
Generating Dynamic Kernels via Transformers for Lane Detection

Ziye Chen1 Yu Liu2 Mingming Gong 1 Bo Du3 Guoqi Qian1 Kate Smith-Miles1 *

1School of Mathematics and Statistics, University of Melbourne, Australia
2Mach Drive, China 3School of Computer Science, Wuhan University, Wuhan, China

ziyec1@student.unimelb.edu.au, yu.liu@mach-drive.com, mingming.gong@unimelb.edu.au,
dubo@whu.edu.cn, qguoqi@unimelb.edu.au, kate.smithmiles@gmail.com

Abstract

State-of-the-art lane detection methods often rely on spe-
cific knowledge about lanes – such as straight lines and
parametric curves – to detect lane lines. While the specific
knowledge can ease the modeling process, it poses chal-
lenges in handling lane lines with complex topologies (e.g.,
dense, forked, curved, etc.). Recently, dynamic convolution-
based methods have shown promising performance by uti-
lizing the features from some key locations of a lane line,
such as the starting point, as convolutional kernels, and
convoluting them with the whole feature map to detect lane
lines. While such methods reduce the reliance on specific
knowledge, the kernels computed from the key locations fail
to capture the lane line’s global structure due to its long
and thin structure, leading to inaccurate detection of lane
lines with complex topologies. In addition, the kernels re-
sulting from the key locations are sensitive to occlusion and
lane intersections. To overcome these limitations, we pro-
pose a transformer-based dynamic kernel generation archi-
tecture for lane detection. It utilizes a transformer to gen-
erate dynamic convolutional kernels for each lane line in
the input image, and then detect these lane lines with dy-
namic convolution. Compared to the kernels generated from
the key locations of a lane line, the kernels generated with
the transformer can capture the lane line’s global struc-
ture from the whole feature map, enabling them to effec-
tively handle occlusions and lane lines with complex topolo-
gies. We evaluate our method on three lane detection bench-
marks, and the results demonstrate its state-of-the-art per-
formance. Specifically, our method achieves an F1 score of
63.40 on OpenLane and 88.47 on CurveLanes, surpassing
the state of the art by 4.30 and 2.37 points, respectively.

*Corresponding Author. This work was supported in part by the Aus-
tralian Research Council for funding of the ARC Training Centre in Op-
timisation Technologies, Integrated Methodologies and Applications (OP-
TIMA), under grant IC200100009. This work is also supported in part by
the computational resources of the Spartan HPC system at UniMelb.

Figure 1. Examples of lanes lines in real scenes. The lane lines
often have complex topologies, and are in diverse road scenarios.
(a) The lane lines are blocked by vehicles. (b) The lane lines have
forked and curved structures. (c) The lane lines are dense and
blocked. (d) The lane lines are extremly curved. The lighting and
weather conditions in these four pictures are also very different.

1. Introduction

Lane detection is a fundamental task in Autonomous
Driving System (ADS) and Advanced Driver Assistance
System (ADAS). It plays a crucial role in the down-
streaming tasks, such as driving route planning, lane keep-
ing assist, and adaptive cruise control. As shown in Figure
1, lane detection in real scenes is very challenging, since
lane lines usually have complex topologies such as dense,
curved, and forked structures, and are often blocked by ve-
hicles and pedestrians. Furthermore, to be deployed on real-
time vehicle-based systems, the lane detection algorithms
need to have high running speed.

Traditional lane detection methods [16, 29, 12, 18, 4]
usually rely on hand-crafted features and post-processing
techniques like Hough Transform [7]. These methods are
limited in representation ability and robustness, making
them difficult to handle the diversity of lane lines in dif-
ferent road scenarios. Deep-learning-based lane detection

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6835



methods [32, 24, 2, 14, 25, 22, 8, 10, 17, 13] have recently
achieved great success, thanks to the powerful representa-
tion ability of convolutional neural networks (CNN). Exist-
ing methods often rely on specific background knowledge
– such as straight line anchors [32, 24, 2] and parametric
curves [14, 25] – to detect lane lines.

Although the specific background knowledge can ease
the modeling process, it causes difficulty in handling occlu-
sions and lane lines with complex topologies (e.g., dense,
forked, curved, etc.), as shown in Figure 1. For example,
the anchor-based methods [32, 24, 2] detect lane lines by
generating a set of anchors and then regressing the offsets
from the anchors to the target lane lines. Unfortunately, the
lane lines in real scenes are often curved or forked, which
are difficult to be covered by the pre-defined anchors. The
parameter-based methods [14, 25] represent lane lines with
parametric curves and then detect lane lines by predicting
the curve parameters. However, the extremely curved lane
lines are difficult to be fit by the parametric curves.

Recently, dynamic convolution-based methods, e.g.,
CondLaneNet [13], have shown promising performance by
considering the features from some key locations of a lane
line, such as the starting point, as convolutional kernels, and
convoluting them with the whole feature map to detect lane
lines. By reducing the reliance on specific knowledge, these
methods can achieve better results than the previous anchor-
based and parameter-based methods. However, the kernels
computed from the key locations fail to capture the lane
line’s global information due to its long and thin structure,
leading to inaccurate detection of lane lines with complex
topologies. In addition, the kernels resulting from the key
locations are sensitive to occlusions and lane intersections.
For instance, detecting starting points can be challenging
when they are obscured by vehicles or pedestrians. Addi-
tionally, it is difficult to differentiate between multiple lane
lines that share the same starting point.

