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Abstract

Quantization is an effective approach for memory cost
reduction by compressing networks to lower bits. However,
existing quantization processes learned only from the current
data tend to suffer from forgetting catastrophe on streaming
data, i.e., significant performance decrement on old task
data after being trained on new tasks. Therefore, we propose
a lifelong quantization process, LifeQuant, to address the
problem. We theoretically analyze the forgetting catastrophe
from the shift of quantization search space with the change of
data tasks. To overcome the forgetting catastrophe, we first
minimize the space shift during quantization and propose
Proximal Quantization Space Search (ProxQ), for regular-
izing the search space during quantization to be close to a
pre-defined standard space. Afterward, we exploit replay
data (a subset of old task data) for retraining in new tasks
to alleviate the forgetting problem. However, the limited
amount of replay data usually leads to biased quantization
performance toward the new tasks. To address the imbalance
issue, we design a Balanced Lifelong Learning (BaLL) Loss
to reweight (to increase) the influence of replay data in new
task learning, by leveraging the class distributions. Exper-
imental results show that LifeQuant achieves outstanding
accuracy performance with a low forgetting rate.

1. Introduction
With increasing requirements for real-time inferences in

computer vision tasks [1, 2, 3], neural networks deployed on
edge devices have received increasing attention [4]. Due to
the limited memory storage on edge devices, networks with a
large volume of parameters are required to be compressed [5].
Accordingly, in addition to pruning [6, 7, 8, 9] and structure
simplification [10, 11], quantization has been developed
as an efficient learning technique to effectively compress
networks to lower bits without a significant performance
loss [12, 13, 14, 15, 16, 17].

Quantization can be categorized as Post-Training Quan-
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Figure 1: Overview of LifeQuant. In Fig. (a), Proximal
Quantization Space Search (ProxQ) is proposed to overcome
the forgetting catastrophe problem by minimizing space shift,
i.e., regularizing the search space to be close to a pre-defined
standard space, during the quantization process. In Fig. (b),
previous lifelong learning (LL) research employs replay data
(old task data) in new task training to alleviate the forgetting
problem. However, the limited amount of replay data inhibits
the efficacy of overcoming the forgetting catastrophe. There-
fore, Balanced Lifelong Learning (BaLL) loss is designed
to reweight (to increase) the influence of replay data in new
tasks, by carefully examining the class data distributions, to
avoid significant forgetting catastrophe.

tization (PTQ) and Quantization-Aware Training (QAT)
according to the training process [18]. PTQ compresses
the pretrained full-precision model weights and activations
into low bits in a deterministic way without retraining and
fine-tuning, which incurs only a tiny overhead in training
[12, 13, 19, 20, 21]. However, PTQ usually suffers from
significant accuracy degradation since the quantization cri-
teria are not trained with weights [18]. In contrast, QAT
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learns model weights during quantization, i.e., the train-
ing loss is able to be measured for the update of weights
[14, 22, 15, 16, 23]. Despite additional operations in train-
ing, QAT generally achieves a better performance [18].

To the best of our knowledge, existing quantization ap-
proaches in PTQ or QAT are designed to minimize the quan-
tization error, i.e., the discrepancy between full-precision
values and low-bit values, according to the training data only
in the current storage. However, in real-world applications,
data collected from the edge, such as Internet of Things
(IoT) products, are streaming [24]. Owing to limited mem-
ory storage on devices, it is infeasible to preserve all training
data. In other words, the training is mainly performed on the
new data while the old training data are eliminated, which
induces the biased quantization result toward the new tasks
and gradually forgets the prediction of the old tasks, i.e., the
forgetting catastrophe problem. Nevertheless, it has not been
investigated thoroughly. Therefore, in this paper, we make
the first attempt to explore the forgetting problem in quanti-
zation on streaming data. We first demonstrate that existing
quantization processes suffer from a forgetting catastrophe
on streaming data, i.e., significant performance deterioration
on old task data after being quantized on new tasks.

To overcome the forgetting catastrophe, we design a life-
long quantization process, LifeQuant, to robustly learn low-
bit models on streaming data with a smaller forgetting rate,
i.e., the accuracy degradation after learning the new tasks.
Fig. 1 illustrates the motivations of LifeQuant. Fig. 1 (a) first
shows that the forgetting catastrophe mainly results from
the shift of search space in quantization after learning the
new task data. We theoretically analyze the increment of
quantization error under the change in weights to evaluate
the forgetting performance. To avoid the search space bi-
ased by new tasks, we target space shift minimization and
propose Proximal Quantization Space Search (ProxQ) to
regularize the search space during quantization to be close to
a pre-defined standard space (i.e., the gray dashed circle in
Fig. 1 (a)), by leveraging the statistics (mean and variance)
of the weights. Accordingly, the space shift can be effec-
tively reduced under the change of data tasks to overcome
the forgetting catastrophe.

