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Abstract

Fine-grained leaf image retrieval (FGLIR) aims to
search similar leaf images in subspecies level which in-
volves very high interclass visual similarity and accord-
ingly poses great challenges to leaf image description. In
this study, we introduce a new concept, named fan-beam bi-
narization difference projection (FB-BDP) to address this
challenging issue. It is designed based on the theory of
fan-beam projection (FBP) which is a mathematical tool
originally used for computed tomographic reconstruction of
objects and has the merits of capturing the inner structure
information of objects in multiple directions and excellent
ability to suppress image noise. However, few studies have
been made to apply FBP to the description of texture pat-
terns. Rather than calculating ray integrals over the whole
object area, FB-BDP restricts its ray integrals calculated
over local patches to guarantee the locality of the extracted
features. By binarizing the intensity-differences between the
off-center and center rays, FB-BDP enable its ray integrals
insensitive to illumination change and more discriminative
in the characterization of texture patterns. In additional,
due to inheriting the merits of FBP, the proposed FB-BDP is
superior over the existing local image descriptors by its in-
variance to scaling transformation, robustness to noise, and
strong ability to capture direction and structure texture pat-
terns. The results of extensive experiments on FGLIR show
its higher retrieval accuracy over the benchmark methods,
promising generalization power and strong complementar-
ity to deep features.

1. Introduction
Leaf image patterns have been extensively researched

and considerable leaf image descriptors [12, 15, 21, 28,
34, 35] have achieved encouraging performance on plant
species recognition in the computer vision and image pro-
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Figure 1. Coarse-grained (species) versus fine-grained (cultivars)
interclass variation in leaf image patterns.

cessing community. Recently, increasing concerns have
been paid on whether leaf image patterns are also informa-
tive enough for plant cultivar identification which is essen-
tial for crops introduction, genetic improvement, breeders’
intellectual property protection, and early identification of
seedlings in modern agriculture systems [14]. As shown in
Figure 1, leaf image patterns have great difference across
coarse-grained categories (species), while have high simi-
larity across fine-grained categories (cultivars).

With the quick growth of new cultivars developed by
human experts in modern agriculture, there is a growing
need to develop effective fine-grained leaf image retrieval
(FGLIR) systems for managing the existing cultivars and
breeding new ones. In the content-based image retrieval
(CBIR) research community, it is commonly known that
characterizing image patterns to yield quantized feature rep-
resentation are essential to the construction of a CBIR sys-
tem. In this study, we focus on the description of leaf image
patterns for addressing the challenging FGLIR issue.

In the past decades, many feature descriptors have been
proposed for depicting leaf image patterns. Most of them
are designed for coarse-grained (species level) leaf image
identification. Considering the large varieties in leaf shape
patterns across different species, many efforts have been
made on the extraction of leaf shape features such as the leaf
boundary curvatures [5, 8, 15, 21], the relative spatial dis-
tribution of leaf contour points [12, 19, 34], the geometrical
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structure patterns [28, 35], etc. and achieved state-of-the-art
performance on distinguishing plant species.

Another significant clue for leaf image pattern con-
tributed to species recognition is its texture feature. Chaki et
al. [7] used Gabor filter and gray level co-occurrence matrix
(GLCM) to model leaf texture patterns for leaf species clas-
sification. Tang et al. [32] combined a non-overlap window
LBP and GLCM for green tea leaf classification. Inspired
by the idea that spatial co-occurrences among features have
potential for boosting the discriminative power of descrip-
tors, Qi et al. [27] developed a novel descriptor, named Pair-
wise Rotation Invariant Co-Occurrence LBP (PRICoLBP),
which can not only effectively capture the spatial context
co-occurrence information, but also be invariant to rotation.
This method reported high classification accuracy on plant
species recognition.