To overcome this limitation, we propose a transformer-
based dynamic kernel generation architecture for lane de-
tection, which further reduces the reliance on specific
knowledge. It utilizes a transformer to generate dynamic
convolutional kernels for each lane line in the input image,
and then detects these lane lines by convoluting these ker-
nels with the whole feature map. Compared to the kernels
generated from some key locations of a lane line, the ker-
nels generated with transformer can capture the lane line’s
global information from the whole feature map, enabling
them to effectively handle occlusions and lane lines with
complex topologies (as shown in Fig. 2(b) and (c)).

As illustrated in Fig. 2(a), the transformer employs a set
of learnable parameter vectors, called lane queries, as lane
templates to search for lane points throughout the whole
feature map. It then fuses the features of the searched lane
points by a weighted sum to generate dynamic kernels for

Figure 2. A simple illustration of the proposed method, and the
comparison results between our method and CondLaneNet[13]
uner the case of occlusion. In (a), the dashed box part corresponds
to the transformer decoder part in Fig. 3, which consists of M
layers. In each layer, the lane queries are updated with the lane
features, and the lane features in the final layer is transformed to
the dynamic kernels via MLPs.

each lane line. Thus, the generated kernels can capture the
global information of the lane lines. The lane queries repre-
sent different lane prototypes, which are learned from anno-
tated data and can approximate various lane lines. There are
two sets of dynamic kernels that generate the heat map and
offset map for each lane line, respectively. The final lane
points are obtained from the heat maps and offset maps af-
ter a post-processing. During training, a bipartite matching
loss is calculated between the predicted and ground-truth
lane lines based on Hungarian algorithm [9]. We test our
method on three lane detection benchmarks, and the results
demonstrate its state-of-the-art performance.

2. Related Work

2.1. Anchor-based Methods

The anchor-based methods [11, 2, 24, 23, 32] detect lane
lines by generating a set of pre-defined line anchors first,
and then extracting the anchor features with pooling oper-
ation, and finally regressing the offsets from the anchors
to the target lane lines with the extracted features. For ex-
ample, LaneATT [24] uses the straight lines at different
locations with different rotation angles as anchors, whose
features are obtained by pooling and enhanced with an at-
tention module, and used for classification and offset re-
gression. SGNet [23] proposes a vanishing point guided
anchor generator to produce effective anchors, whose fea-
tures are enhanced with structural guidance including pixel-
level perception, lane-level relation, and image-level at-
tention. CLRNet [32] uses equally-spaced 2D-points as
anchors, whose features are obtained with a RoIGather

6836



module that exploits the global contextual information.
For these methods, the Non-maximum Suppression (NMS)
post-processing is needed to remove duplicate predictions,
which decreases the efficiency. Also, the fixed lane anchors
can hardly deal with the lane lines with complex topologies,
such as the curved and forked lane lines, which influences
the lane detection performance.

2.2. Parameter-based Methods

Parameter-based methods [14, 25] represent lane lines
with parametric curves and detect lane lines by predict-
ing the corresponding curve parameters. It removes the
complex post-processing procedures, such as pixel cluster-
ing and non-maximum suppression, thus can achieve fast
speed. For example, PolyLaneNet [25] applies a convolu-
tional neural network (CNN) to directly output polynomial
coefficients, vertical offsets, and confidence scores for a
fixed number of lane lines in left-to-right order. LSTR [14]
applies transformer to directly decode the parameters of a
lane shape model for each lane line in an image. The lane
shape model takes the road structures and camera pose into
consideration to better model lane lines. However, in some
road scenarios, the lane lines are extremely curved, which
are difficult to be represented with cubic curves. Increasing
the order of the parametric curves can partially solve this
problem; however, the prediction of these high-order terms
is difficult and not robust, since a small prediction error on
these terms will cause a large change in the shapes of lane
lines. Therefore, the parameter-based methods have not ex-
ceeded other lane detection methods in accuracy.

2.3. Segmentation-based Methods

Segmentation-based methods [22, 8, 10, 17, 19, 6, 21,
31, 13] detect lane lines with pixel-wise classification.
Some of them [22, 8, 10, 17] apply semantic segmentation
to detect lane points, which are then processed further to
extract lane lines. For example, FOLOLane [22] identify
the lane points first, then refines their location in a local
range, and then correlate the lane points of the same lane
line. HDMapNet [10] and LaneNet [17] identify the lane
points first, and then learn the embeddings for these points
to cluster them into different lane lines. However, these
methods may fail when the lane lines are overlapped, such
as the forked lane lines. Some of them [19, 6, 21, 31, 13] ap-
ply instance segmentation to detect lane lines. For example,
UFLD [21] and RESA [31] label lane lines into a fixed num-
ber of classes in left-to-right order, and then directly clas-
sify the pixels into different lane lines. However, the multi-
instance classification is difficult. Closely related to ours is
CondLaneNet [13], which detects the starting points of lane
lines first, then generates dynamic kernels from the features
of the starting points, and then convolute the kernels with
the whole feature map to detect the lane lines. However, this

method may fail when the starting points are blocked by ve-
hicles and pedestrians, or shared by multiple lane lines. And
the kernels generated from starting points lacking the lane
line’s global information, making this method not robust for
handling lane lines with complex topologies.