In addition to space shift minimization, Fig. 1 (b) shows
that recent lifelong learning (LL) research alleviates the
forgetting problem in full-precision network training by ap-
plying replay data (training data in old tasks) to the new task
learning [25]. However, in the quantization process, only a
limited amount of old task data can be stored as replay data
for memory efficiency. Fig. 1 (b) illustrates that a limited
amount of replay data poses a challenge, imbalance issue
[26], where the quantization performance is inclined to be
biased toward the new tasks due to the majority of the new
task data. To alleviate the forgetting problem induced by
the minor quantity of replay data, we design a Balanced

Lifelong Learning (BaLL) loss to reweight (to increase) the
influence of replay data in new tasks, by leveraging the class
data distributions.

In experiments, LifeQuant improves the state-of-the-art
quantization approaches by a 7% accuracy increment and 8%
forgetting rate reduction for 2-bit ResNet-20 on CIFAR-100,
while by a 17% accuracy improvement and 23% forgetting
rate reduction for 3-bit MobileNet-V2 on ImageCLEF.

Our contributions are summarized as follows:

1. We make the first attempt to develop a novel lifelong
quantization process, LifeQuant, to overcome the for-
getting catastrophe in quantization-aware training.

2. We theoretically analyze the forgetting problem caused
by the search space shift with the change of data tasks.
Thus, we propose Proximal Quantization Space Search
(ProxQ) to regularize the shift during quantization to
avoid a significant accuracy loss in old tasks.

3. We study the limited quantity of replay data that induces
the biased prediction result toward the new tasks and
design a Balanced Lifelong Learning (BaLL) loss to
reweight the influence of the replay data, to alleviate
the forgetting problem.

4. Experimental results demonstrate that LifeQuant
achieves significant accuracy enhancement and forget-
ting rate reduction compared with the state-of-the-art
quantization approaches.

2. Related works
Post-training Quantization (PTQ). PTQ compresses

pretrained full-precision models to the low bits under de-
terministic quantization criteria without retraining or fine-
tuning, which generates only a tiny overhead [12, 13, 19, 20,
27]. ACIQ [12] focused on the design of clipping bounds to
discretize weights and activations with a smaller quantiza-
tion error, i.e., the discrepancy between the uncompressed
floating-point values and the quantized values. OMSE [13]
minimized the quantization error by regularizing the L2-
norm of the error. OCS [19] halved channels to remove out-
liers and preserve valuable information in prediction under
quantization. AdaRound [20] improved the typical round-
to-nearest approach by an adaptive rounding operation to
reduce quantization errors. Mr. BiQ [27] targeted minimiz-
ing the reconstruction error, i.e., the difference of accumu-
lated multiplications of convolutional layers before and after
quantization. However, PTQ usually suffers from significant
accuracy degradation since the quantization criteria are not
trained with weights [18].

Quantization-aware Training (QAT). In contrast to
PTQ, QAT learns quantization criteria with model weights,
where the training loss of the quantized model is evaluated
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for the subsequent update of weights [14, 22, 16, 28, 23].
Although additional training iterations are required for con-
vergence, QAT generally achieves a better performance than
PTQ [18]. LSQ [14] proposed a new gradient estimation
approach for the non-differentiable quantization functions
and learned the scaling of activation functions such as ReLU
[29]. LLSQ [22] learned the parameters of batch normal-
ization layers to modify the feature distributions for quan-
tization error reduction. Qimera [16] designed a generator
to synthesize boundary samples to enhance the prediction
performance under quantization. IntraQ [28] preserved the
property of intra-class heterogeneity during quantization to
enhance the performance. AlignQ [23] minimizes the dis-
crepancy between training and testing data distributions to
adapt the trained criterion to the non-i.i.d testing data for
inference. However, the existing QAT processes are learned
and validated according to only the current data while ig-
noring the change in data tasks, i.e., the circumstances of
streaming data. In this paper, we investigate the forget-
ting catastrophe problem in QAT on streaming data, i.e.,
inevitably significant performance deterioration on the old
tasks after being trained on new task data.

Lifelong Learning (LL). Related research developed to
alleviate the forgetting problem is lifelong learning (LL).
However, they target full-precision operations, instead of the
quantization process, an efficient learning procedure, under
the memory constraint. EWC [30], as the very beginning
LL approach, proposed to penalize the important parameters
with a large change in new tasks, where the importance is
evaluated by layer-wise fisher information based on replay
data. SI [31] introduced intelligent synapses to memorize
old task information for forgetting reduction. MAS [32],
inspired by SI, stored task-relevant information but targeted
unsupervised learning. RWalk [33]was designed as a general-
ized EWC that exploited KL-divergence [34] in Riemannian
Manifold [35], instead of fisher information. SCP [36] aimed
to preserve the layer-wise distributions under the regulariza-
tion of the Sliced Cramer distance. PFR [37] designed a loss
to distill the feature information of old data tasks into new
tasks. In summary, the existing LL approaches generally
employ replay data (old task data) in new task training to
alleviate the forgetting problem. However, for quantization
in efficient learning, only a limited amount of data can be
employed due to memory constraints. It poses an imbalance
issue [26], where the models are inclined to be biased to-
ward the new tasks due to the majority of the new task data,
leading to the forgetting catastrophe.

3. Notations and preliminaries
The quantization criteria in QAT are learned with model

weights and can be evaluated by the training loss. Therefore,
QAT usually has a superior performance over PTQ under
deterministic designs. In this section, we first introduce the

problem formulation in quantization-aware training (QAT)
and prescribe the notations.

