table 3, integrating multiple com-

plexity constraints enhances the trade-off between perfor-

mance and complexity. Specifically, leveraging multiple

17170

Figure 5: Image Visualizations. Results of proposed DiffRate on ImageNet-1k validation using a pre-trained DeiT-B model,

only 34 tokens left in block 12. Merged tokens are represented by patches with the same inner and border color, while

pruned tokens are represented by black. The visualizations show that DiffRate can gradually prune the redundant token in

the background and merge less-discriminative tokens in the foreground.

Table 3: Results under multiple complexity constraints.
on ViT-S (DeiT). DiffRate indicates single FLOPs con-

straint as Eqn. (13), DiffRate-M indicates multiple com-

plexity constraint as Eqn. (15).

Method FLOPs(G) Latency(ms) Power(mW) Acc.

Baseline 4.6 68.1 156 79.82

EViT 3.0 40.4 99 79.50

DiffRate 2.9 40.1 98 79.83
DiffRate-M 2.9 37.6 90 79.80

complexity constraints leads to a remarkable reduction of

2.5ms in latency and 8mW in power consumption compared

to a single FLOPs constraint, with only a negligible decline

in accuracy of a mere 0.03%.

6.3. Ablation Study

In this section, we perform DiffRate with variants to in-

vestigate the effectiveness of our proposed method. As the

experiment shown in Table 4a, we compare the influence

of several token sorting metrics, including randomly gener-

ated rank, class attention (Ac), image attention (Ai) [23],

and the product of class attention and the value matrix’s

norm (Ac · |V |) [8]. It can be observed that Ac and Ac · |V |
exhibit similar performance, and we choose Ac as our de-

fault setting since it does not require any additional compu-

tation. Then Table 4b compares several token compression

options, including only pruning, only merging, pruning then

merging, and merging then pruning. The results show that

pruning then merging performs the best since it success-

fully combines the advantages of both pruning and merg-

ing. What’s more, in Table 4c, we investigate the amount of

training data required by DiffRate to find the optimal com-

pression rate. Surprisingly, we find that only 1, 000 images

are sufficient to obtain an appropriate compression rate. Al-

though we also optimize the token compression rate using

the entire training dataset, our results demonstrate the po-

tential for DiffRate to work well even with minimal data.

Lastly, Table 4d investigates the convergence time required

by DiffRate. We can find that only three epochs are re-

quired, demonstrating the efficiency of DiffRate as a token

compression approach.

6.4. Visualization

The visualizations results in Fig. 5 demonstrate that

DiffRate effectively removes semantically irrelevant back-

ground information. Furthermore, DiffRate can reduce the

number of tokens by merging less-discriminative tokens in

the foreground. For example, in the first row, DiffRate suc-

cessfully removes most of the background and merges the

dog hair and butterfly wings tokens into fewer tokens. In the

second row, DiffRate preserves salient information tokens

in different image regions, even when multiple instances

exist. Overall, the visualization results highlight the effec-

tiveness of our proposed DiffRate method in compressing

ViT models without significant information loss. See more

results in Appendix D.

7. Conclusion
This work presents a new token compression framework,

named Differentiable Compression Rate (DiffRate). The

proposed approach integrates both token pruning and merg-

ing into a unified framework that can optimize the com-

pression rate in a differentiable manner. To achieve this,

we introduced a novel Differentiable Discrete Proxy (DDP)

module that can effectively determine the optimal compres-

sion rate using gradient back-propagation. Our experimen-

tal results demonstrate that DiffRate can perform compara-

ble or superior to previous state-of-the-art token compres-

sion methods, even without fine-tuning the model. Addi-

tionally, DiffRate is highly data-efficient, as it can identify

the appropriate compression rate using only 1, 000 images.

17171

Table 4: Ablation experiments using ViT-B (DeiT) [32]. Our default settings are marked in gray.

Metric Acc.(%)

Random 79.72

Ai 81.38

Ac · |V| 81.53
Ac 81.50

c

(a) Sorting Metric. Sim-

ply class attention can

measure the importance of

tokens.

Option Acc.(%)

Pruning 80.83

Merging 81.14

Merging-Pruning 81.18

Pruning-Merging 81.50

(b) Token Compression Module
Option. A merging and pruning

pipeline is the best choice.

Number Acc.(%)

1,000 81.40

4,000 81.46

16,000 81.50
All 81.50

(c) Training Data.
1,000 images is enough

to optimize compres-

sion rate.

Time (g-hrs) Acc.(%)

0.9 (1-ep) 81.32

2.7 (3-ep) 81.50

9 (10-ep) 81.50

27 (30-ep) 81.52

(d) Optimization Time. To-

ken compression rate can

converge within 2.7 gpu

houres.