3. Method
In this section, we present the proposed transformer-

based dynamic kernel generation architecture for lane de-
tection. We first present the overall framework, and then de-
scribe each component in detail, including a dynamic kernel
head, a lane detection head and a bipartite matching loss.

3.1. Overall Framework

The overall framework is shown in Figure 3. It starts
with a CNN backbone to extract a feature map from the
input image. Then, the dynamic kernel head uses a trans-
former to generate dynamic convolutional kernels for each
lane line from the feature map. After that, the lane detection
head detects lane lines by convoluting the dynamic kernels
with the feature map. There are two sets of dynamic kernels
that generate the heat map and the offset map for each lane
line, respectively. The framework also predicts a vertical
range and an object score for each lane line. Finally, the lane
points are obtained from the heat maps, offset maps, vertical
ranges and object scores after a post-processing. To train
the model, a bipartite matching loss is calculated between
the predicted and ground-truth lane lines. Compared to the
kernels generated from some key locations of a lane line,
the kernels generated with transformer can capture the lane
line’s global information from the whole feature map, en-
abling them to effectively handle occlusions and lane lines
with complex topologies.

3.2. Dynamic Kernel Head

Here we describe how to generate the dynamic convo-
lutional kernels for each lane line in the input image via
a transformer. As shown in Figure 3, given an input im-
age X ∈ RH0×W0×3, we first adopt a CNN backbone to
extract a feature map F ∈ RH×W×C , where H , W and
C are the height, width, and channels of F, respectively.
Then the feature map F is added with a position embed-
ding E ∈ RH×W×C that encodes the 2D pixel locations
with cosine and sine functions [20], and then flattened into
a sequence I ∈ RHW×C , which is taken as the input of a
transformer. The position embedding E is used to avoid the
permutation invariance.

The transformer includes an encoder and a decoder,
where each of them consists of several stacked layers. The
encoder takes the feature sequence I as input, captures the
most relevant input features for each feature in I through
a self-attention mechanism [27], and outputs a feature se-
quence M ∈ RHW×C . Then we define a lane query se-

6837



Figure 3. Overview of the lane detection framework. It includes a CNN backbone to extract a feature map from the input image, a dynamic
kernel head to generate the dynamic convolutional kernels for lane lines via a transformer, a lane detection head to detect lane lines with
dynamic convolution, and a bipartite matching loss for model training. The dotted arrow parts are only engaged in training.

Figure 4. Visualization of attention maps between the the lane
query sequence S and the image feature sequence M. We select
4 out of 80 lane queries for visualization.

quence S ∈ RL×C , which is composed of L learnable pa-
rameter vectors of length C, representing L different pro-
totypes of lane lines. Then the decoder takes the feature
sequence M and the lane query sequence S as input, cap-
tures the most relevant features in M for each lane query in
S through a cross-attention mechanism [27], and outputs a
lane feature sequence T ∈ RL×C .

The cross-attention mechanism between the lane query
sequence S and the feature sequence M is implemented as
follows:

Ai,j =
exp(QT

i Kj)∑HW
l=1 exp(QT

i Kl)
, Ti = g(

HW∑
j=1

Ai,jVj), (1)

where Q is a query sequence obtained by a linear transfor-
mation of S; K and V are key and value sequences obtained
by linear transformations of M, respectively; Qi and Kj are
the features at the i-th and j-th position of Q and K, respec-
tively; A is an attention map which describes the pair-wise

relationship Ai,j between Qi and Kj ; Ti is the i-th output
lane feature corresponds to the i-th lane query Si; g(·) is a
non-linear transformation function.

It is worth noting that M is a sequence of pixel features
enhanced with global contextual information, and S is a
sequence of different lane prototypes. The cross-attention
mechanism between S and M captures the most correlated
pixel features in M for each lane prototype Si, fuses them
by a weighted sum according to the attention map Ai, and
then obtains the lane feature Ti. Thus, Ti can capture the
lane line’s global information specified by Si. To further
illustrate this, we select 4 out of total 80 lane queries, and
visualize the attention map Ai of each lane query Si in Fig-
ure 4. We find that each lane query corresponds to a lane
line at a specific location, and the corresponding lane pixels
are highlighted. This demonstrates that each lane query Si

is a lane prototype with a specific location, and the cross-
attention mechanism can find the most related lane pixels
for the lane query Si. Thus, by applying a weighted sum to
the features of these lane pixels, we can obtain the lane fea-
ture Ti. Compared to the kernels generated from some key
locations of a lane line, the kernels generated from T can
capture the lane line’s global information from the whole
feature map, enabling them to effectively handle occlusions
and lane lines with complex topologies.

Then we apply two multi-layer perceptrons (MLPs) to T,
which generates two sets of dynamic convolutional kernels,
respectively, one is Kb ∈ RL×C for heat map generation,
another is Kz ∈ RL×C for offset map generation. Differ-
ent from the lane queries S, which are shared by all images,
the dynamic kernels Kb and Kz contain image-specific in-
formation. In addition, we apply another two MLPs to
T, which generates vertical ranges R ∈ RL×2 and object
scores C ∈ RL×2, where R predicts the start and end rows

6838



of each lane line, and C predicts the probabilities of fore-
ground and background (hitting a lane line or not) for each
lane query Si.