Besides handcrafted features, there are several recent
studies applying deep learning to leaf image classification.
Meet et al. [29] proposed a dual-path CNN to jointly learn
complementary shape and texture features in each path and
optimize them for leaf classification. Hu et al. [11] pro-
posed a multiscale fusion CNN for plant leaf recognition.
Grinblat et al. [10] applied CNN to the extraction of leaf
vein features for classifying three different legume species.
Tan et al. [38] applied three CNN models, pretrained
AlexNet, fine-tuned AlexNet and D-leaf, to leaf vein feature
extraction followed by several machine learning techniques
for classification.

The aforementioned leaf image descriptors are all de-
signed for leaf species identification. Recently, there are
also several attempts focusing on FGLIR issue. Oleander
(Nerium oleander L.) has many cultivars exhibiting high
inter-class similarity. Baldi et al. [2] developed a back-
propagation neural network for identifying oleander culti-
vars. Tavakoli et al. [33] employed CNN to distinguish 12
cultivars of common beans. Wang et al. [37] is the first to
use joint leaf image patterns by combining the leaf features
from the lower, middle and upper parts of plants towards
more accurate soybean cultivar recognition. More recently,
Local RsCoM [36] and SBT [9] both paid attention on the
extraction of co-occurrence texture features of leaf images
and achieved state-of-the-art performance on fine-grained
leaf image identification. Despite the research progress of
leaf image description on FGLIR issue, the reported per-
formances are still unsatisfactory for the requirements of
high recognition accuracy in modern agriculture which thus
leaves us a large room for further research.

Local image descriptors have proven to be the leading
model for many computer vision and image processing ap-
plications due to their excellent behaviors in the case of
illumination change, translation, and occlusion [3]. Local
binary pattern (LBP) [24] and its variants [4, 27, 39] are
popular local image descriptors that have received wide ap-

plications. They work in a circular neighborhood structure
and use the binarized grayscale difference information be-
tween the center pixel and its neighboring pixels to gen-
erate local image features. Although they can capture the
spatial structure information of texture patterns and are in-
sensitive to any monotonic transformation of the gray scale,
they are not invariant to scaling transformation and sensitive
to noise. In additional, the circular structure of LBP also
hinder the characterization of directional texture patterns.

Fan-beam projection (FBP) is a mathematical tool orig-
inally used for computed tomographic (CT) reconstruction
of objects [1]. It can capture the inner structure informa-
tion of objects from multiple directions and has excellent
ability to suppress image noise. However, few studies have
been done to apply it to the description of texture patterns.
This study is the first to introduce FBP to object descrip-
tion. To make FBP better adapt to the construction of local
image descriptors, we introduce a new concept, named fan-
beam binarization difference projection (FB-BDP). Rather
than calculating ray integrals over the whole object image
area, the proposed FB-BDP restricts the ray integrals over
local patches to guarantee the locality of the extracted fea-
tures. By binarizing the intensity-differences between the
off-center rays and the center ray, the resulting ray integrals
encode discriminative texture information and are insensi-
tive to illumination change. In additional, due to inheriting
the merits of FBP, the proposed FB-BDP outperforms the
existing local image descriptors by its invariance to scal-
ing transformation, robustness to noise, and strong ability
to capture direction and structure texture patterns. Exten-
sive experiments demonstrate its higher retrieval accuracy
on FGLIR over state-of-the-arts, promising generalization
power and strong complementarity with deep features to
boost retrieval performance on FGLIR.

2. FB-BDP Local Descriptor for Leaf Image
Representation

In this section, we begin with the definition of fan-shaped
local patch (FLP) and use it to introduce a new concept of
fan-beam binarization difference projection (FB-BDP) for
the construction of local leaf descriptor. The collection of
FB-BDP vectors is then used to learn a leaf codebook for
quantifying the FB-BDP vectors. At last, we count the
quantified FB-BDP vectors of a leaf image into histograms
as the final image-level representation.

