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Abstract

We present SHIFT3D, a differentiable pipeline for gen-

erating 3D shapes that are structurally plausible yet chal-

lenging to 3D object detectors. In safety-critical applica-

tions like autonomous driving, discovering such novel chal-

lenging objects can offer insight into unknown vulnerabili-

ties of 3D detectors. By representing objects with a signed

distanced function (SDF), we show that gradient error sig-

nals allow us to smoothly deform the shape or pose of a

3D object in order to confuse a downstream 3D detector.

Importantly, the objects generated by SHIFT3D physically

differ from the baseline object yet retain a semantically rec-

ognizable shape. Our approach provides interpretable fail-

ure modes for modern 3D object detectors, and can aid in

preemptive discovery of potential safety risks within 3D per-

ception systems before these risks become critical failures.

1. Introduction

As 3D computer vision models become ubiquitous in

real-world applications, their reliability becomes a critical

safety concern should they fail in undetected or unaddressed

ways. Autonomous vehicles, for example, rely heavily on

3D vision, and failures on the road within these systems can

lead to collisions and other dangerous events.

Like most statistical models, contemporary 3D detec-

tors are typically susceptible to failure on rare or unknown

events encountered in the real world. Most solutions in the

field tend to be reactive, with more data being collected a

posteriori [6, 10, 25] or models being ad-hoc retrained to

target specific already-labeled data [5, 16]. However, when

a single failure can lead to loss of life on the road, there

is an urgent need for detecting these failures in a proactive

way. Therein lies one of the central challenges of deploying

safe AI in practice: a model trained on a finite dataset can
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Figure 1: SHIFT3D creates challenging 3D objects from a

baseline real object and inserts them with realistic occlu-

sions into a point cloud scene. We also synthesize occlu-

sion patterns, therefore the synthetic objects can be placed

in various locations in the scene.

perform poorly on data it has not seen, but by definition we

cannot just collect unknown data to better understand what

a model does not know.

In this paper, we propose SHIFT3D (Synthesizing Hard

Inputs for Tricking 3D Detectors), an approach to proac-

tively synthesizing hard examples for 3D object detection

through generative modeling. SHIFT3D works by per-

turbing pre-existing objects into hard examples for 3D vi-

sion models, and as we demonstrate, works well in the au-

tonomous driving setting. The perturbative approach pro-

vides multiple benefits for us: we can explore new parts of

the input distribution which are not explicitly represented

by the training data, and the perturbation in the shape space

allows us to interpret precisely what changes in shape are

most salient in making the example challenging. Since in-

terpretability is a key benefit of this process, it is also impor-

tant for these perturbations to be naturalistic, with changes

easily recognizable by the human eye. We use naturalistic

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8493



primarily to contrast with the traditional adversarial class

of perturbations [21, 29, 9, 17], where minuscule changes

produce data that challenges the deep model, but which are

imperceptible to the human eye and thus not very helpful

for diagnosing model scalability issues in the real world.

Like traditional methods of adversarial attack [9], we

use gradients as our primary signal to generate challeng-

ing input deformations which then confuse the downstream

model. However, unlike traditional methods of adversar-

ial attack, our method creates 3D objects with observable

changes within the object topology that reflect meaningful

challenges to the downstream model. To ensure this prop-

erty, we perform gradient perturbations not on the 3D object

directly but only in an appropriate latent space, and allow a

decoder to interpret the perturbed latent space into a final

3D object. In this work, the decoder is a pre-trained signed

distance function (SDF) network [18], which is a popular

model to decode a latent vector into a 3D surface. Addi-

tionally, we can also perturb the pose of the object without

shape deformation. Our synthesized examples are also ro-

bust to background scene choice and to insertion location,

making it easy to turn a challenging SHIFT3D object into a

fully realized challenging scene.

SHIFT3D operates as follows: a baseline object is taken

from some reference mesh and we obtain a latent encoding

z for the baseline object from a pretrained DeepSDF [18]

model. The DeepSDF object is then placed in a new point

cloud at pose θ (position and orientation), with postprocess-

ing to add occlusions so the insertion will look physically

plausible. This new scene is sent through a pretrained 3D

object detector, which assigns a detection score to the in-

serted object. This pipeline allows us to differentiate the

detection score all the way back to the DeepSDF shape en-

coding z, along with the pose parameters θ. We then find

the gradients that maximize the detection error and apply

these perturbations to the latent encoding as well as to θ,

which we then decode into a final 3D object. Whether we

change z (shape) or θ (pose), we will demonstrate that these

final 3D objects have reliably low detection scores and vi-

sually look substantially different from the baseline object.

