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Abstract

Open-vocabulary image segmentation is attracting in-
creasing attention due to its critical applications in the real
world. Traditional closed-vocabulary segmentation meth-
ods are not able to characterize novel objects, whereas sev-
eral recent open-vocabulary attempts obtain unsatisfactory
results, i.e., notable performance reduction on the closed-
vocabulary and massive demand for extra data. To this
end, we propose OPSNet, an omnipotent and data-efficient
framework for Open-vocabulary Panoptic Segmentation.
Specifically, the exquisitely designed Embedding Modula-
tion module, together with several meticulous components,
enables adequate embedding enhancement and informa-
tion exchange between the segmentation model and the
visual-linguistic well-aligned CLIP encoder, resulting in
superior segmentation performance under both open- and
closed-vocabulary settings with much fewer need of addi-
tional data. Extensive experimental evaluations are con-
ducted across multiple datasets (e.g., COCO, ADE20K,
Cityscapes, and PascalContext) under various circum-
stances, where the proposed OPSNet achieves state-of-the-
art results, which demonstrates the effectiveness and gen-
erality of the proposed approach. The project page is
https://opsnet-page.github.io.

1. Introduction
The real world is diverse and contains numerous distinct

objects. In practical scenarios, we inevitably encounter var-
ious objects with different shapes, colors, and categories.
Although some of them are unfamiliar or rarely seen, to
better understand the world, we still need to figure out the
region and shape of each object and what it is. The ability to
perceive and segment both known and unknown objects is
natural and essential for many real-world applications like
autonomous driving, robot sensing, and navigation, human-
object interaction, augmented reality, healthcare, etc.

Lots of works have explored image segmentation and
achieved great success [51, 17, 50, 8]. However, they are
typically designed and developed on specific datasets (e.g.,
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Figure 1. Visual comparisons of classical closed-vocabulary seg-
mentation and our open-vocabulary segmentation. Models are
trained on the COCO panoptic dataset. Categories like ‘printer’,
‘card index’, ‘dongle’, and ‘kangaroo’ are not presented in the
COCO concept set. Closed-vocabulary segmentation algorithms
like Mask2Former [8] are not able to detect and segment new ob-
jects (top middle) or fail to recognize object categories (bottom
middle). In contrast, our approach is able to segment and recog-
nize novel objects (top right, bottom right) for the open vocabulary.

COCO [28], ADE20K [53]) with predefined categories in
a closed vocabulary, which assume the data distribution
and category space remain unchanged during algorithm de-
velopment and deployment procedures, resulting in notice-
able and unsatisfactory failures when handling new envi-
ronments in the complex real world, as shown in Fig. 1 (b).

To address this problem, open-vocabulary perception is
densely explored for semantic segmentation and object de-
tection. Some methods [15, 55, 16, 25, 49] use the visual-
linguistic well-aligned CLIP [41] text encoder to extract the
language embeddings of category names to represent each
category, and train the classification head to match these
language embeddings. However, training the text-image
alignment from scratch often requires a large amount of
data and a heavy training burden. Other works [13, 47] use
both of the pre-trained CLIP image/text encoders to transfer
the open-vocabulary ability from CLIP. However, as CLIP
is not a cure-all for all domains and categories, although
they are data-efficient, they struggle to balance the general-
ization ability and the performance in the training domain.
[47, 12] demonstrate suboptimal cross-dataset results, [13]
shows unsatifactory performance on the training domain.
Besides, their methods for leveraging CLIP visual features
are inefficient. Specifically, they need to pass each proposal
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into the CLIP image encoder to extract the visual features.
Considering the characteristics and challenges of the pre-

vious methods, we propose OPSNet for Open-vocabulary
Panoptic Segmentation, which is omnipotent and data-
efficient for both open- and closed-vocabulary settings.
Given an image, OPSNet first predicts class-agnostic masks
for all objects and learns a series of in-domain query em-
beddings. For classification, a Spatial Adapter is added af-
ter the CLIP image encoder to maintain the spatial resolu-
tion. Then Mask Pooling uses the class-agnostic masks to
pool the visual feature into CLIP embeddings, thus the vi-
sual embedding for each object can be extracted in one pass.

Afterward, we propose the key module named Embed-
ding Modulation to produce the modulated embeddings for
classification according to the query embeddings, CLIP em-
beddings, and the concept semantics. This modulated final
embedding could be used to match the text embeddings of
category names extracted by the CLIP text encoder. Em-
bedding Modulation combines the advantages of query and
CLIP embeddings, and enables adequate embedding en-
hancement and information exchange for them, thus mak-
ing OPSNet omnipotent for generalized domains and data-
efficient for training. To further push the boundary of our
framework, we propose Mask Filtering to improve the qual-
ity of mask proposals, and Decoupled Supervision to scale
up the training concepts using image-level labels to train
classification and the self-constraints to supervise masks.