2.1. Fan-Shaped Local Patch

An image plane can be regarded as a complex plane
with each pixel being denoted as complex number χ ∈ C
whose real and imaginary parts correspond to its horizontal
and vertical coordinate, respectively. For a leaf image, its
grayscale version can be mathematically expressed as a 2D
function f(χ) : C → N describing the intensity value of
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the pixel χ. Its contour Ω can be represented as an arch-
length parameterization form z(τ) : [0, 1] → C with τ be-
ing the normalized arc length from the starting point of the
contour in anticlockwise direction.

Given a point z(τ) ∈ Ω, let R(τ) = max
τ ′∈[0,1]

∥ z(τ ′) −

z(τ) ∥2 be the maximum Euclidean distance between it
and the other contour points. For a positive number ρ ∈
(0, R(τ)), we take it as radius and z(τ) as center to draw
a circle. Since the contour Ω is closed and ρ < R(τ), at
least two intersection points can be obtained. We choose
two of them (denoted by z(τl) and z(τr)) that are nearest
to the point z(τ) along the contour in clockwise and an-
ticlockwise directions, respectively. By rotating the chord
z(τ)z(τr) counterclockwise about the point z(τ) to coin-
cide with the chord z(τ)z(τl), we obtain a fan-shaped local
region (denoted by FLPτ,ρ). The rotation angle ατ,ρ is its
opening angle defined as

ατ,ρ = arg((z(τl)− z(τ))/(z(τr)− z(τ))), (1)

where arg(·) returns the argument of a complex number in
the interval [0, 2π).

The patch FLPτ,ρ has two parameters τ and ρ. Vary-
ing the former can change the position of the FLPτ,ρ.
While the parameter ρ ∈ (0, R(τ)) is related to the scale
of the FLPτ,ρ. To facilitate the subsequent multiscale fea-
ture extraction, we generate multiscale FLPτ,ρ by letting
ρ = R(τ)/2w, w = 1, . . . ,W , where w is the index of
scale level and W is the prespecified number of scale levels.
Figure 2 (a) presents an example to show FLPτ,ρ of differ-
ent scale levels radiated from the same contour point. While
Figure 2 (b) presents an example to show FLPτ,ρ radiated
from different contour points the same scale level.

2.2. FB-BDP Local Descriptor

In the following, we use the above defined fan-shaped
local patch FLPτ,ρ to introduce a new concept: fan-beam
binarization-difference projection (FB-BDP), for the con-
struction of local descriptor.

Fan Beam: For a fan-shaped local patch FLPτ,ρ, we
treat its vertex z(τ) as source point to emit a ray to bisect
its opening angle ατ,ρ. We term it center ray and restrict it
end at the point

p0 = z(τ) + (z(τl)− z(τ))ej·ατ,ρ/2, (2)

where j =
√
−1. From the above equation, we can see

that p0 is the midpoint of the circular arc between the points
z(τl) and z(τr) of the FLPτ,ρ. Here, we denote the center
ray as −→p0. By rotating the ray −→p0 about its source point z(τ)
by the angles θu = u·ατ,ρ/(2U), u = ±1,±2, . . . ,±U , we
obtain U pairs of rays whose end points can be calculated
by

pu = z(τ) + (p0 − z(τ))ej·θu , (3)

where U is the parameter to prespecify the number of the
generated rays. We name them off center rays and denote
them by −→pu. Collecting the center ray −→p0 and all the off-
center rays −→pu, we obtain a fan beam FBτ,ρ generated from
the FLPτ,ρ.

FBU
τ,ρ = {−→p0,−→pu, u = ±1,±2, . . . ,±U} . (4)

In Figure 3, the leftmost subfigure shows a fan beam of
FB2

τ,ρ having one center rays and two pairs of off-center
rays.