QAT is to learn a quantization criterion Q to minimize
the quantization error E(||wq − w||2), i.e., the discrepancy
(L2-norm distance) between the floating-point weights w
and the quantized weights wq derived from wq = Q(w). In
other words, QAT finds a minimal quantization error to avoid
significant performance degradation during the quantization.
In this paper, we further consider a gradient term ∂L

∂wq , where
L denotes the training loss since gradient indicates the in-
fluence of weights on the prediction loss. Our idea is to
penalize the weights not only with large quantization errors
but also with huge impacts on the prediction result. There-
fore, we target minimizing E(||(wq −w) · ∂L

∂wq ||2) and prove
that this new objective is equivalent to the minimization of
the performance loss as follows.

Theorem 3.1. (Proved in Appendix A.1) Let (xT , y)
be the (feature, label) of input data, L denote the
training loss, w indicate the weights, and wq repre-
sent the quantized weights. Then argminwq E(||(wq −
w) · ∂L

∂wq ||2) ≃ argminwq |L((xT , y;wq) − L((xT , y;w)|,
where |L((xT , y;wq) −L((xT , y;w)| is the performance
decrement after quantization.

According to Theorem 3.1, the quantization performance
is able to be better evaluated with an additional gradient term.
Therefore, we re-define the quantization error as E(||(wq −
w) · ∂L

∂wq ||2) to measure the performance in this study.

4. Forgetting problem in QAT
Existing QAT introduced in Sec. 2 is learned and validated

according to only the current data and thereby suffers from a
forgetting catastrophe on streaming data with varying data
distributions. In this section, we first theoretically prove the
forgetting problem in QAT and defined quantization error
in Sec. 3 and then experimentally validate the problem by
evaluating the accuracy performance on real-world data.

4.1. Theoretical analysis

Sec. 3 has indicated that a large quantization error gener-
ated in QAT induces a significant performance loss. Accord-
ingly, to evaluate the forgetting problem, in this subsection,
we first investigate if the quantization error on old data in-
creases after the new task learning. The quantization error in
Definition 4.1 is measured on the current data, i.e., a single
data task. In the following, we define the quantization error
on streaming data with multiple data tasks (in different data
distributions) and then evaluate the change in quantization
error across multiple data tasks.

Definition 4.1. (Multi-task quantization error.) Quantiza-
tion error on the s-th task data (xT

s , ys) of the low-bit model
learned from the t-th task data wq

t is denoted as ξ(xTs ;wq
t )
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which is defined as E(||(wq
t − wt) · ∂L(xs;wq

t )

∂wq
t

||2), where
∂L(xs;wq

t )

∂wq
t

represents the gradient ∂L(xTs ,ys;wq
t )

∂wq
t

, ∀s ≤ t.

After the definition of quantization error across tasks, we
evaluate the forgetting problem under the demonstration for
streaming data as follows.
Proposition 1. The quantization error on old task data in-
creases after the low-bit model learns the new task data.
(proved in Theorem 4.1).

Theorem 4.1. (Proved in Appendix A.2) Based on Defini-
tion 4.1, and denote wq∗

s as the optimal solution on task s,
then ξ(xT

s ;wq∗
t ) ≥ ξ(xTs ;wq∗

s ),∀s ≤ t.

Theorem 4.1 proves that the quantization error increases
on the old task after the new task learning, since the solution
wq∗

s is learned from the data in task s xT
s . However, the

weights are usually converged to another solution other than
the optimum when data change. Thus, a larger quantiza-
tion error of a new model on old task data is obtained, i.e.,
the forgetting problem. We only show the existence of the
forgetting problem in quantization here and will derive the
upper bound of the forgetting performance in Sec. 5.1.

4.2. Exploration analysis

In this subsection, we investigate the forgetting problem
in real-world data. Table 1 presents the performances be-
fore and after learning new tasks under (8, 4, 2)-bit uniform
quantization for ResNet-20 [38] on split CIFAR-100 [39]1.
The experimental results validate a more significant accu-
racy loss on task 1 (the old data task), which is consistent
with the forgetting problem analyzed in Sec. 4.1. Moreover,
the forgetting problem is particularly notable under low-bit
quantization. For instance, the 2-bit model obtains as much
as 69.86% accuracy degradation on task 1 after learning
tasks 2 and 3. Therefore, it is imperative to design a robust
quantization process to overcome the forgetting catastrophe.

5. LifeQuant
In this section, we study two fundamental issues that in-

duce the forgetting catastrophe in quantization and propose
LifeQuant to overcome the problem. In Sec. 5.1, we first
derive the upper bound of the increment of the quantization
error for the problem due to the shift of the search space
during quantization. Afterward, in Sec. 5.2, we propose
Proximal Quantization Space Search (ProxQ) to impose a
regularization on the space shift to overcome the forgetting
problem. In Sec. 5.3, we further investigate the imbalance
issue where the influence of old task data in new task learn-
ing is underestimated. Accordingly, we design a Balanced

1CIFAR-100 is split to three tasks in Table 1 under the setting of the
parameter γ = 25 which indicates 25% of class data change between tasks.
The details will be described in Sec. 6.