With these designs, OPSNet achieves superior perfor-
mance on COCO [28], shows exceptional cross-dataset per-
formance on ADE20K [53], Cityscapes [10], PascalCon-
text [37], and generalizes well to novel objects in the open
vocabulary, as shown in Fig. 1 (c).

In general, our contributions could be summarized as:
• We address the challenging open-vocabulary panop-

tic segmentation task and propose a novel frame-
work named OPSNet, which is omnipotent and data-
efficient, with the assistance of the carefully designed
Embedding Modulation module.

• We propose several meticulous components like Spa-
tial Adapter, Mask Pooling, Mask Filtering, and De-
coupled Supervision, which are proven to be of great
benefit for open-vocabulary segmentation.

• We conduct extensive experimental evaluations across
multiple datasets under various circumstances, and the
harvested state-of-the-art results demonstrate the ef-
fectiveness and generality of the proposed approach.

2. Related Work
Unified image segmentation. Image segmentation tar-
gets grouping coherent pixels. Classical model architec-
tures for semantic [31, 6, 51, 52, 48], instance [17, 29, 4,
2, 43], and panoptic [22, 46, 7, 21, 26] segmentation differ
greatly. Recently, some works [44, 50, 9, 8] propose uni-
fied frameworks for image segmentation. With the help of

vision transformers [14, 30, 3], they retain a set of learnable
queries, use these queries as convolutional kernels to pro-
duce multiple binary masks, and add a multilayer percep-
tron head on the updated queries to predict the categories of
the binary masks. This kind of simple pipeline is suitable
for different segmentation tasks, and is called unified image
segmentation. Nevertheless, although they design a univer-
sal structure, they are developed on specific datasets with
predefined categories. Once trained on a dataset, these mod-
els could only conduct segmentation within the predefined
categories in a closed vocabulary, resulting in inevitable
failures in the real open vocabulary. We extend their scope
to open vocabulary. Our model provides not only an om-
nipotent structure for different segmentation tasks, but also
an omnipotent recognition ability for diverse scenarios in
open vocabulary.

Class-agnostic detection and segmentation. To general-
ize the localization ability of the existing detection and seg-
mentation models, some works [40, 42, 20, 45, 23] remove
the classification head of a detection or segmentation model
and treat all categories as entities. It is proven that the class-
agnostic models can detect more objects since they focus on
learning the generalizable knowledge of ‘what makes an ob-
ject’ rather than distinguishing visually similar classes like
‘house’ or ‘building’, and ‘cow’ or ‘sheep’, etc. Although
they give better mask predictions for general categories, rec-
ognizing the detected objects is not touched.

Open-vocabulary detection and segmentation. Some
recent works try to tackle open-vocabulary detection and
segmentation using language embeddings. [25, 49] leverage
the large-scale image-text pairs to pre-train the detection
network. ViLD [16] distills the knowledge of ALIGN [19]
to improve the detector’s generalization ability. Detic [55]
utilizes the ImageNet-21K[11] data to expand the detection
categories. For segmentation, [47] proposes a two-stage
pipeline, where generalizable mask proposals are extracted
and then fed into CLIP [41] for classification. Dense-
CLIP [54] adopts text embedding as a classifier to conduct
convolution on feature maps produced by CLIP image en-
coder, and extends the architecture of the image encoder to
semantic segmentation models [51, 5]. OpenSeg [15] pre-
dicts general mask proposals and aligns the mask pooled
features to the language space of ALIGN [19] with large-
scale caption data [39] for training. They reach great zero-
shot performance for a large range of categories. However,
all these works [54, 15, 47] only deal with semantic seg-
mentation. OpenSeg [15] and [47] predict general masks
that are noisy and overlapped, which could not accomplish
instance-level distinction. MaskCLIP [13] is the only exist-
ing work for panoptic segmentation, which trains to gather
the feature from a pre-trained CLIP image encoder. How-
ever, although it reaches great cross-dataset ability, its per-
formance on COCO is far from satisfactory.
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Figure 2. The overall pipeline of OPSNet. For an input image, the segmentation model predicts updated query embeddings, binary masks,
and IoU scores. Meanwhile, we leverage a Spatial Adapter to extract CLIP visual features. We use these CLIP features to enhance the
query embeddings and use binary masks to pool them into CLIP embeddings. Afterward, the CLIP Embeds, Query Embeds, and Concept
Embeds are fed into the Embedding Modulation module to produce the modulated embeddings. Next, we use Mask Filtering to remove
low-quality proposals thus getting masks and embeddings for each object. Finally, we use the modulated embeddings to match the text
embeddings extracted by the CLIP text encoder and assign a category label for each mask.