Binarization-difference projection: We first use a
function

q0(l) = z(τ) + (p0 − z(τ))(l/ρ), (5)

to denote each point of the center ray −→p0, where l ∈ [0, ρ]
is the length between it and the source point z(τ) along the
ray −→p0. Likewise, we define a function qu(l) to represent
each point of the ray −→pu. Then for each off-center ray −→pu
in the fan beam FBU

τ,ρ, we define a binarization-difference
integral over it as

Bu =
1

ρ

∫ ρ

0

s(f(qu(l))− f(q0(l)))dl. (6)

s(y) =

{
1, y >= 0

0, y < 0
. (7)

Figure 2. Examples to show the fan-shaped local patches FLPτ,ρ:
(a) FLPτ,ρ of different scale levels radiated from the same con-
tour point. (b) FLPτ,ρ radiated from different contour points at
the same scale level.
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Figure 3. Illustration of the concept of our proposed fan-beam binarization-difference projection (FB-BDP) local descriptor. Left: A group
of rays that are emitted from the same source point z(τ) and equally divide the fan-shaped local patch FLPτ,ρ form a fan beam FBτ,ρ,
where the ray colored by red is center ray and the remaining ones are off-center rays. Middle: The gray values of the pixels on the center ray
−→p0 are used as threshold values to binarize the ones of the corresponding pixels on the off-center rays. Right: A texture feature measure Bu

is derived by the conduction of an integral operation over each off-center ray −→pu of binarized pixel values followed a scale normalization
by the radius ρ. All the texture feature measures Bu, u = 1, . . . , U and the opening angle ατ,ρ are collected to form a local descriptor for
depicting the fan-shaped local patch FLPτ,ρ.

The measure Bu is derived by first using the gray value
of each pixel q0(l) of the center ray −→p0 as the threshold value
to binarize the one of the corresponding pixel qu(l) of the
off-center ray −→pu and conducting integral operation against
the binarized off-center ray −→pu (See the two rightmost sub-
figures of Figure 3 for better understanding this concept).
It encodes the local intensity differences between the off-
center ray and the center ray.

The binarization-difference integral Bu has the follow-
ing characteristics which enable it very suitable for texture
feature depiction: (1) Since it is derived from the fan-shaped
local patch FLPτ,ρ, it has the property of locality; (2) It
is a geometrical invariant measure because the translation
and rotation of the patch FLPτ,ρ do not change its relative
position in the patch FLPτ,ρ and the normalization by the
radius ρ in Eq. 6 makes it invariant to the scaling of the
patch FLPτ,ρ; (3) Like the widely used local binary pattern
(LBP), it is also a gray-scale invariant measure, i.e., insen-
sitive to monotonic illumination changes due to the use of
relative intensities instead of the exact intensities with re-
spect to the center ray; (4) It is robust to noise because of
the use of integral operation. In additional, by changing the
length of the radius ρ of the patch FLPτ,ρ, multiscale mea-
sures Bu can be achieved.

FB-BDP local descriptor: After calculating the
binarization-difference integral Bu for each off-center ray
−→pu in the fan beam FBτ,ρ, we use them to construct a local
descriptor. Considering that the angle measure ατ,ρ char-
acterizes the geometric property of the patch FLPτ,ρ and
the measure Bu depicts the texture character of the patch
FLPτ,ρ, we combine them to construct a feature vector
Vτ,ρ for making them complementary to contribute to the

description of the patch FLPτ,ρ. To make it easier to han-
dle the mirror transform of the object image, we organize
the measures ατ,ρ and Bθu in the vector Vτ,ρ as follows:

Vτ,ρ = [Bθu , u = −U, . . . ,−1]∪[ατ,ρ]∪[Bθu , u = 1, . . . , U ]
(8)

We can see that the mirror transform of object image
only makes the vector Vτ,ρ flipped which will be further ad-
dressed in the subsequent process of quantization of feature
vector. We term the vector Vτ,ρ as fan-beam binarization-
difference projection (FB-BDP) local descriptor.