Table 1: Accuracy (%) of low-bit ResNet-20 [38] on CIFAR-
100 [39] under uniform quantization-aware training. Curr.
Task represents the performance of the current task before
learning new tasks. Multi. Tasks manifests the performance
after learning multiple tasks. The learning order is Task 1 →
Task 2 → Task 3.

Bits Accuracy (%) Task 1 Task 2 Task 3 Avg.
8 Curr. Task 79.61 76.88 66.20 74.23

Multi. Tasks 32.81 46.93 61.97 47.24
Drop Rate -58.79 -38.96 -6.39 -34.71

4 Curr. Task 73.65 65.86 60.06 66.52
Multi. Tasks 25.14 39.49 46.20 36.94
Drop Rate -65.87 -40.04 -23.08 -42.99

2 Curr. Task 68.96 60.51 53.90 61.12
Multi. Tasks 21.02 36.55 45.40 34.32
Drop Rate -69.52 -39.60 -15.77 -41.63

Lifelong Learning (BaLL) loss in Sec. 5.4 to reweight data
losses to alleviate the forgetting problem.

5.1. Space shift issue

In this subsection, we investigate the forgetting problem
by analyzing the upper bound of the increment of the quanti-
zation error based on Theorem 4.1. We demonstrate that the
shift of the search space during quantization increases the
quantization error in the following proposition.
Proposition 2. The increment of the quantization error
mainly results from the shift of the search space during
quantization under the change of data tasks. (proved in
Theorem 5.1).

Theorem 5.1. (Proved in Appendix A.3) Based on Defini-
tion 4.1 and Theorem 4.1, the increment of the quantization
error is ξ(xTs ;wq

t ) − ξ(xTs ;wq
s) which has an upper bound

E(||(wq
s−ws) · ∂L(xs;wq

t )

∂wq
t

||2)+E(||(wq
t −wq

s) ·
∂L(xs;wq

t )

∂wq
t

||2),
∀s ≤ t.

Theorem 5.1 derives the upper bound of increment of
the quantization error. The first term includes ||wq

s − ws||2,
which is the within-task quantization error that existing QAT
aims to minimize (see preliminaries in Sec. 3). In other
words, the first term of the bound can be minimized by
general QAT processes., and the forgetting problem mainly
originates from the second term, where ||wq

t − wq
s||2 repre-

sents the shift of the search space under the change of data
tasks (from task s to t) (illustrated in Fig. 1 (a)). Therefore,
we aim to minimize the space shift to effectively reduce
the increasing quantization error to overcome the forgetting
catastrophe.

5.2. Proximal Quantization Space Search (ProxQ)

To minimize the space shift during quantization, we pro-
pose Proximal Quantization Space Search (ProxQ) to im-
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pose regularization on the search space after the update of
weights by Gaussian projection and penalty imposed on the
increasing quantization error derived from Theorem 5.1. To
efficiently minimize the shift, our idea in Fig. 1 (a) is to indi-
vidually regularize the search spaces in all tasks to be close
to a pre-defined standard space with the bounds [−α, α],
where α > 02.

5.2.1 Pre-definition of the standard space

According to the normality of converged quantized weights
demonstrated in previous research [12, 15, 23], we adopt
Gaussian space N(0,Σ) as the standard space for regular-
izing the search space during quantization, where the co-
variance matrix Σ ≃ (α3 )

2I since nearly 99.7% weights are
located in the range [−3 · diag(Σ− 1

2 ), 3 · diag(Σ− 1
2 )] ac-

cording to the (68 − 95 − 99.7)-rule in probability theory
[40]. The notation diag represents the diagonal elements,
i.e., diag(Σ− 1

2 ) indicates a vector of the standard deviations
of the weights. Accordingly, after the search space during
quantization is projected to N(0, α2

9 I), the weights are guar-
anteed located within [−α, α] at 99.7% confidence level.

5.2.2 Proximal space regularization and quantization

During training, after the weights in the t-th task wt are
updated, we project the space to the standard Gaussian space
N(0, α2

9 I) (defined in Sec. 5.2.1) by Proximal Space Regu-
larization, Prox, which is formulated as:

wstd
t = Prox(wt) =

α

3
Σ

− 1
2

t (wt − mt),∀t (1)

where mt is the mean vector of the weights wt in task t, Σt

represents the covariance matrix of wt, and wstd
t denotes the

weights regularized on the standard space.
After the regularization in Eq. (1), the quantized weights

in separate tasks are restricted within the range [−α, α] at
a high confidence level. We then quantize the weights wstd

t

under the uniform quantization scheme Q to the discrete
values {−α,−α+∆,−α+2∆, ..., α−2∆, α−∆, α}. The
interval ∆ is 2α

2b−1
, where b represents the b-bit quantization.

In other words, the quantized weights can be derived from

wproxq
t = Q(wstd

t ) =
round(τ · wstd

t )

τ
,∀t (2)

where round manifests the rounding operation, and τ repre-
sents the total number of quantization intervals (2b − 1).