3. Method
We introduce our OPSNet, an omnipotent and data-

efficient framework for open-vocabulary panoptic segmen-
tation. The overall pipeline is demonstrated in Fig. 2. We
introduce our roadmap towards open vocabulary from the
vanilla version to our exquisite designs.

3.1. Vanilla Open-vocabulary Segmentation

Inspired by DETR [3], recently, unified image segmen-
tation models [40, 50, 9, 8] reformulate image segmentation
as binary mask extraction and mask classification problems.
They typically update a series of learnable queries to repre-
sent all things and stuff in the input image. Then, the up-
dated queries are utilized to conduct convolution on a fea-
ture map produced by the backbone and pixel-decoder to get
binary masks for each object. At the same time, a classifi-
cation head with fixed fully-connected layers is added after
each updated query to predict a class label from a predefined
category set.

We pick Mask2Former [8] as the base model. To make it
compatible with the open-vocabulary setting, we remove its
classification layer and project each initial query to a query
embedding to match the text embeddings extracted by the
CLIP text encoder. Thus, after normalization, we could get
the logits for each category by calculating the cosine simi-
larity. Since the values of cosine similarity are small, it is
crucial to make the distribution sharper when utilizing the
softmax function during training. Hence, we add a temper-
ature parameter τ as 0.01 to amplify the logits.

We train our vanilla model on COCO [28] using panoptic
annotations. Following unified segmentation methods [8,
9, 50], we apply bipartite matching to assign one-on-one
targets for each predicted query embedding, binary mask,

and IOU score. We apply cross-entropy loss on the softmax
normalized cosine similarity matrix to train the mask-text
alignment. For the binary masks, we apply dice loss [36]
and binary cross-entropy loss. More details refer to [8].

3.2. Leveraging CLIP Visual Features

Instead of training the query embeddings with large
amounts of data like [15, 55], we investigate introducing the
pretrained CLIP visual embeddings for better object recog-
nition. Similarly, some works [47, 12] pass each masked
proposal into the CLIP image encoder to extract the visual
embedding. However, this strategy has the following draw-
backs: first, it is extremely inefficient, especially when the
object number is big; second, the masked region lacks con-
text information, which is harmful for recognition.

Conducting mask-pooling on the CLIP features seems
a straightforward solution. However, CLIP image encoder
uses an attention-pooling layer to reduce the spatial dimen-
sion and makes image-text alignment simultaneously. We
use a Spatial Adapter to maintain its resolution. Concretely,
we re-parameterize the linear transform layer in attention-
pooling as 1× 1 convolution to project the feature map into
language space.

Getting the CLIP visual features, on the one hand, we
make information exchange with the segmentation model
by using the CLIP features to enhance the query embed-
dings through cross-attention. On the other hand, we adopt
Mask Pooling which utilizes the binary masks to pool them
into CLIP embeddings. These embeddings contain the gen-
eralizable representation for each proposal.
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3.3. Embedding Modulation

Both the query embeddings and the CLIP embeddings
could be utilized for recognition. We analyze that, as the
query embeddings are trained, they have advantages in pre-
dicting in-domain categories, whereas the CLIP embed-
dings have priorities for unfamiliar novel categories. There-
fore, we develop Embedding Modulation that takes advan-
tage of those two embeddings and enables adequate em-
bedding enhancement and information exchange for them,
thus advancing the recognition ability and making OPSNet
omnipotent for generalized domains and data-efficient for
training. The Embedding Modulation contains two steps.

Embedding Fusion. We first use the CLIP text encoder
to extract text embeddings for the N category names of the
training data, and for the M names of the predicting concept
set. Then, we calculate a cosine similarity matrix HM×N

between the two embeddings. Afterward, we calculate a
domain similarity coefficient s for the target concept set
as s = 1

M

∑
i maxj(Hi,j), which means that for each cat-

egory in the predicting set, we find its nearest neighbor in
the training set by calculating the cosine similarity, and then
they are averaged to calculate the domain similarity.

With this domain similarity, we fuse the query embed-
dings Eq and the CLIP embeddings Ec to get the modulated
embeddings Em = Eq + α · (1− s) · Ec. The principle is,
the ratio between the two embeddings is controlled by the
domain similarity s, as well as a α which is 10 as default.