2.3. Aggregating FB-BDP Local Descriptors into
Histogram Representation

We have presented a FB-BDP local descriptor to describe
the local patch FLPτ,ρ. In this subsection, we employ it to
construct image-level representation. As discussed in Sec-
tion 2.1, the parameters τ, ρ control the position and scale
of the patch FLPτ,ρ, respectively. By uniformly sampling
T values in the range [0, 1] of the parameter τ , we can ob-
tain T points, z(τi), i = 1, . . . , T , sampled from the con-
tour Ω, where T is the parameter to prespecify the number
of the sample points. Varying the index i of the contour
point from 1 to T makes the local descriptor Vτi,ρ charac-
terize the leaf image in multiple positions. For each contour
point z(τi), we make the parameter ρ take W values from
the range (0, R(τi)) : ρw = R(τi)/2

w, w = 1, . . . ,W . Let-
ting the index w of scale level vary from 1 to W makes the
local descriptor Vτi,ρw

describe the leaf image from coarse
to fine. However, directly using the set of the FB-BDP lo-
cal descriptors to describe leaf image is not compact and is
also very expensive for subsequent feature matching. In this
subsection, we apply the widely used Bag-of-words model
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[30] to aggregate them into a histogram representation for a
compact description and efficient matching.

Codebook learning: For each scale level w, we collect
all the FB-BDP local descriptors Vτi,ρw , i = 1, . . . , T , of
the dataset images to build a training set of size M · T
for learning a codebook, where M is the number of im-
ages in the dataset. We randomly select K FB-BDP local
descriptors at the scale level w as codewords to construct
an initial codebook CBw = vwk , k = 1, . . . ,K, where K
is the parameter to specify the number of the codewords
in the codebook. We conduct the common K-means clus-
tering algorithm to update each codeword in the CBw and
the algorithm is not terminated until the distortion error is
less than 9 × 10−3, where the distortion error is defined as
the maximum of the absolute differences between the ele-
ments of the current version and last version of each code-
word. Recall that the mirror transformation of a leaf image
only makes the FB-BDP Vτ,ρ flipped. To make the encoded
local descriptors invariant to mirror transformation, during
the training stage, we define the distance between a training
FB-BDP local descriptor V and a codeword v as

d(V, v) = min
{
∥V − v∥2 ,

∥∥∥V ′
− v

∥∥∥
2

}
, (9)

where V
′

is the flipped version of V .
Vector quantization: We now have a total of W code-

books, CBw, w = 1, . . . ,W (one codebook per scale
level). Then for each FB-BDP local descriptor V

i,w of a leaf
image we use the corresponding codebook CBw to quantify
it as

ci,w = argmin
k=1,. . . ,K

(d(Vτi,ρw
, vwk )). (10)

For a leaf image, we count the codes ci,w of its FB-BDP
vectors Vτi,ρw

, i = 1, . . . , T of the scale level w into a
K−dimensional histogram Hw with each element defined
as

hw(k) =

T∑
i=0

δ(ci,w − k). (11)

where δ(·) is a binary function that returns 1 for an input
of zero and 0, otherwise. Concatenating the histograms
Hw, w = 1, . . . ,W , we obtain a vector of dimension K ·W
as the final representation for the leaf image.

3. Experiments
In this section, we first apply the proposed method to two

challenging fine-grained leaf image retrieval (FGLIR) tasks:
soybean and peanut leaf image retrievals, respectively for
validating its effectiveness. Another group of experiments
of cross-dataset test, i.e., applying the leaf codebook learned
from one leaf dataset to the FGLIR on another leaf dataset,
are then conducted to examine the generalization ability of

Figure 4. Parts of soybean leaf images of different cultivars from
the three subsets of the SoyCultivar200 dataset [37]. (a) Soy-Up,
(b) Soy-Mid, (c) Soy-Low.

our method. Finally, we perform additional group of ex-
periments of fusing our FB-BDP image representation with
state-of-the-art deep features to examine their complemen-
tarity on FGLIR.