5.2.3 Fine-grained regularization in backward process

According to Sec. 5.2.2, in the forward process, the quantized
weights in separate tasks under ProxQ are projected to the

2The setting of the hyper-parameter α will be compared in Appendix C.

same standard space. Thus, we are able to effectively reduce
the space shift to ||(wproxq

t − wproxq
s )||2. However, the

increment of quantization error derived from Theorem 5.1
is E(||(wproxq

t − wproxq
s ) · ∂L(xs;wq

t )

∂wq
t

||2) with an additional
gradient term. Therefore, we further regularize the error by
a loss in the backward process formulated as follows.

Lprox =
∑
∀s<t

||(wproxq
t − wproxq

s ) · ∂L(xs;wq
t )

∂wq
t

||2. (3)

5.3. Imbalance data issue

In Sec. 5.2, we introduce ProxQ to address the space shift
issue (analyzed in Sec. 5.1) to overcome the forgetting catas-
trophe. In addition to space shift minimization, reducing
the changes in data distribution in separate tasks has been
demonstrated as an effective approach to the forgetting prob-
lem. As presented in Fig. 1 (b) and introduced in Sec. 2,
recent lifelong learning (LL) research is designed for full-
precision model operations to address the forgetting issue
on old tasks by employing replay data (training data in old
tasks) retrained in new tasks for accuracy enhancement.

However, under the quantization process for efficient
learning, only a limited amount of old task data can be stored
as replay data due to memory constraints. Accordingly, it
poses a challenge, the imbalance issue [26]. In the following,
we demonstrate that the prediction result with the limited
quantity of replay data is biased toward the new tasks, by
leveraging the class distributions as described in Fig. 1 (b).
In other words, the forgetting problem still exists.
Proposition 3. The prediction result with the limited quan-
tity of replay data for retraining is biased toward the new
tasks. (analyzed in Theorem 5.2).

Theorem 5.2. (Proved in Appendix A.4) Let π
t|s
j :=

PYt|{Xt,X
replay
s }(yt = j|xt) stand for the prediction proba-

bility of the t-th task data xt on the j-th class, incorporated
with the training of replay data from the s-th task Xreplay

s ,
where s < t, and πt

j := PYt|Xt
(yt = j|xt) represent the

prediction probability without replay data. Denote nt
j as

the sample size of Xt on the j-th class and rsj as the sample
size of Xreplay

s on the j-th class. If rsj ≤ δjn
t
j , ∀j, where

δj ∈ [0, 1] is the replay ratio on the j-th class and rsj , then

|πt|s
j − πt

j | < δj · (1 +
∑K

i=1 δin
t
i∑K

i=1 nt
i

), ∀j,∀s < t.

Theorem 5.2 demonstrates that when a limited amount
of replay data is employed for retraining, i.e., replay ratio
of δj is small, ∀j, then the prediction probability based on
the replay data π

t|s
j is close to the result only based on new

task data πt
j . In other words, the prediction result is biased

toward new tasks. Accordingly, the forgetting problem is not
solved by the limited replay data.

17362



5.4. Balanced Lifelong Learning (BaLL) loss

According to Sec. 5.3, the limited amount of replay data
inhibits the efficacy of overcoming the forgetting problem.
Thus, to strengthen the influence of the minority replay data
in new task learning, in this subsection, we aim to reweight
the losses of data in prediction as illustrated in Fig 1 (b).

Based on the analysis in Theorem 5.2, the prediction
result depends on the class distributions. The imbalanced
class distributions lead to biased prediction performance.
To rebalance the influence of replay data in new tasks, as
presented in Fig 1 (b), we leverage the class distributions
and reweight the prediction loss from the original Lpred =

−
∑

y log
eϕy∑
k eϕk

3 to the balanced one, named Balanced
Lifelong Learning (BaLL) loss,

LBaLL = −
∑
y

log
sye

ϕy∑
k ske

ϕk
, (4)

where ϕy represents the prediction result (not normalized)
on the class y, and sy is the rebalancing factor on the class
y derived as follows.
Proposition 4. The factor sy in LBaLL which enforces the
prediction result rebalanced is derived in Theorem 5.3.

Theorem 5.3. (Proved in Appendix A.5) Based on
Theorem 5.2, suppose there are total K classes in
{Xt, X

replay
s }. Let the original prediction loss be Lpred =

−
∑K

j=1 log πj = −
∑K

j=1 log
eϕj∑K

k=1 eϕk
, where ϕj is the

prediction result on the j-th class. Assume that ϕj under
imbalanced class distribution pj approximates to the bal-
anced result ϕ∗

j after adding a rebalancing term log(sj), i.e.,
ϕj + log(sj) = ϕ∗

j . Then the balanced loss is LBaLL =

−
∑K

j=1 log
sje

ϕj∑K
k=1 ske

ϕk
, where sj = e

ϕj(
1

Kpj
−1)

,∀j.

Theorem 5.3 demonstrates the rebalanced prediction re-
sult under the balanced prediction loss. The rebalancing

factor sj = e
ϕj(

1
Kpj

−1)
grows when pj is small, i.e, few

data samples. Therefore, the influence of the replay data,
especially the classes rarely shown in the new tasks, is in-
creased. Accordingly, the performance no longer mainly
depends on the new task data. The forgetting problem is
therefore able to be effectively alleviated.