3.3. Lane Detection Head

Here we describe how to apply the generated dynamic
kernels to detect lane lines in a form of dynamic con-
volution. We reshape the output feature sequence M ∈
RHW×C of the transformer encoder into a feature map
M’ ∈ RH×W×C . Then we apply the dynamic kernels
Kb ∈ RL×C and Kz ∈ RL×C to convolve with the feature
map M’, and obtain the heat map B ∈ RL×H×W and the
offset map Z ∈ RL×H×W . The heat map B is further pro-
cessed with a row-wise softmax normalization as follows:

Bijk = exp(Bijk)/

W−1∑
m=1

exp(Bijm), (2)

where Bijk is the predicted pixel logit/probability of the i-
th predicted lane line at the j-th row and k-th column of B.
For simplicity, we use the same name B for the output.

As a result, each lane feature Ti corresponds to a heat
map Bi ∈ RH×W and an offset map Zi ∈ RH×W . As
shown in Figure 5, the heat map predicts the probability of
each pixel being a lane point (foreground), and the offset
map predicts the horizontal offset from each pixel to the
lane point in the same row (each row has one lane point
at most for each Ti). The final lane points are obtained
from the heat map and the offset map after a post-processing
shown as follows:

n =

[
W−1∑
k=0

Bijk · k

]
, Pij = (n+ Zijn, j),

Li = {Pij |Ri0 ≤ j ≤ Ri1}}, Y = {Li|Ci1 ≥ t},

(3)

where n is the predicted coarse abscissa of the lane point
at the j-th row of the i-th predicted lane line; Zijn is the
predicted pixel horizontal offset of the i-th predicted lane
line at the j-th row and n-th column of Z; Pij is the refined
abscissa of the lane point at the j-th row of the i-th predicted
lane line; Li is the set of the predicted lane points of the i-
th predicted lane line, where only the lane points between
the start row Ri0 and the end row Ri1 are kept; Y is the
set of the predicted lane lines, where only the lane lines
with foreground probability Ci1 higher than a threshold t
are retained.

3.4. Bipartite Matching Loss

Here we introduce the design of loss functions. First, we
need to compute a pair-wise matching cost Lmatch(Yi,Y∗

j )

between L predicted lane lines Y = {Yi}Li=1 and M
ground-truth lane lines Y∗ = {Y∗

i }Mi=1, including an ob-
ject cost, a heat map cost, an offset map cost and a vertical

Figure 5. The illustration of the heat map and offset map of each
lane line.

range cost. The object cost is defined as follows:

Lobj(Yi,Y∗
j ) = −log(Si1), (4)

where Si1 is the predicted foreground probability of the i-th
predicted lane line. The heat map cost is defined as follows:

Lheat(Yi,Y∗
j ) =

1

R∗
j1 − R∗

j0

R∗
j1∑

k=R∗
j0

∥
W−1∑
m=0

Bikm·m−P∗
jk0∥1,

(5)
where Bikm is the predicted foreground probability of the
pixel at the k-th row and m-th column of the i-th predicted
lane line, P∗

jk0 is the abscissa of the lane point at the k-th
row of the j-th ground-truth lane line, R∗

j0 and R∗
j1 are the

start row and end row of the j-th ground-truth lane line. The
heat map cost is only valid between R∗

j0 and R∗
j1. The offset

cost Loff (Yi,Y∗
j ) is defined as follows:

1

W (R∗
j1 − R∗

j0)

R∗
j1∑

k=R∗
j0

W−1∑
m=0

∥Zikm +m− P∗
jk0∥1, (6)

where Zikm is the predicted horizontal offset of the pixel
at the k-th row and m-th column of the i-th predicted lane
line, Zikm +m is the abscissa of the predicted lane point at
the k-th row. The offset map cost is also only valid between
R∗

j0 and R∗
j1. The vertical range cost is defined as follows:

Lrng(Yi,Y∗
j ) = ∥Ri0 − R∗

j0∥1 + ∥Ri1 − R∗
j1∥1, (7)

where Ri0 and Ri1 are the predicted start row and end row
of the i-th predicted lane line. The final pair-wise matching
cost Lmatch(yi, y

∗
j ) is defined as follows:

Lmatch(Yi,Y∗
j ) = λobjLobj(Yi,Y∗

j ) + λheatLheat(Yi,Y∗
j )

+ λoffLoff (Yi,Y∗
j ) + λrngLrng(Yi,Y∗

j ),
(8)

where λobj , λheat, λoff and λrng are the balance weights
for Lobj , Lheat, Loff and Lrng , respectively. Then we find
an optimal injective function z : {Yi}Li=1 → {Y∗

j}Mj=1,

6839



where z(j) is the index of the prediction assigned to the j-th
ground-truth, by minimizing the matching cost as follows:

argmin ẑ
z

=

N∑
j=1

Lmatch(yz(j), y
∗
j ). (9)

This objective function can be solved by the Hungarian al-
gorithm [9]. After obtaining the injective mapping z, we
can compute the final loss function as follows:

loss =
1

N

N∑
j=1

[
λobjLobj(Yz(j),Y∗

j ) + λheatLheat(Yz(j),Y∗
j )

+ λoffLoff (Yz(j),Y∗
j ) + λrngLrng(Yz(j),Y∗

j )
]

+
1

L−N

∑
i/∈V

λobjLobj(Yi, ϕ),

(10)
where V = {z(j)}Nj=1 is the index set of the predicted lane
lines matched to the ground-truth lane lines, Lobj(Yi, ϕ) =
−log(Ci0), where Ci0 is the predicted background proba-
bility for the i-th predicted lane line.