3.1. Soybean Leaf Image Retrieval

Soybeans are commonly known as one of the most im-
portant economic crops and have many cultivars in the
world. Several previous studies [16, 17, 33, 37] have made
attempts to use leaf image patterns as clues for soybean cul-
tivar identification. SoyCultivar2001 [37] is a publicly avail-
able soybean leaf image dataset that has been recently used
for evaluating the performance of an algorithm for cultivar
recognition. It has 200 cultivars with each having 30 leaves
collected from different parts of soybean plants: 10 sam-
ples from the upper part, 10 samples from the middle part,
and 10 samples from the lower part. The SoyCultivar200
dataset is designed to test the performances of single leaf
image pattern and joint leaf image pattern for cultivar recog-
nition, respectively. For the former, all the samples from
the same part of soybean plants are grouped into a subset
which makes the dataset divided into three subsets, named
as Soy-Up, Soy-Mid, and Soy-Low, respectively. Each sub-
set accordingly consists of 200×10=2000 single leaf image
patterns. While for the latter, all the 6000 leaves in the
dataset are divided into 2000 groups with each containing
three leaves of the same cultivar that are from the upper
part, middle part and lower part of different soybean plants,
respectively. Each group is treated as a joint leaf pattern
and all of them form a set, named Soy-Joint, consisting of
200×10=2000 joint leaf patterns. Figure 4(a)-(c) show parts
of leaf images of different cultivars from the three subsets,
Soy-Up, Soy-Mid, and Soy-Low, respectively. More details
about the SoyCultivar200 dataset refer to [37].

Two standard evaluation metrics, Bulls-eye test [12, 19,

1https://github.com/NUFE-AIAG/FGLIR
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34] and precision-recall (PR) curves [5, 6, 9] are used to
quantify the retrieval performance of the competing al-
gorithms. Nine state-of-the-art image descriptors, PRI-
CoLBP [27], LETRIST [31], Spatial Pyramid [18], Local
RsCoM [36], SBT [9], DSFH [20], HeW-ResNet50 [25],
ReSW [26], and siaMAC+ReSW [26], are used as base-
lines. Among them, PRICoLBP and LETRIST are local
binary patterns designed for texture description. Spatial
Pyramid is bag of SIFT descriptor for texture characteri-
zation. Local RsCoM and SBT both focus on extracting
co-occurrence texture features for fine-grained leaf image
identification. While DSFH, HeW-ResNet50, ReSW, and
siaMAC+ReSW are all recently published deep feature rep-
resentations particularly designed for image retrieval. The
parameters for the proposed method are empirically set to
T = 600, W = 10, U = 10 and K = 400. The param-
eters of the other competing methods follow their original
setting.

The Bull-eye scores of all the competing methods are
summarized in Table 1. It can be seen that on the use of
single leaf image patterns (performing on the test cases,
Soy-Up, Soy-Mid and Soy-Low, respectively), the pro-
posed methods achieves the scores of 49.12%, 51.76% and
50.59%, respectively which are separately 1.05%, 2.63%
and 2.67% higher than the other competing methods. While
using joint leaf image patterns (Soy-Joint), the proposed
method achieves an exciting score of 84.20% which out-
performs the other competing methods by 2.51%. We also
plot the PR curves for all the competing methods on the four
test cases in Figure 5. It can be clearly observed that on all
the test cases, the proposed method consistently achieves
the best PR curves.

Algorithm Up Mid Low Joint

PRICoLBP 35.27 34.86 32.47 56.22
LETRIST 34.97 35.51 34.70 57.89
Spatial Pyramid 32.74 33.99 33.68 60.40
Local RsCoM 42.77 43.11 41.60 70.44
SBT 47.57 48.40 47.92 81.69
DSFH 41.52 41.82 40.35 69.90
ReSW 45.12 46.33 43.78 80.97
siaMAC+ReSW 47.32 48.35 44.25 78.58
HeW-ResNet50 48.07 49.13 45.23 80.42
Proposed 49.12 51.76 50.59 84.20

Table 1. The Bull-eye scores (%) of various methods on the four
test cases, Soy-Up, Soy-Mid, Soy-Low and Soy-Joint of the Soy-
Cultivar200 leaf image dataset [37].