In summary, the training loss of LifeQuant consists of
two parts: 1) LProx: the fine-grained regularization on
the increasing quantization error in cross-task learning (see
Sec. 5.2.3), and 2) LBaLL: the balanced prediction loss for
reweighting the influence of replay data in new tasks (see
Eq. 4), i.e., LLifeQuant = LProx + LBaLL. Note that
the gradient term in LProx (see Eq. 3) is derived from the
backward propagation of LBaLL.

3The negative log-likelihood based on the softmax is a typical form of
prediction loss in classification [29].

6. Experiments
6.1. Experiment settings

Datasets. We evaluate LifeQuant on three datasets,
CIFAR-100 [39], Office-31 [41], and ImageCLEF [42]. Fol-
lowing [43, 33, 37], we split CIFAR-100 into three tasks
by class with a parameter γ, representing the ratio of class
changes when switching to the next task. In contrast to
CIFAR-100 with a single domain, the other two benchmark
datasets contain multiple domains (tasks) under different
class and feature distributions. Office-31 has three domains,
Amazon (A), DSLR (D), and WebCam (W), while Image-
CLEF is combined with the benchmarks, Bing (B) [44],
Caltech-256 (C) [45], ImageNet ILSVRC 2012 (I) [46] and
Pascal VOC 2012 (P) [47].

Architectures. We adopt the widely applied CNN ar-
chitectures ResNets (ResNet-20 and ResNet-50) [38], and
MobileNet-V2 [10] with efficient structure designs for quan-
tization to validate LifeQuant.

Evaluation metrics. Two metrics are evaluated: 1) Ac-
curacy: mean accuracy of tasks, and 2) Forgetting (Rate)
[25]: mean accuracy drop across tasks, as shown in Table 1.
Higher accuracy and a lower forgetting rate indicate better
performance in overcoming the forgetting problem.

Training. We implement our approaches on NVIDIA
Tesla V100 GPU and a GTX 2080Ti4. The maximum num-
ber of epochs is 50 for each task. The batch size is set to 128
for CIFAR-100 and 32 to 256 for Office-31 and ImageCLEF
domains. The learning rate decays from 0.04 to 0.001.

6.2. Comparison results

Table 2 compares LifeQuant with baseline and state-of-
the-art QAT research [14, 22, 16, 28, 23]. We also compare
the BaLL design of LifeQuant with existing lifelong learning
research. The results are presented and discussed in Sec. 7.4.

Class-based multi-task quantization (CIFAR-100).
The first four columns of Table 2 show the quantization
results for 4-bit and 2-bit ResNet-20 on CIFAR-100 under
two settings of γ. For instance, γ = 25 indicates the change
in 25% classes when the task switches. First, we observe
that the low-bit quantization reduces the prediction accuracy.
In addition, the significant change in task data, i.e., a large
γ increases the performance loss and forgetting rate. The
results manifest that the process of LifeQuant under a huge
data change and low-precision training achieves outstanding
performances compared with the prior works. For example,
LifeQuant-based 2-bit ResNet-20 with γ = 50 enhances
the accuracy by 6% to 26% and reduces the forgetting rate
by 9% to 40%. The outstanding performances validate the
effectiveness of LifeQuant on accuracy loss reduction in
learning new tasks, which is mainly due to 1) the space shift

4Code is available at https://github.com/tinganchen/
LifeQuant.git.
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Table 2: Quantization results of ResNets and MobileNet-V2 on CIFAR-100, Office-31 and ImageCLEF. γ represents the ratio
of class data changes when the task switches. Both model weights and activations are quantized to low bits. The symbol *
indicates failed prediction. The improvements over 5% (10%) are presented in blue (red).

Metrics Methods
ResNet-20 on CIFAR-100 ResNet-50 on Office-31 MobileNet-V2 on ImageCLEF

γ = 25 γ = 50 A → D → W W → D → A I → P → C B → C → I

4 bit 2 bit 4 bit 2 bit 4 bit 2 bit 4 bit 2 bit 4 bit 3 bit 4 bit 3 bit

Accuracy (%)

LSQ [14] 35.44 35.00 24.08 23.30 32.71 28.03 20.51 15.43 23.61 23.89 20.83 19.72
LLSQ [22] 36.11 * 24.49 * 42.30 40.28 17.95 15.83 24.44 7.78 24.44 17.22
Qimera [16] 47.52 11.37 29.84 9.70 * * * * * * * *
IntraQ [28] 34.18 * 19.03 * * * 11.09 12.15 7.22 8.61 11.39 8.61
AlignQ [23] 47.85 42.58 31.16 27.97 46.10 39.06 22.37 16.06 67.78 57.22 64.17 57.50

LifeQuant (Ours) 50.15 46.21 36.94 34.32 48.54 46.54 25.65 17.23 77.50 76.38 76.39 76.11

Forgetting (%)