Logits Debiasing. With the modulated embeddings, we
get the category logits by computing the cosine similar-
ity between the modulated embeddings and the text em-
beddings of category names. We denote the logits of the
i-th category as zi. Inspired by [34], which uses fre-
quency statistics to adjust the logits for long-tail recogni-
tion, in this work, we use the concept similarity to debias
the logits, thus balancing seen and unseen categories as
ẑi = zi / (maxj(Hi,j)i)

β , where β is a coefficient con-
trols the adjustment intensity. The equation means that, for
the i-th category, we find the most similar category in the
training set and use this class similarity to adjust the log-
its. In this way, the bias towards seen categories could be
alleviated smoothly. The default value of β is 0.5.

3.4. Additional Improvements

The framework above is already able to make open-
vocabulary predictions. In this section, we propose two ad-
ditional improvements to push the boundary of OPSNet.
Mask Filtering. Leveraging the CLIP embeddings for
modulation is crucial for improving the generalization abil-
ity, but it also raises a problem: the query-based segmen-
tation methods [9, 8] rely on the classification predictions
to filter invalid proposals to get the panoptic results. Con-
cretely, they add an additional background class and as-

sign all unmatched proposals as background in Hungarian
matching. Thus, they could filter invalid proposals during
inference without NMS. Without this filtering process, there
would be multiple duplicate or low-quality masks.

However, the CLIP embeddings are not trained with this
intention. Thus, we should either adapt the CLIP embed-
dings for background filtering or seek other solutions. To
address the issue, we design Mask Filtering to filter invalid
proposals according to the estimated mask quality. We add
an IoU head with one linear layer to the segmentation model
after the updated queries. It learns to regress the mask IoU
between each predicted binary mask and the correspond-
ing ground truth. For unmatched or duplicated proposals,
it learns to regress to zero. We use an L2-loss to train the
IoU head and utilize the predicted IoU scores to rank and
filter segmentation masks during testing. As the IoU is not
relevant to the category label, it could naturally be general-
ized to unseen classes. This modification enables our model
the ability to detect and segment more novel objects, which
serves as the essential step towards open vocabulary.

Decoupled Supervision. Common segmentation datasets
like [28, 53, 10, 38] contain less than 200 classes, but image
classification datasets cover far more categories. Therefore,
it is natural to explore the potential of classification datasets.
Some previous works [55, 15] attempt to use image-level
supervision. However, the strategy of Detic [55] is not ex-
tendable for multi-label supervision; OpenSeg [15] designs
a contrastive loss requiring a very large batch size and mem-
ory, which is hard to follow. Besides, they only supervise
the classification but do not calculate losses for mask seg-
mentation. In this situation, we develop Decoupled Super-
vision, a paradigm that utilizes image-level labels to im-
prove the generalization ability and use the layout informa-
tion to supervise mask segmentation. We denote this ad-
vanced version as OPSNet+.

For a classification dataset with C categories, we extract
the text embeddings TC×D with D dimensions. For a spe-
cific image with c annotated object labels, assuming that
OPSNet gives K predicted binary masks MK×H×W with
spatial dimension H × W, modulated embeddings EK×D

m ,
and IoU scores UK×1. We first remove the invalid predic-
tions if their IoU scores are lower than a threshold, resulting
in J valid predictions. At the same time, we pick the em-
beddings EJ×D

m for each valid prediction. We compute the
cosine similarity of these selected embeddings and the text
embeddings TC×D and obtain a similarity matrix SJ×C.

We normalize each row (the first dimension) of SJ×C us-
ing a softmax function δ. Afterward, we select the max
value along the first dimension of δ(SJ×C), and select the
columns (the second dimension) for the c annotated cate-
gories. We note this column selection operation as 1j∈Rc .
The matching loss could be formulated as:
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Lmatch = 1− 1

c

c∑
j=1

maxi(δ(Si,j))1j∈Rc (1)

This loss encourages the model to predict at least one
matched embedding for each image-level label. The model
will not be penalized if there exist multiple masks for one
category, or if there exist missing GT labels.

Although the images with image-level labels do not have
mask annotations, the layout of the expected mask predic-
tions could be regarded as supervision. As we expect the
predicted masks to fill the full image, and not overlap with
each other, the summation of all predicted masks could be
formulated as a constraint. Concretely, we normalize all the
K predicted masks using the Sigmoid function σ and add
all K masks to one channel. We encourage each pixel of the
mask to get close to one, and propose a sum loss as:

Lsum = ||1−
K∑

k=1

(σ(Mk,i,j))||2 (2)

When introducing ImageNet for training, we add Lmatch

and Lsum with weights of 1.0 and 0.4.