4. Experiment

4.1. Datasets

To extensively evaluate the proposed method, we con-
duct experiments on four representative lane detection
benchmarks: OpenLane [1], CULane [19], CurveLanes
[30] and TuSimple [26]. OpenLane contains contains 160K
and 40K images for training and validation sets, respec-
tively. The validation set consists of six different scenar-
ios, including curve, intersection, night, extreme weather,
merge and split, and up and down. It annotates 14 lane cate-
gories, including road edges, double yellow solid lanes, and
so on. CurveLanes contains 100K, 20K, and 30K images
for training, validation, and testing, respectively, including
a lot of difficult scenarios such as curved, forked and dense
lane lines. CULane contains 88880, 9675, and 34680 im-
ages for training, validation, and test sets, respectively. The
test set consists of nine different scenarios, including nor-
mal, crowd, curve, dazzle light, night, no line, shadow, and
arrow in the urban area. Tusimple consists of 3268 images
for training, 358 images for validation, and 2782 images for
testing, which mainly focus on highway driving scenes.

4.2. Evaluation Metrics

Following [13] and [1], we adopt F1 measure as the met-
ric for OpenLane, CurveLanes and CULane datasets. We
apply intersection-over-union (IoU) between the predicted
lane line and the ground-truth lane line to judge whether a
sample is true positive (TP) or false positive (FP) or false
negative (FN). The IoU of two lane lines is defined as the

IoU of their masks with a fixed line width (30 pixels). The
F1 measure is calculated as follows:

Precision =
NTP

NTP +NFP
, Recall =

NTP

NTP +NFN
,

F1 =
2× Precision×Recall

Precision+Recall
.

(11)
For TuSimple dataset, the main evaluation metric is ac-

curacy, which is defined as follows:

accuracy =

∑
clip Cclip∑
clip Sclip

, (12)

where Cclip is the number of the correctly predicted lane
points in a clip, and Sclip is the total number of lane points
in a clip. A lane point prediction is considered correct when
it is within 20 pixels of the ground truth. The predicted lane
line with accuracy greater than 85% is considered a true
positive (TP), otherwise a false positive (FP). Besides, false
positive rate (FPR), false negative rate (FNR), and F1 score
are also reported, where FPR = NFP

Npred
, FNR = NFN

Ngt
.

4.3. Implementation Details

We adopt ResNet [5] with the pretrained weights from
ImageNet [3] as the CNN backbone. The input images
are augmented with random horizontal flipping and ran-
dom affine transformation including translation, rotation,
and scaling. Optimization is done by AdamW [15] with
betas of 0.9 and 0.999, and weight decay of 1e−4. The
batch size is set to 16. We train the model for 50 epochs.
The base learning rate is initialized at 1e−4 and decayed to
1e−5 after 40 epochs. The learning rate for the backbone
is set to 0.1 times of the base learning rate. The number
of the lane queries L is set to 80, and the number of trans-
former encoder and decoder layers are set to 2 and 4, re-
spectively. The weights λobj , λheat, λoff and λrng are set
to 5, 1, 1, and 10, respectively, to balance the scales of dif-
ferent losses, i.e., bring the losses to the same scale. The
object score threshold t to keep the predicted lane lines is
set to 0.7. The results are reported on the test set for CU-
Lane and TuSimple. For CurveLanes, we report the results
on the validation set following [30] and [13].

4.4. Results

Performance on OpenLane Dataset. The comparison
results on OpenLane are shown in Table 1. Using ResNet-
18, ResNet-34 and ResNet-101 as backbones, our method
achieves F1 scores of 60.1, 62.0 and 63.4, surpassing those
of CondLaneNet by 7.8, 7.0 and 4.3 points, respectively. As
for F1 scores under different scenarios, our method achieves
the best performance in all of the six scenarios, showing
the robustness of our method. For the “Curve”, “Intersec-
tion” and “Merge & Split” scenarios, using ResNet-18 as

6840



Method Backbone All Up & Down Curve Extreme Weather Night Intersection Merge & Split FPS GFlops
LaneATT [24] ResNet-18 28.3 25.3 25.8 32.0 27.6 14.0 24.3 153 9.3
LaneATT [24] ResNet-34 31.0 28.3 27.4 34.7 30.2 17.0 26.5 129 18.0
PersFormer [1] EfficientNet-B7 42.0 40.7 46.3 43.7 36.1 28.9 41.2 - -
CondLaneNet [13] ResNet-18 52.3 55.3 57.5 45.8 46.6 48.4 45.5 173 10.2
CondLaneNet [13] ResNet-34 55.0 58.5 59.4 49.2 48.6 50.7 47.8 128 19.6
CondLaneNet [13] ResNet-101 59.1 62.1 62.9 54.7 51.0 55.7 52.3 47 44.8
Ours ResNet-18 60.1 56.2 63.9 51.5 51.0 54.5 62.5 105 13.7
Ours ResNet-34 62.0 59.1 65.4 53.4 54.1 57.3 63.2 91 23.2
Ours ResNet-101 63.4 62.2 67.0 55.1 57.3 58.5 65.8 45 50.2

Table 1. Comparison of different methods on OpenLane dataset. We report the F-score for the whole validation set and under different
scenarios, including curve, intersection, night, extreme weather, merge and split, and up and down.