3.2. Peanut Leaf Image Retrieval

Peanuts are another economic crop in the world which
are widely grown in the tropics and subtropics, contributing
to both small and large commercial producers. To exam-
ine the effectiveness of the proposed method for peanut leaf
image retrieval, we collect 600 leaf images from 120 peanut
cultivars with each consisting of 5 samples. Different from
the SoyCultivar200, this dataset is designed only for testing
the performance of single leaf image pattern. We name it
PeanCultivar1202. Figure 6 shows an example sample for
each peanut cultivar. It can be observed that they have very
high inter-class similarity which makes it very difficult even
for human experts to distinguish them. The same evalua-
tion metric, benchmark methods and algorithm parameters
as the former groups of experiments are used in this test.

The Bull-eye scores achieved by the proposed methods
and the other competing methods are summarized in Table
2. As can be seen that the proposed method obtains the
score of 51.80% which outperformers the other competing
methods by 2.53%. In Figure 7, we plot the precision-recall
curves of all the competing methods. As can be seen that
the PR curve achieved by our method is obviously better
than those of the other methods.

Algorithm Bull-eye scores (%)

PRICoLBP 41.27
LETRIST 46.57
Spatial Pyramid 44.10
Local RsCoM 45.23
SBT 46.83
DSFH 37.10
ReSW 44.73
siaMAC+ReSW 41.03
HeW-ResNet50 49.27
Proposed 51.80

Table 2. The Bull-eye scores (%) of various methods on the peanut
cultivar leaf image dataset.

3.3. Cross-Dataset Test for Generalization Capabil-
ity Examination

Generally speaking, for a specific FGLIR task, e.g. soy-
bean leaf image retrieval, if the used leaf codebooks are
learned from other species, e.g. peanut or tree, the retrieval
performance would be normally degraded in some ex-
tent due to the domain difference between distinct species.
However, since they are all learned from leaf image pat-
terns, the performance degradation should not be large. In

2https://github.com/NUFE-AIAG/ICCV2023-FB-BDP
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Figure 5. The precision-recall curves for all the ten competing methods on the four test cases, Soy-Up, Soy-Mid, Soy-Low and Soy-Joint
of the SoyCultivar200 leaf image dataset[37].

Figure 6. 120 example leaf images of different peanut cultivars
from our collected PeanCultivar120 dataset.

Figure 7. The precision-recall curves of all the competing methods
on the PeanCultivar120 leaf image dataset.

Leaf image
dataset used
for codebook

learning

FGLIR Task

Soy-Low Soy-Mid Soy-Up
PeanCul-
tivar120

Soy-Low 50.59 51.40 48.51 48.73
Soy-Mid 50.38 51.76 48.40 48.93
Soy-Up 50.60 51.32 49.12 49.33

PeanCultivar120 47.23 47.63 45.64 51.80
MEW2012 49.10 48.88 46.53 48.97

Table 3. The Bull-eye scores (%) of cross-dataset test using the
proposed method.

this subsection, we conduct a group of experiments of cross-
dataset test to examine the generalization capability of the
proposed FB-BDP image representation.

In our experiments, we use the following five leaf image
datasets, Soy-Low, Soy-Mid, Soy-Up, PeanCultivar120 and
MEW2012 [23], to learn codebooks, respectively. Among
them, the first three are all soybean leaf image datasets as
introduced in Section 3.1. The fourth dataset is a peanut leaf
image dataset as introduced in Section 3.2. The last one is a
publicly available leaf species image dataset. It consists of
9745 leaf images of 153 tree and shrubs species with at least
50 samples per species. For more details about MEW2012,
refer to [23]. Since each species in MEW2012 has different
number of samples, we randomly select 50 samples from
each species to construct a dataset of 153×50=7650 samples
for codebook leaning. Figure 8 shows parts of typical leaf
images of different species in the MEW2012 dataset.

Based on the proposed FB-BDP image representation,
we separately use the above mentioned five leaf image
datasets to learn codebooks which are then applied to
FGLIR tasks on the four datasets, Soy-Low, Soy-Mid, Soy-
Up and PeanCultivar120, respectively. The retrieval scores
are summarized in Table 3. By observing each column, we
can find that for three soybean FGLIR tasks, Soy-Low Soy-
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Figure 8. Parts of leaf images of different species from the
MEW2012 leaf image dataset[23].