4. Experiments
Implementation details. We adopt Mask2Former [8] as
our segmentation model, and choose the ResNet-50 [18]
version CLIP [41] for visual-language alignment, where the
image and text are encoded as 1024-dimension feature vec-
tors. Compared with Mask2Former, the additional compu-
tation burden of CLIP is acceptable as we choose the small-
est version of CLIP and do not compute the gradient. When
using the Swin-L backbone for Mask2Former, with an in-
put size of 640, the FLOPs and Params of Mask2Former
and OPSNet are 403G/485G and 215M/242M. As we pass
CLIP only once, our FLOPs are significantly smaller than
[12, 47], which feed each proposal into CLIP.

Training configurations. In the basic setting, we train on
the COCO [28] panoptic segmentation training set. The
hyper-parameters follow Mask2Former. The training pro-
cedure lasts 50 epochs with AdamW [32] optimizer. The
initial learning rate (LR) is 0.0001, and it is decayed with
the ratio of 0.1 at the 0.9 and 0.95 fractions of the total steps.

For the advanced version with extra image-level labels,
we mix the classification data with COCO panoptic seg-
mentation data. The re-annotated ImageNet [1] is utilized
where correct multi-label annotations are included. We use
the validation split for simplicity, which covers 1K cate-
gories and contains 50 images for each category. When
calculating the losses, the category names from COCO and
ImageNet are treated separately. We finetune OPSNet for
80K iterations (∼ 5 epochs). The initial LR is 0.0001 and
multiplied by 0.1 at the 50K iteration.

Evaluation and metrics. We evaluate OPSNet for both
open-vocabulary and closed-world settings. We evaluate the
open-vocabulary ability by conducting cross-dataset vali-
dation for panoptic segmentation on ADE20K [53], and
Cityscapes [10]. To evaluate the closed-world ability, we
also compare OPSNet with SOTAs on COCO panoptic seg-
mentation. We report the overall PQ (Panoptic Quality),
the PQ for things and stuff, the SQ (Segmentation Qual-
ity), and the RQ (Recognition Quality). Then, we report the
mIoU (mean Intersection over Union) for semantic segmen-
tation on ADE20K [53] and Pascal Context [37] to compare
with previous works. Afterward, we use the large concept
set of ImageNet-21K [11] and give qualitative results for
open-vocabulary prediction and hierarchical prediction.

4.1. Roadmap to Open-vocabulary Segmentation

We introduce our roadmap for building an open-
vocabulary segmentation model. We first describe the over-
all procedure for how to equip our vanilla solution to OP-
SNet step by step as in Table 1. Then, we dive into the
details to analyze each of our new components. Following
CLIP and OpenSeg [15], we report the cross-dataset results
for the generalization ability of our model in Table 2.

Besides, we claim that keeping the performance in the
training domain is also important. Therefore, we report
the performance of both ADE20K and COCO (training do-
main) for the ablation studies.

From vanilla solutions to OPSNet. In Table 1, we con-
duct experiments on COCO and ADE20K panoptic data
step by step from vanilla solutions to OPSNet.

The closed-vocabulary method Mask2Former cannot di-
rectly evaluate other datasets due to the category conflicts.
In row 2, we remove its classification head to make it pre-
dict class-agnostic masks. Then, as introduced in Sec. 3.2,
we use these masks to pool the CLIP features to get CLIP
embeddings, and use them for recognition. However, as ex-
plained in Sec. 3.4, this modification would not be suitable
if we still adopt the classification results to filter the propos-
als. Therefore, in row 3, we add Mask Filtering and observe
significant performance improvements. In rows 4 and 5, we
show the performance of only using the query embeddings
for recognition. Then, in row 6, we demonstrate that adding
a cross-attention layer to gather the CLIP features would
be helpful for learning query embeddings. Finally, in row
7, we add the Embedding Modulation for the full-version
OPSNet, which shows a great gain in generalization.

The experimental results show that with the information
exchange between CLIP and the segmentation model, even
only trained on COCO, OPSNet archives great performance
on both COCO and ADE20K datasets.
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COCO ADE20K
Method PQ PQth PQst SQ RQ PQ PQth PQst SQ RQ

1 Mask2Former [8] 51.9 57.7 43.0 83.1 61.6 - - - - -
2 CAG-Seg + CLIP Embeds 12.5 17.7 4.6 68.1 15.3 4.9 5.2 4.2 45.5 6.2
3 CAG-Seg + CLIP Embeds + Mask Filter 22.7 26.9 16.3 82.1 26.7 10.7 9.5 13.3 66.6 13.1
4 CAG-Seg + Query Embeds 51.5 57.3 42.8 83.2 61.1 13.6 11.3 18.0 29.8 16.8
5 CAG-Seg + Query Embeds + Mask Filter 51.9 57.4 43.4 83.3 61.5 14.5 12.4 19.3 37.7 17.6
6 CAG-Seg + Query Embeds† + Mask Filter 52.4 58.0 44.0 83.5 62.1 14.6 13.2 17.6 33.8 17.1
7 OPSNet (CAG-Seg + Modulated Embeds + Mask Filter ) 52.4 58.0 44.0 83.5 62.1 17.7 15.6 21.9 54.9 21.6

Table 1. Ablation study for the roadmap towards open-world panoptic segmentation. All experiments use ResNet-50 backbone, and are
trained on COCO for 50 epochs. ‘CAG-Seg’ denotes the class-agnostic segmentation model. ‘Query Embeds†’ means adopting the cross
attention layer to gather information from the CLIP features.