LSQ [14] 44.58 39.23 61.24 58.52 58.88 65.15 70.29 64.37 72.86 71.33 72.81 73.69
LLSQ [22] 43.60 * 60.60 * 47.27 49.84 71.02 65.20 71.89 90.57 68.61 76.52
Qimera [16] 25.67 80.28 51.94 82.69 * * * * * * * *
IntraQ [28] 46.61 * 69.38 * * * 84.38 73.59 91.66 89.52 84.49 88.05
AlignQ [23] 25.18 26.07 49.83 50.24 41.46 51.61 64.91 64.24 21.88 31.59 18.46 24.78

LifeQuant (Ours) 22.38 16.08 42.99 41.63 38.96 42.59 58.63 63.90 10.46 7.71 2.30 1.63

regularization (see ProxQ in Sec. 5.3) to effectively reduce
the increasing quantization error (analyzed in Sec. 5.1), and
2) data influence rebalancing (see BaLL loss design in Sec.
5.4), under the multi-task quantization.

Domain-based multi-task quantization (Office-31 and
ImageCLEF). We further evaluate LifeQuant on Office-
31 and ImageCLEF containing separate domains not only
with the change in class distributions but with the varying
feature distributions. Table 2 presents that the 2-bit ResNet-
50 on Office-31 under the process of LifeQuant in case A
→ D → W receives 6% to 16% accuracy improvements
and 7% to 23% forgetting rate reduction. In addition to
ResNets, we validate LifeQuant on MobileNet-V2, which is
a lightweight architecture widely applied for memory cost
reduction [48, 49, 50]. Table 2 reveals that LifeQuant-based
2-bit MobileNet-V2, on ImageCLEF (e.g., B → C → I) with
76.11% accuracy and 1.63% forgetting rate, which improves
the state-of-the-art by more than 20% accuracy improve-
ments and 23% forgetting rate reduction. The results demon-
strate LifeQuant with a smaller increasing quantization error
on old task data under multi-task quantization, by space shift
minimization (see ProxQ in Sec. 5.2) and class data rebalanc-
ing (see BaLL loss design in Sec. 5.4). More comparisons
including MobileNet-V2 on Office-31 and ResNet-50 on
ImageCLEF are presented in Appendix B.

7. Ablation study

7.1. Performances of LifeQuant components

In the following, we evaluate the effectiveness of each
component of LifeQuant. Table 3 shows the performances
for 4-bit ResNet-20 on CIFAR-100 and 3-bit MobileNet-V2

Table 3: Performances of LifeQuant components. The case
with the best performance is presented in bold text. The
case with the most significant performance degradation is
presented with the upper script †.

Metrics Methods
4-bit ResNet-20 3-bit MobileNet-V2
on CIAFAR-100 on ImageCLEF

γ = 25 γ = 50 I → P → C B → C → I

Accuracy (%)
Ours (w/o BaLL) 47.73 31.01 43.61† 45.28†

Ours (w/o Prox) 46.17† 30.00† 71.94 72.78
Ours (LifeQuant) 50.15 36.94 76.38 76.11

Forgetting (%)
Ours (w/o Prox) 26.00 51.77 47.43† 39.35†

Ours (w/o BaLL) 27.81† 52.74† 13.16 2.64
Ours (LifeQuant) 22.38 42.99 7.71 1.63

on ImageCLEF. First, the results on CIFAR-100 manifest
that the LifeQuant process without the BaLL loss, i.e., the
case Ours (w/o BaLL), suffers from much more accuracy
degradation (4% to 6%) and forgets more prediction results
on old tasks (5.5% to 10%), which validates the efficacy of
BaLL loss to alleviate the forgetting problem by rebalanc-
ing the influences of data on prediction loss (replay data vs.
new task data) (detailed in Sec. 5.4). On the other hand,
LifeQuant on ImageCLEF without ProxQ, i.e., Ours (w/o
ProxQ), suffers from 30% accuracy loss and 37% forget-
ting rate increment, demonstrating the importance of space
shift minimization on quantization error reduction under the
change in data domains (see ProxQ in Sec. 5.2).

7.2. Effectiveness of ProxQ on space shift reduction

After examining the individual performances of Life-
Quant components, we evaluate ProxQ on space shift re-
duction in this subsection. Table 4 demonstrates the ef-

17364



Table 4: Effectiveness of ProxQ on space shift reduction.
The space shift is measured by the RMSE (root mean square
error) of quantized weights under the change of tasks.

Methods

ResNet-20 ResNet-20 ResNet-50
on CIAFAR-100 on CIAFAR-100 on ImageCLEF

(γ = 25) (γ = 50) (B → C → I)

4 bit 2 bit 4 bit 2 bit 4 bit 2 bit

Ours (w/o ProxQ) 0.0030 0.0034 0.0039 0.0039 0.0005 0.0007
Ours (w/. ProxQ) 0.0026 0.0032 0.0028 0.0032 0.0001 0.0001

Reduction (%) -13.33 -5.88 -28.21 -17.95 -80.00 -85.71

Table 5: Effectiveness of BaLL on imbalanced task data
evaluated with MobileNet-V2 on ImageCLEF (B → C → I).
δ represents the replay ratio. BaLL w/o rebal. indicates the
BaLL loss without rebalancing (see Sec. 5.4).