Figure 9. The PR curves of applying codebooks learned from Soy-
Low, Soy-Mid, Soy-Up, PeanCultivar120 and MEW2012 leaf im-
age datasets to the four FGLIR tasks: (a) Soy-Low, (b) Soy-Mid,
(c) Soy-Up, and (d) PeanCultivar120.

Mid and Soy-Up, the codebooks learned from the different
soybean leaf image datasets achieve very small decrease in
retrieval scores (less than 0.72%). While using the code-
books learned from peanut or tree and shrubs species, al-
though they have relatively large domain differences with
the soybean plant, we also achieve an acceptable decrease
in retrieval scores (less than 4.13%). While for the peanut
FGLIR task, we achieve a decrease of less than 3.07% in
retrieval score when using the codebooks learned from the
soybean leaf images or tree and shrubs leaf images. In Fig-
ure 9 (a)-(d), we plot the PR curves of using five different
codebooks on the four FGLIR tasks, Soy-Low, Soy-Mid,
Soy-Up, PeanCultivar120, respectively. As can be seen that
for each FGLIR task, the PR curves achieved from five dif-
ferent leaf codebooks are close to each other. These exper-
imental results consistently indicate the promising general-
ization capability of the proposed method.

Figure 10. The PR curves achieved by the proposed FB-BDP,
four deep feature representations, DSFH, ReSW, siaMAC+ReSW,
HeW-ResNet50, and their fusions on the (a) Soy-Joint FGLIR task
and (b) PeanCultivar120 FGLIR task.

3.4. Complementarity with Deep Features

Recently, there are increasing interests of fusing tradi-
tional handcrafted image descriptors with deep features to
boost the accuracies of various image classification and re-
trieval tasks [9, 13, 22]. In this subsection, for examin-
ing the complementarity of our FB-BDP image represen-
tation with deep features, we conduct an additional group
of experiments of applying the fusion of them to soybean
and peanut FGLIR tasks. Since developing a novel fu-
sion method is not our focus in this study, we directly use
the recent feature fusion method, KNN-HDFF [9], which
is a simple yet effective method of fusing deep features
with handcrafted image descriptors. We separately fuse
our FB-BDP image representation with four deep features,
DSFH [20], HeW-ResNet50 [25], ReSW [26], and sia-
MAC+ReSW [26] for two FGLIR tasks, Soy-Joint and
PeanCultivar120. The resulting PR curves are shown in Fig-
ure 10 (a) and (b), respectively. As can be observed that the
fusions of our FB-BDP image representation with deep fea-
tures greatly improve the retrieval accuracies of using their
individual features which indicates the high complementar-
ity of our method with deep features.

4. Conclusion

We have presented a novel method, named fan-beam bi-
narization difference projection (FB-BDP), to construct leaf
image representation for addressing the challenging FGLIR
issue. It is designed based on the theory of fan-beam pro-
jection (FBP) which is a mathematical tool originally used
for computed tomographic reconstruction of objects. The
leaf image representation derived from the proposed FB-
BDP has the following merits: (1) Locality in feature mea-
sures; (2) Invariance to geometrical transformations includ-
ing scaling, translation, rotation and mirror; (3) Invariance
to illumination change; (4) Robustness to noise and (5)
Strong ability to capture direction and structure texture pat-
terns which enable it more suitable for FGLIR tasks than
the existing local image descriptors. Through using the
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Bag-of-words model to aggregate the FB-BDP local feature
descriptors into histograms, we obtain a compact image-
level representation for efficient feature matching. Exten-
sive experiments on two challenging FGLIR tasks, soybean
and peanut leaf image retrievals, together with comprehen-
sive evaluations including retrieval accuracy, generalization
ability, complementarity to deep features prove its outstand-
ing performance over state-of-the-art methods on FGLIR.
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