COCO ADE20K CityScapes
Method Backbone PQ PQth PQst SQ RQ PQ PQth PQst SQ RQ PQ PQth PQst SQ RQ
MaskCLIP-Base [13] ResNet-50 - - - - - 9.6 8.9 10.9 62.5 12.6 - - - - -
MaskCLIP-RCNN [13] ResNet-50 - - - - - 12.9 11.2 16.1 64.0 16.8 - - - - -
MaskCLIP-Full [13] ResNet-50 30.9 34.8 25.2 - - 15.1 13.5 18.3 70.5 19.2 - - - - -
OPSNet ResNet-50 52.4 58.0 44.0 83.5 62.1 17.7 15.6 21.9 54.9 21.6 37.8 35.5 39.5 64.2 45.8
OPSNet ResNet-101 53.9 59.6 45.3 83.6 63.7 18.2 16.0 22.6 52.1 22.0 40.2 37.0 42.5 64.3 48.5
OPSNet Swin-S 54.8 60.5 46.2 83.7 64.8 18.3 16.8 21.3 59.4 22.3 41.1 36.0 44.8 66.9 49.6
OPSNet Swin-L† 57.9 64.1 48.5 84.1 68.2 19.0 16.6 23.8 52.4 23.0 41.5 36.9 44.8 67.5 50.0

Table 2. Open-vocabulary panoptic segmentation on different datasets with different backbones. All models are trained on COCO. ‘Swin-
L†’ denotes pre-trained on ImageNet-21K. Following [8], we train the Swin-L† version 100 epochs, and 50 epochs for other versions.

ADE20K COCO
Method Backbone PQ PQth PQst PQ PQth PQst

OPSNet ResNet-50 17.7 15.6 21.9 52.4 58.0 44.0
+ Cls Sup ResNet-50 18.2 15.0 24.4 51.3 56.9 42.9
+ Cls Sup + Mask Sup ResNet-50 19.0 16.6 23.9 51.7 57.2 43.4
+ Cls Sup + Mask Sup Swin-L 20.5 18.5 24.5 56.2 61.7 47.7

Table 3. Ablations for Decoupled Supervision. We use ImageNet-
Val for additional data to expand the training concepts.

COCO ADE20K PC
Embedding Setting PQ PQth PQst PQ PQth PQst mIOU

Single CLIP 22.7 26.9 16.3 10.7 9.5 13.3 27.3
Query 51.9 57.4 43.4 14.5 12.4 19.3 45.3

Ensemble

Query + 1×CLIP 51.4 56.9 43.1 16.4 14.2 20.7 48.3
Query + 2×CLIP 50.1 55.3 42.2 17.7 15.7 21.6 47.4
Query + 3×CLIP 47.9 52.8 40.5 18.1 16.1 21.9 46.0
Query + 4×CLIP 43.8 48.1 37.3 17.4 15.3 21.6 41.9

Modulation EF 52.4 58.0 44.0 16.9 15.8 19.0 49.7
Modulation EF + LD 52.4 58.0 44.0 17.7 15.6 21.9 50.2

Table 4. Ablation study for Embedding Modulation. ‘EF’ denotes
embedding fusion, ‘LD’ means logits debiasing, ‘PC’ stands for
Pascal Context dataset.

ADE20K COCO
Method Pass Times PQ PQth PQst PQ PQth PQst

Masking × N 6.7 5.9 8.5 16.3 21.5 8.4
Cropping × N 9.4 8.9 12.0 19.6 24.5 14.1
Mask-Pooling × 1 10.7 9.5 13.3 22.7 26.9 16.3

Table 5. Different methods for extracting CLIP embeddings. N
means the number of objects in the image.