Method Backbone F1 (%) Normal Crowded Dazzle Shadow No line Arrow Curve Cross Night FPS GFlops
LaneATT [24] ResNet-18 75.13 91.17 72.71 65.82 68.03 49.13 87.82 63.75 1020 68.58 153 9.3
LaneATT [24] ResNet-34 76.68 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72 129 18.0
LaneATT [24] ResNet-122 77.02 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81 20 70.5
FOLOLane [22] ERFNet 78.80 92.70 77.80 75.20 79.30 52.10 89.00 69.40 1569 74.50 40 -
CondLaneNet [13] ResNet-18 78.14 92.87 75.79 70.72 80.01 52.39 89.37 72.40 1364 73.23 173 10.2
CondLaneNet [13] ResNet-34 78.74 93.38 77.14 71.17 79.93 51.85 89.89 73.88 1387 73.92 128 19.6
CondLaneNet [13] ResNet-101 79.48 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80 47 44.8
GANet [28] ResNet-18 78.79 93.24 77.16 71.24 77.88 53.59 89.62 75.92 1240 72.75 153 -
GANet [28] ResNet-34 79.39 93.73 77.92 71.64 79.49 52.63 90.37 76.32 1368 73.67 127 -
GANet [28] ResNet-101 79.63 93.67 78.66 71.82 78.32 53.38 89.86 77.37 1352 73.85 63 -
Ours ResNet-18 80.36 94.11 79.17 73.55 80.39 54.41 90.37 75.89 1214 75.39 105 13.7
Ours ResNet-34 80.55 94.12 79.72 77.02 82.51 53.76 90.59 76.65 1370 75.57 91 23.2
Ours ResNet-101 80.77 94.17 79.90 75.43 80.99 55.00 90.97 76.87 1047 75.11 45 50.2

Table 2. Comparison of different methods on CULane dataset. We also report the F1 score for the whole test set and under different
scenarios. For the “Cross” scenario, we report the number of false positives instead of F1, since the images in the “Cross” scenario have
no lane lines. For a fair comparison, the FPS of above methods are measured under the same machine and conditions.

Method Backbone F1 (%) Prec.(%) Rec.(%)
SCNN [19] VGG-16 65.02 76.13 56.74
Enet-SAD [6] ENet 50.31 63.60 41.60
PointLaneNet [2] GoogLeNet 78.47 86.33 72.91
CurveLane [30] Searched-S 81.12 93.58 71.59
CurveLane [30] Searched-M 81.80 93.49 72.71
CurveLane [30] Searched-L 82.29 91.11 75.03
CondLaneNet [13] ResNet-18 85.09 87.75 82.58
CondLaneNet [13] ResNet-34 85.92 88.29 83.68
CondLaneNet [13] ResNet-101 86.10 88.98 83.41
Ours ResNet-18 87.99 90.90 85.27
Ours ResNet-34 88.23 91.24 85.41
Ours ResNet-101 88.47 91.32 85.80

Table 3. Comparison of different methods on CurveLanes dataset.
The backbones named Searched-S, Searched-M, and Searched-L
are the searched architectures with capacities of small, medium
and large in [30].

backbone, our method achieves F1 scores of 63.9, 54.5 and
62.5, respectively, surpassing those of CondLaneNet by 6.4,
6.1 and 17.0 points, respectively. The results demonstrate
that the proposed transformer-based dynamic kernel gen-
eration architecture can deal with the lane lines with com-
plex topologies very well. This is because the dynamic ker-
nels generated with transformer can capture the lane line’s
global information from the whole feature map, which en-
abling them to distinguish different lane lines better than the
kernels generated from some key locations of a lane line. As
for speed, the ResNet-18 version of our method achieves

105 FPS and 13.7 GFlops with a F1 score of 60.1, which
ensures real-time efficiency with a good performance.

Performance on CurveLanes Dataset. The comparison
results on CurveLanes are shown in Table 3. CurveLanes
contains lane lines with complex topologies and occlu-
sions, such as the curved, forked, dense and blocked lane
lines. Using ResNet-18, ResNet-34 and ResNet-101 as
backbones, our method achieves F1 scores of 87.99, 88.23
and 88.47, surpassing those of CondLaneNet by 2.90, 2.31,
2.37 points, respectively. We also show some qualitative
comparison results on CurveLanes in Figure 6, where the
results are divided into 4 categories, including the curved,
forked, dense and blocked lane lines. The comparison re-
sults demonstrate that our method can cope with occlusions
and lane lines with complex topologies very well.

Performance on CULane Dataset. The comparison re-
sults on CULane are shown in Table 2. Our method achieves
a new state-of-the-art result of a 80.77 F1 score. Us-
ing ResNet-18, ResNet-34 and ResNet-101 as backbones,
our method achieves F1 scores of 80.36, 80.55 and 80.77,
surpassing those of CondLaneNet by 2.22, 1.81 and 1.29
points, respectively. As for F1 scores under different sce-
narios, our method achieves the best performance in seven
of nine scenarios, showing the robustness of our method.
For the “Curve” scenario, using ResNet-18, ResNet-34 and

6841



Figure 6. Visualization results on CurveLanes. We choose CondLaneNet [13] as our comparison method, which was the previous SOTA
on CurveLanes. We visualize the comparison results under different scenarios, including the forked, curved, dense and blocked lane lines.
Different lane lines are represented by different colors.