Overall, the proposed DiffRate framework offers a new per-

spective on token compression by revealing the importance

of compression rate. We believe that this approach has the

potential to pave the way for further advancements in token

compression research.

Acknowledgement
This work is supported by National Key R&D Pro-

gram of China (No.2022ZD0118201) , the National Science

Fund for Distinguished Young Scholars (No.62025603),

the National Natural Science Foundation of China (No.

U21B2037, No. U22B2051, No. 62176222, No. 62176223,

No. 62176226, No. 62072386, No. 62072387, No.

62072389, No. 62002305 and No. 62272401), and the

Natural Science Foundation of Fujian Province of China

(No.2021J01002, No.2022J06001). This work is also

partially supported by the National Key R&D Program

of China(NO.2022ZD0160100), and in part by Shang-

hai Committee of Science and Technology (Grant No.

21DZ1100100).

References
[1] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao

Zhang, Christoph Feichtenhofer, and Judy Hoffman. Token

merging: Your ViT but faster. In International Conference
on Learning Representations, 2023. 1, 2, 3, 6, 7, 14

[2] Daniel Bolya and Judy Hoffman. Token merging for fast

stable diffusion. arXiv, 2023. 17

[3] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 2

[4] Arnav Chavan, Zhiqiang Shen, Zhuang Liu, Zechun Liu,

Kwang-Ting Cheng, and Eric P Xing. Vision transformer

slimming: Multi-dimension searching in continuous opti-

mization space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4931–

4941, 2022. 2

[5] Mengzhao Chen, Mingbao Lin, Ke Li, Yunhang Shen,

Yongjian Wu, Fei Chao, and Rongrong Ji. Cf-vit: A general

coarse-to-fine method for vision transformer. arXiv preprint
arXiv:2203.03821, 2022. 4

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. In International Con-
ference on Learning Representations (ICLR), 2020. 1, 14

[8] Mohsen Fayyaz, Soroush Abbasi Kouhpayegani, Farnoush

Rezaei Jafari, Eric Sommerlade, Hamid Reza Vaezi Joze,

Hamed Pirsiavash, and Juergen Gall. Adaptive token sam-

pling for efficient vision transformers. European Conference
on Computer Vision (ECCV), 2022. 2, 7, 8

[9] Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaim-

ing He. Masked autoencoders as spatiotemporal learners.

arXiv preprint arXiv:2205.09113, 2022. 1

[10] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vigh-

nesh Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb,

Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt,

Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-

Kelley, Krste Asanovic, Borivoje Nikolic, and Yakun Sophia

Shao. Gemmini: Enabling systematic deep-learning archi-

tecture evaluation via full-stack integration. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages

769–774, 2021. 6, 13

[11] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.

Dmcp: Differentiable markov channel pruning for neural

networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1539–1547,

2020. 2

[12] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,

Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chun-

jing Xu, Yixing Xu, et al. A survey on vision transformer.

IEEE TPAMI, 2022. 1

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr

Dollár, and Ross Girshick. Masked autoencoders are scalable

vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–

16009, 2022. 1, 2, 6, 7, 13

[14] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky.

Neural networks for machine learning lecture 6a overview

of mini-batch gradient descent. Cited on, 14(8):2, 2012. 5

17172

[15] Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan

Wang, Ke Li, Feiyue Huang, Ling Shao, and Rongrong Ji.

Istr: End-to-end instance segmentation with transformers.

arXiv preprint arXiv:2105.00637, 2021. 1

[16] Jie Hu, Linyan Huang, Tianhe Ren, Shengchuan Zhang,

Rongrong Ji, and Liujuan Cao. You only segment once: To-

wards real-time panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17819–17829, 2023. 1

[17] Ding Jia, Kai Han, Yunhe Wang, Yehui Tang, Jianyuan Guo,

Chao Zhang, and Dacheng Tao. Efficient vision transform-

ers via fine-grained manifold distillation. arXiv preprint
arXiv:2107.01378, 2021. 1

[18] Zi-Hang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun

Shi, Xiaojie Jin, Anran Wang, and Jiashi Feng. All tokens

matter: Token labeling for training better vision transform-

ers. Advances in neural information processing systems,

34:18590–18602, 2021. 6

[19] Minsoo Kang and Bohyung Han. Operation-aware soft chan-

nel pruning using differentiable masks. In International Con-
ference on Machine Learning, pages 5122–5131. PMLR,

2020. 3

[20] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng,

Wei Niu, Mengshu Sun, Xuan Shen, Geng Yuan, Bin Ren,

Hao Tang, et al. Spvit: Enabling faster vision transformers

via latency-aware soft token pruning. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XI, pages 620–640.