More data with Decoupled Supervision. As introduced
in Sec. 3.4, we develop a superior training paradigm that
utilizes image-level labels. In Table 3, besides using COCO
annotations, we further improve the generalization ability of
OPSNet by introducing 50,000 images from the relabeled
version of ImageNet-Val [1]. We first verify the effective-
ness of each decoupled supervision. Then we report the

α
β

w/o LD 0.25 0.5 0.75 1.0

w/o EF 14.7 16.1 16.3 15.1 14.2
5 16.3 16.8 16.6 16.2 15.3
10 16.9 17.5 17.7 16.7 16.1
15 17.1 16.8 17.2 17.9 17.3

Table 6. Grid search for the α, β of Emedding Modulation. Results
on ADE20K panoptic dataset are reported.

performance of different backbones. When more training
categories are introduced, the cross-dataset ability of OP-
SNet improves significantly, as indicated by the exceptional
performance of OPSNet+.

Analysis for CLIP embedding extraction. In Table 5,
we verify the priority of our Spatial-Adapter and Mask
Pooling using pure CLIP embeddings. This design shows
better recognition ability and efficiency.

Analysis for Embedding Modulation. We give an in-
depth analysis of the modulation mechanism. In Table 4,
we report the results of the naive ensemble strategies be-
tween the query embeddings and the CLIP embeddings. We
simply add these two embeddings with different ratios, and
surprisingly find this straightforward method quite effec-
tive. However, we observe that the best ratio is different
for each target dataset, a specific ratio would be beneficial
for certain datasets but harmful for others. Our modulation
strategy controls this ratio according to the domain similar-
ity between the training and target sets and debias the final
logits using the categorical similarity, which shows a strong
balance across different domains.

In Table 6, we carry out a grid search for the coefficient
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Figure 3. Illustrations of open-vocabulary image segmentation. We choose the 21K categories of ImageNet as our prediction set. We
display five proposals with the highest confidence. OPSNet could make predictions for categories that are not included in COCO.

COCO ADE20K
Embedding Filter PQ PQth PQst PQ PQth PQst

Query
Cls 51.5 57.3 42.8 13.6 11.3 18.0
IoU 50.2 56.0 41.7 14.3 12.3 18.4
Cls·IoU 51.9 57.4 43.4 14.5 12.4 19.3

CLIP Cls 12.5 17.7 4.6 4.9 5.2 4.2
Cls·IoU 22.7 26.9 16.3 10.7 9.5 13.3

Modulated
Cls 50.0 55.4 41.9 14.9 40.6 18.1
IoU 50.3 56.1 41.6 16.0 14.3 19.4
Cls· IoU 51.4 56.9 43.1 16.4 49.2 19.8

Table 7. Ablation study for Mask Filtering. ‘Cls· IoU’ means the
multiplication of the classification score and IoU score.

Method Backbone Training Data ADE PC COCO

ALIGN [19, 15] Efficient-B7 Classification Data 9.7 18.5 15.6
ALIGN+ [15] Efficient-B7 COCO 12.9 22.4 17.9
LSeg+ [24, 15] ResNet-101 COCO 18.0 46.5 55.1
SimBase [47] ResNet-101 COCO 20.5 47.7 -
OPSNet ResNet-101 COCO 21.7 52.2 55.2
OpenSeg [15] ResNet-101 COCO + Caption (600K) 17.5 40.1 -
OpenSeg [15] Efficient-B7 COCO + Caption (600K) 24.8 45.9 38.1
OPSNet+ ResNet-101 COCO + ImageNet (50K) 24.5 54.3 61.4
OPSNet+ Swin-L† COCO + ImageNet (50K) 25.4 57.5 64.8

Table 8. Open-vocabulary semantic segmentation. The results for
‘ALIGN’, ‘ALIGN+’, ‘LSeg+’ are all the modified versions intro-
duced in OpenSeg.
α and β which control the modulation intensity. The results
show the robustness of the proposed method.

Analysis for Mask Filtering. First, to demonstrate the
gap between closed- and open-vocabulary settings, in
Fig. 4, we compare the cosine similarity distribution be-
tween the trained class prototypes (weights of the last FC
layer) of Mask2Former and the CLIP text embeddings that
are used by OPSNet. We find the text embeddings are much
less discriminative than the trained class prototypes, and
the similarity distribution text embeddings vary for differ-
ent datasets. Thus, the classification score of OPSNet would
not be as indicative as the original Mask2Former to rank the
predicted masks, which supports the claims in Sec. 3.4.

(a) COCO Protos (b) ADE20K Protos (c) CityScapes Protos

(d) COCO CLIP embeds (e) ADE20K CLIP embeds (f) CityScapes CLIP embeds

Figure 4. The distributions of the pairwise cosine similarities
among categories for the trained prototypes and the CLIP text em-
beddings on different datasets. The mean value is noted as µ.

In Table 7, we conduct ablation studies with different vi-
sual embeddings. The three blocks correspond to the CLIP,
query, and modulated embeddings respectively. The results
show that an IoU score could notably improve performance
especially when CLIP embeddings are introduced.
4.2. Cross-dataset Validation

To evaluate the generalization ability of the proposed
OPSNet, we conduct cross-dataset validation.