Metrics Methods 4 bit 3 bit

δ = 10 20 35 δ = 10 20 35

Accuracy (%)
BaLL w/o rebal. 70.84 71.39 71.39 46.11 47.22 49.72
Ours (BaLL) 72.50 78.34 77.22 50.55 72.78 70.83

Increment (%) +1.66 +6.95 +5.83 +4.44 +25.56 +21.11

Forgetting (%)
BaLL w/o rebal. 8.08 10.35 9.95 21.99 34.88 34.37
Ours (BaLL) 3.18 0.93 2.05 12.57 2.64 3.64

Decrement (%) -4.90 -9.42 -7.90 -9.42 -32.24 -30.73

fectiveness of ProxQ on reducing the RMSE of quantized
weights under the change of tasks, by regularizing the search
space to a defined Gaussian space5 during quantization (see
Sec. 5.2). The reduction of shift validates that the ProxQ pro-
cess achieves a smaller quantization error increment based
on Theorem 5.1, and it can thus avoid a significant perfor-
mance loss according to Theorem 3.1, which is consistent
with the experimental results as shown in Table 3.

7.3. Effectiveness of BaLL on imbalanced task data

In experiments from Sec. 6 to Sec. 7.2, we adopted 20%
old data as replay data for retraining. Here, we evaluate
the BaLL loss with different replay ratios. Table 5 presents
three settings δ = 10, 20, and 35, e.g., δ = 10 indicates
10% old task data as replay data, which manifests that the
prediction accuracy is improved, and the forgetting rate is
reduced when the replay ratio increases from 10% to 20% or
to 35%. Thus, the efficacy of the employment of replay data
is validated. Furthermore, it shows that the BaLL loss has
superior performances over the baseline without rebalancing.
For example, the 3-bit model, at a replay ratio of 20% under
BaLL, achieves an accuracy of 72.78% and only obtains a
forgetting rate of 2.64%, which improves the baseline by
25.56% accuracy gain and 32.24% forgetting rate reduction.
The enhancement demonstrates that the BaLL loss can ef-
fectively alleviate the forgetting problem by reweighting the
influence of old data in new tasks (see Sec. 5.4).

5The settings of the regularized space will be studied in Appendix C.

Table 6: Performance of MobileNet-V2 on ImageCLEF (B
→ C → I) compared with lifelong learning research. The
improvements over 5% (10%) are presented in blue (red).

Metrics Methods 4 bit 3 bit

δ = 10 20 35 δ = 10 20 35

Accuracy (%)

EWC [30] 66.94 69.44 69.17 46.66 47.50 49.44
SI [31] 70.28 66.39 73.73 48.05 48.33 48.89

MAS [32] 68.06 72.22 72.78 42.78 45.83 50.83
RWalk [33] 69.72 71.95 71.17 43.06 46.38 46.67
SCP [36] 70.83 70.55 72.22 40.56 45.28 48.33
PFR [37] 72.22 69.72 73.33 45.00 44.44 46.95

Ours (BaLL) 72.50 78.34 77.22 50.55 72.78 70.83

Forgetting (%)

EWC [30] 4.76 13.23 12.15 20.92 38.71 32.91
SI [31] 3.12 16.31 6.87 25.78 40.97 34.07

MAS [32] 5.98 8.88 13.44 22.44 39.74 30.01
RWalk [33] 4.15 9.87 9.82 20.14 43.25 35.88
SCP [36] 2.58 8.30 8.54 21.24 34.88 38.85
PFR [37] 3.19 8.88 7.34 21.75 39.04 34.37

Ours (BaLL) 3.18 0.93 2.05 12.57 2.64 3.64

7.4. Comparisons with recent LL losses

We further compare the BaLL loss with recent lifelong
learning (LL) research. Table 6 shows that the recent LL ap-
proaches suffer from notable performance losses under 3-bit
quantization. By contrast, EWC, MAS, RWalk, and SCP are
able to receive a 3% to 8% accuracy increment by exploiting
more replay data. However, the improvements are limited
due to the imbalance data issue studied in Sec. 5.3 with the
underestimated influence on replay data. Accordingly, the
BaLL loss is designed to reweight the data influences (de-
tailed in Sec. 5.4). Table 6 manifests that BaLL under the
rebalancing strategy achieves 72.78% accuracy with only
2.64% forgetting at the replay ratio of 20%, which is close
to the performances of previous LL approaches under 4-bit
quantization at the replay ratio of 35%. Thus, the efficiency
of the BaLL loss is demonstrated since models can be com-
pressed to lower bits with less memory storage for replay
data without a forgetting catastrophe.

8. Conclusion

In this paper, we propose LifeQuant to overcome the
forgetting catastrophe in quantization-aware training. We
prove that the space shift in multi-task quantization increases
quantization error. Thus, we propose ProxQ to regularize
the search space for space shift minimization during quan-
tization. Moreover, we investigate that the limited amount
of replay data in new task learning incurs a biased predic-
tion result and the forgetting problem. Therefore, we de-
sign a BaLL loss to reweight (to increase) the influences
on task data under the theoretical guarantee to approximate
the prediction result on balanced data. Experimental results
manifest that LifeQuant outperforms the state-of-the-art on
multi-task datasets.
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