Springer, 2022. 2, 3, 7

[21] Ling Li, David Thorsley, and Joseph Hassoun. Sait: Sparse

vision transformers through adaptive token pruning. arXiv
preprint arXiv:2210.05832, 2022. 2

[22] Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evan-

gelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren. Effi-

cientformer: Vision transformers at mobilenet speed. arXiv
preprint arXiv:2206.01191, 2022. 14

[23] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song,

Jue Wang, and Pengtao Xie. Not all patches are what you

need: Expediting vision transformers via token reorganiza-

tions. In International Conference on Learning Representa-
tions (ICLR), 2022. 1, 2, 3, 4, 6, 7, 8

[24] Mingbao Lin, Mengzhao Chen, Yuxin Zhang, Ke Li, Yun-

hang Shen, Chunhua Shen, and Rongrong Ji. Super vision

transformer. arXiv preprint arXiv:2205.11397, 2022. 2

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 2

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

ICCV, pages 10012–10022, 2021. 1, 14

[27] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma,

and Wen Gao. Post-training quantization for vision trans-

former. Advances in Neural Information Processing Systems,

34:28092–28103, 2021. 1

[28] Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan,

Anish Prabhu, Mohammad Rastegari, and Oncel Tuzel.

Token pooling in vision transformers. arXiv preprint
arXiv:2110.03860, 2021. 2

[29] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie

Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision

transformers with dynamic token sparsification. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.

1, 2, 3, 4, 5, 7

[30] Michael S Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa

Dehghani, and Anelia Angelova. Tokenlearner: What can

8 learned tokens do for images and videos? arXiv preprint
arXiv:2106.11297, 2021. 2

[31] Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan

Guo, Chao Xu, and Dacheng Tao. Patch slimming for ef-

ficient vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 12165–12174, 2022. 2

[32] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-

tention. In International Conference on Machine Learning
(ICML), pages 10347–10357, 2021. 1, 6, 7, 9, 12, 13

[33] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao

Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.

Pyramid vision transformer: A versatile backbone for dense

prediction without convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision,

pages 568–578, 2021. 17

[34] Zhenyu Wang, Hao Luo, WANG Pichao, Feng Ding, Fan

Wang, and Hao Li. Vtc-lfc: Vision transformer compression

with low-frequency components. In Advances in Neural In-
formation Processing Systems, 2022. 1, 2

[35] Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin

Xiao, Jianlong Fu, and Lu Yuan. Tinyvit: Fast pretrain-

ing distillation for small vision transformers. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XXI, pages

68–85. Springer, 2022. 1

[36] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,

Jose M Alvarez, and Ping Luo. Segformer: Simple and ef-

ficient design for semantic segmentation with transformers.

In NeurIPS, pages 12077–12090, 2021. 1

[37] Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wo-

jciech Galuba, Florian Metze, Christoph Feichtenhofer,

et al. Masked autoencoders that listen. arXiv preprint
arXiv:2207.06405, 2022. 1

[38] Yifan Xu, Zhijie Zhang, Mengdan Zhang, Kekai Sheng, Ke

Li, Weiming Dong, Liqing Zhang, Changsheng Xu, and

Xing Sun. Evo-vit: Slow-fast token evolution for dynamic

vision transformer. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, pages 2964–2972,

2022. 2, 7

[39] Huanrui Yang, Hongxu Yin, Pavlo Molchanov, Hai Li, and

Jan Kautz. Nvit: Vision transformer compression and param-

eter redistribution. arXiv preprint arXiv:2110.04869, 2021.

1

[40] Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya,

Jan Kautz, and Pavlo Molchanov. A-vit: Adaptive tokens for

17173

efficient vision transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 10809–10818, 2022. 2

[41] Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou,

Jiashi Feng, Shuicheng Yan, and Xinchao Wang. Metaformer

baselines for vision. arXiv preprint arXiv:2210.13452, 2022.

14, 17

[42] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu,

and Guangyu Sun. Ptq4vit: Post-training quantiza-

tion framework for vision transformers. arXiv preprint
arXiv:2111.12293, 2021. 1

[43] Wang Zeng, Sheng Jin, Wentao Liu, Chen Qian, Ping Luo,

Wanli Ouyang, and Xiaogang Wang. Not all tokens are

equal: Human-centric visual analysis via token clustering

transformer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11101–

11111, 2022. 2, 6, 7, 17

[44] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela

Barriuso, and Antonio Torralba. Scene parsing through

ade20k dataset. In CVPR, pages 633–641, 2017. 17

[45] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,

and Jifeng Dai. Deformable detr: Deformable transformers

for end-to-end object detection. In ICLR, 2022. 1

17174

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