Open-vocabulary panoptic segmentation. In Table 2,
we report the results on three different panoptic segmen-
tation datasets. OPSNet shows significant superiority over
MaskCLIP [13] on both COCO and ADE20K, which veri-
fies our omnipotence for general domains.
Open-vocabulary semantic segmentation. Some previ-
ous works [15, 24, 12, 47] explore open-vocabulary seman-
tic segmentation. In Table 8, we make comparisons with
them by merging our panoptic predictions into semantic re-
sults according to the predicted categories.

Among previous methods, OpenSeg [15] is the most rep-
resentative one. Here we emphasize our differences with
OpenSeg: 1) OpenSeg could only conduct semantic seg-
mentation, as it does not deal with duplicated or overlapped
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Figure 5. Demonstrations for open-vocabulary image segmentation with hierarchical categories.

Method Backbone Epochs PQ PQth PQst

Max-DeepLab [44] Max-L 216 51.1 57.0 42.2
MaskFormer [9] Swin-L† 300 52.7 58.5 44.0
Panoptic Segformer [27] PVTv2-B5 50 54.1 60.4 44.6
K-Net [50] Swin-L† 36 54.6 60.2 46.0

Mask2Former [8]

ResNet-50 50 51.9 57.7 43.0
ResNet-101 50 52.6 58.5 43.7

Swin-L† 100 57.8 64.2 48.1

OPSNet

ResNet-50 50 52.4 58.0 44.0
ResNet-101 50 53.9 59.6 45.3

Swin-L† 100 57.9 64.1 48.5

Table 9. Closed-vocabulary panoptic segmentation on COCO val-
idation set. Swin-L† denotes pre-trained on ImageNet-21K.

masks. However, we develop Mask Filtering to remove the
invalid predictions, thus maintaining the instance-level in-
formation. 2) OpenSeg completely retrains the mask-text
alignment, thus requiring a vast amount of training data.
In contrast, Embedding Modulation efficiently utilizes fea-
tures extracted by the CLIP image encoder, which makes
our model data-efficient but effective.

OPSNet demonstrates superior results on all these
datasets. Compared with OpenSeg, our model shows su-
periority using much fewer training samples. Besides, al-
though OpenSeg reaches great cross-dataset ability, its per-
formance on COCO is poor. In contrast, OPSNet keeps a
strong performance in the training domain (COCO), which
is also important for a universal solution.

4.3. Closed-vocabulary Performance
We consider maintaining a competitive performance on

the classical closed-world datasets is also important for an
omnipotent solution. Therefore, in Table 9, we compare the
proposed OPSNet with the current best methods for COCO
panoptic segmentation. OPSNet gets better performance
than our base model Mask2Former, and shows competitive
results compared with SOTA methods.

4.4. Generation to Broader Object Category

Prediction with 21K concepts. We use the categories of
ImageNet-21K [11] to describe the segmented targets. This
large scope of words could roughly cover all common ob-
jects in everyday life. As illustrated in Fig. 3, we display the
top-5 category predictions for several segmented masks.

The first row shows examples in COCO. The ground
truth annotations ignore the objects that are not in the 133
categories. However, OPSNet could extract their masks
and give reasonable category proposals, like ‘mantle, gown,
robe’ for the ‘clothes’. In row 2, we test on Berkeley
dataset [33], OPSNet successfully predicts the ‘penguin’
and the ‘leopard’, which are not included in COCO. How-
ever, the prediction inevitably contains some noise. For ex-
ample, in case (2) of Fig. 3, our model predicts the back-
ground as ‘rock’ and ‘stone’, but the ‘iceberg’ is still within
the top-5 predictions.
Hierarchical category prediction. WordNet [35] gives
the hierarchy for large amounts of vocabulary, which pro-
vides a better way to understand the world. Inspired by this,
we explore building a hierarchical concept set.

In Fig. 5, we make predictions with hierarchy via build-
ing a category tree. For example, when dealing with ‘Tar-
get 1’ in the first row. We first make classification among
coarse-grained categories like ‘thing’ and ‘stuff’, and grad-
ually dive into some fine-grained categories like the specific
types. Finally, we predict different category levels.

5. Conclusion
We investigate open-vocabulary panoptic segmentation

and propose a powerful solution named OPSNet. We de-
velop exquisite designs like Embedding Modulation, Spa-
tial Adapter and Mask Pooling, Mask Filtering, and Decou-
pled Supervision. The superior quantitative and qualitative
results demonstrate its effectiveness and generality.
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