ResNet-101 as backbones, our method achieves F1 scores
of 75.89, 76.65 and 76.87, respectively, surpassing those of
CondLaneNet by 3.49, 2.77 and 1.66 points, respectively.
The results demonstrates that our method can deal with the
lane lines with complex topologies well.

Performance on Tusimple Dataset. The results on
Tusimple is shown in Table 4. The performance gap be-
tween different methods on this dataset is not obvious due
to the small amount of data and the relatively simple scenes.

Method Backbone F1(%) Acc(%) FPR(%) FNR(%)
LaneATT [24] ResNet-18 96.71 95.57 3.56 3.01
LaneATT [24] ResNet-34 96.77 95.63 3.53 2.92
LaneATT [24] ResNet-122 96.06 96.10 5.64 2.17
FOLOLane [22] ERFNet 96.59 96.92 4.47 2.28
CondLaneNet [13] ResNet-18 97.01 95.48 2.18 3.80
CondLaneNet [13] ResNet-34 96.98 95.37 2.20 3.82
CondLaneNet [13] ResNet-101 97.24 96.54 2.01 3.50
GANet [28] ResNet-18 97.71 95.95 1.97 2.62
GANet [28] ResNet-34 97.68 95.87 1.99 2.64
GANet [28] ResNet-101 97.45 96.44 2.63 2.47
Ours ResNet-18 97.71 96.06 1.79 2.82
Ours ResNet-34 97.64 96.06 1.84 2.92
Ours ResNet-101 97.94 96.02 1.55 2.56

Table 4. Comparison of different methods on Tusimple dataset. In
addition to accuracy, we also report FPR, FNR and F1 score.

4.5. Ablation Studies

Number of lane queries. Here we investigate the influ-
ence of different number of lane queries. As shown in Ta-
ble 5, when we increase the number of lane queries from
20 to 80, the performance is improved. This demonstrates
that increasing the number of lane queries is beneficial to
capture lane lines with diverse topologies. When we fur-

ther increase the number of lane queries from 80 to 100, the
performance only increases slightly, which is because too
many lane qeuries can cause redundancy.

Num of
lane queries

CuLane CurveLanes
F1 Prec. Rec. F1 Prec. Rec.

20 80.13 86.59 74.56 87.37 89.30 85.52
40 80.24 87.01 74.44 87.57 89.82 85.43
80 80.36 87.44 74.35 87.99 90.90 85.27
100 80.37 87.50 74.31 87.97 91.11 85.04

Table 5. Comparison of the results with different number of lane
queries on CuLane and CurveLanes datasets. The backbone we
use is ResNet-18.

Number of decoder layers. Here we investigate the in-
fluence of different number of decoder layers. As shown in
Table 6, by increasing the number of decoder layers from
1 to 4, we observe an improvement in performance. This
demonstrates that increasing the number of decoder layers
enhances the ability of dynamic kernels to effectively cap-
ture the lane lines’ global information. Increasing the num-
ber of decoder layers from 4 to 6 results in only a marginal
improvement in performance.

Num of
decoder layers

CuLane CurveLanes
F1 Prec. Rec. F1 Prec. Rec.

1 79.48 86.43 73.57 86.82 89.75 84.08
2 79.87 86.89 73.90 87.21 90.09 84.51
4 80.36 87.44 74.35 87.99 90.90 85.27
6 80.44 87.51 74.43 88.17 91.12 85.41

Table 6. Comparison of the results with different number of trans-
former decoder layers on CuLane and CurveLanes datasets. The
backbone we use is ResNet-18.

6842



5. Conclusion

In this paper, we propose a transformer-based dynamic
kernel generation architecture for lane detection, which uti-
lizes a transformer to generate dynamic convolutional ker-
nels for each lane line in the input image, and detects lane
lines with dynamic convolution. Compared to the kernels
generated from some key locations of a lane line, the ker-
nels generated with transformer can capture the lane line’s
global information, enabling them to effectively handle oc-
clusions and lane lines with complex topologies. The pro-
posed method is validated on four benchmarks of lane de-
tection, i.e., OpenLane, CurveLanes, CUlane and Tusimple.
The experimental results shows the state-of-the-art perfor-
mance of the proposed method.

References
[1] Li Chen, Chonghao Sima, Yang Li, Zehan Zheng, Jiajie Xu,

Xiangwei Geng, Hongyang Li, Conghui He, Jianping Shi,
Yu Qiao, et al. Persformer: 3d lane detection via perspec-
tive transformer and the openlane benchmark. arXiv preprint
arXiv:2203.11089, 2022.

[2] Zhenpeng Chen, Qianfei Liu, and Chenfan Lian. Point-
lanenet: Efficient end-to-end cnns for accurate real-time lane
detection. In 2019 IEEE intelligent vehicles symposium (IV),
pages 2563–2568. IEEE, 2019.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[4] Jie Guo, Zhihua Wei, and Duoqian Miao. Lane detection
method based on improved ransac algorithm. In 2015 IEEE
Twelfth International Symposium on Autonomous Decentral-
ized Systems, pages 285–288. IEEE, 2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[6] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change
Loy. Learning lightweight lane detection cnns by self at-
tention distillation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1013–1021,
2019.

[7] Paul VC Hough. Method and means for recognizing complex
patterns, Dec. 18 1962. US Patent 3,069,654.

[8] Yeongmin Ko, Younkwan Lee, Shoaib Azam, Farzeen Mu-
nir, Moongu Jeon, and Witold Pedrycz. Key points esti-
mation and point instance segmentation approach for lane
detection. IEEE Transactions on Intelligent Transportation
Systems, 2021.

[9] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955.

[10] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet:
An online hd map construction and evaluation framework. In

2022 International Conference on Robotics and Automation
(ICRA), pages 4628–4634. IEEE, 2022.

[11] Xiang Li, Jun Li, Xiaolin Hu, and Jian Yang. Line-cnn:
End-to-end traffic line detection with line proposal unit.
IEEE Transactions on Intelligent Transportation Systems,
21(1):248–258, 2019.

[12] Zuo-Quan Li, Hui-Min Ma, and Zheng-Yu Liu. Road lane
detection with gabor filters. In 2016 International Con-
ference on Information System and Artificial Intelligence
(ISAI), pages 436–440. IEEE, 2016.

[13] Lizhe Liu, Xiaohao Chen, Siyu Zhu, and Ping Tan. Cond-
lanenet: a top-to-down lane detection framework based on
conditional convolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3773–
3782, 2021.

[14] Ruijin Liu, Zejian Yuan, Tie Liu, and Zhiliang Xiong. End-
to-end lane shape prediction with transformers. In Proceed-
ings of the IEEE/CVF winter conference on applications of
computer vision, pages 3694–3702, 2021.

[15] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[16] Chunyang Mu and Xing Ma. Lane detection based on object
segmentation and piecewise fitting. TELKOMNIKA Indone-
sian Journal of Electrical Engineering, 12(5):3491–3500,
2014.

[17] Davy Neven, Bert De Brabandere, Stamatios Georgoulis,
Marc Proesmans, and Luc Van Gool. Towards end-to-end
lane detection: an instance segmentation approach. In 2018
IEEE intelligent vehicles symposium (IV), pages 286–291.
IEEE, 2018.

[18] Jianwei Niu, Jie Lu, Mingliang Xu, Pei Lv, and Xiaoke Zhao.
Robust lane detection using two-stage feature extraction with
curve fitting. Pattern Recognition, 59:225–233, 2016.

[19] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and
Xiaoou Tang. Spatial as deep: Spatial cnn for traffic scene
understanding. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[20] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In International conference on machine
learning, pages 4055–4064. PMLR, 2018.

[21] Zequn Qin, Huanyu Wang, and Xi Li. Ultra fast structure-
aware deep lane detection. In European Conference on Com-
puter Vision, pages 276–291. Springer, 2020.

[22] Zhan Qu, Huan Jin, Yang Zhou, Zhen Yang, and Wei Zhang.
Focus on local: Detecting lane marker from bottom up via
key point. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14122–
14130, 2021.

[23] Jinming Su, Chao Chen, Ke Zhang, Junfeng Luo, Xiaoming
Wei, and Xiaolin Wei. Structure guided lane detection. arXiv
preprint arXiv:2105.05403, 2021.

[24] Lucas Tabelini, Rodrigo Berriel, Thiago M Paixao, Claudine
Badue, Alberto F De Souza, and Thiago Oliveira-Santos.
Keep your eyes on the lane: Real-time attention-guided lane
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 294–302,
2021.

6843



[25] Lucas Tabelini, Rodrigo Berriel, Thiago M Paixao, Claudine
Badue, Alberto F De Souza, and Thiago Oliveira-Santos.
Polylanenet: Lane estimation via deep polynomial regres-
sion. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 6150–6156. IEEE, 2021.

[26] TuSimple. Tusimple: Lane detection benchmark. 2017.
[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[28] Jinsheng Wang, Yinchao Ma, Shaofei Huang, Tianrui Hui,
Fei Wang, Chen Qian, and Tianzhu Zhang. A keypoint-based
global association network for lane detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1392–1401, 2022.

[29] Pei-Chen Wu, Chin-Yu Chang, and Chang Hong Lin. Lane-
mark extraction for automobiles under complex conditions.
Pattern Recognition, 47(8):2756–2767, 2014.

[30] Hang Xu, Shaoju Wang, Xinyue Cai, Wei Zhang, Xiaodan
Liang, and Zhenguo Li. Curvelane-nas: Unifying lane-
sensitive architecture search and adaptive point blending. In
European Conference on Computer Vision, pages 689–704.
Springer, 2020.

[31] Tu Zheng, Hao Fang, Yi Zhang, Wenjian Tang, Zheng
Yang, Haifeng Liu, and Deng Cai. Resa: Recurrent
feature-shift aggregator for lane detection. arXiv preprint
arXiv:2008.13719, 5(7), 2020.

[32] Tu Zheng, Yifei Huang, Yang Liu, Wenjian Tang, Zheng
Yang, Deng Cai, and Xiaofei He. Clrnet: Cross layer re-
finement network for lane detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 898–907, 2022.

6844