Our main contributions within this work are as follows:

• We introduce SHIFT3D, a pipeline to generate chal-

lenging 3D objects and insert them with realistic oc-

clusions into a point cloud scene.

• We show that SHIFT3D can be made fully differen-

tiable through an implicit differentiation setup, which

can extend perturbations beyond the shape of the 3D

object and to its placement geometry as well.

• We test SHIFT3D in the autonomous driving setting,

and show that the objects generated by SHIFT3D con-

sistently mislead our LiDAR-based 3D detector and

are robustly transferable between different locations

within a scene and different scenes as well.

2. Related Works

Perception is a critical aspect of ensuring safety and se-

curity in autonomous driving systems. As the use of LiDAR

sensors increases in autonomous vehicles, point cloud data

has become a common input representation. However, re-

cent research has shown that adversarial attacks are effec-

tive against point cloud models as well. Various techniques

have been proposed to perturb, add, or remove points from

the point cloud data [26, 30, 24, 15, 14, 32, 12].

3D adversarial attacks on autonomous vehicle systems

usually focus on more structurally natural or physically

realizable perturbations. LidarAdv [3] proposed creating

meshes that can deceive LiDAR detectors by using mesh

vertices to generate adversarial objects, which were 3D-

printed. Similar techniques were employed in [22], where

mesh objects were rendered on top of vehicles in LiDAR

log data, which enabled the vehicle to evade detection. Go-

ing a step further, [2] created adversarial objects that could

deceive both cameras and LiDAR in a multi-sensor fusion-

based perception system. Unlike our proposed method, all

the studies thus far on generating adversarial 3D objects for

autonomous vehicles produce objects without any seman-

tic meaning, or use mesh-based perturbations on existing

real objects, creating traditional adversarial examples that

are unrecognizable by the naked eye.

There has also been lines of work investigating adversar-

ial attacks by leveraging generative models [11, 33, 19, 27],

and generating adversarial images from scratch using ren-

dering engines [31, 23, 28, 1]. However, these works are

mostly in image space. To the best of our knowledge,

SHIFT3D is the first work that can generate plausible-

looking challenging objects and realistically render them

into a full 3D point cloud scene.

3. Method

SHIFT3D manipulates the shape and pose of an object in

a way that makes it difficult to detect for a 3D vision model,

and thus we must create a pipeline that can take an object’s

shape and pose and render it in a given scene. Importantly,

this pipeline will be differentiable with respect to both the

shape and pose parameters, which allows us to differentiate

the detector loss all the way back to these parameters. These

gradients allow perturbations in these parameters that then

generate adversarial examples.

To ensure that the pipeline is differentiable, we start with

a Sign Distance Function (SDF) [18] network g. We can

use g to find a latent shape embedding z that decodes to

a given shape, and then insert that shape with pose θ into

a scene with realistically rendered occlusions. The latter

is possible because g allows us to query every pre-existing

8494



Object Pose

Object Shape
DeepSDFY

Z

X

Rendering

Differentiable Pipeline

Baseline Object After Optimization

Gradient

Signal

Detector

Inserted

Object

Inserted

Occlusion

LiDAR

Source

Input Scene

Output Scene

Not Detected Detected

Figure 2: Overview of insertion process of SHIFT3D objects into a LiDAR scene. We use a DeepSDF model to locate points

on an object’s surface given its shape (z) and pose (θ). We reconstruct beams by connecting input sensor position to existing

LiDAR points in the input scene. If a beam intersects with the SHIFT3D object, the corresponding point is moved to the

object’s surface. SHIFT3D objects are optimized to deceive a detector model. Starting with an baseline shape or pose, we

render the object in the input scene and then minimize detection model’s score. We alternate between rendering the object

and minimizing the score for several steps until an adversarial object is produced.

point in the original scene and determine whether that point

is now behind the inserted object (i.e. occluded). Occluded

points are moved to the inserted object’s surface.

We then minimize the detection score of the object de-

tector, f . In this work, we assume we are in the white-box

setting where we have access to the detector model weights,

and thus can directly differentiate through the detector. Un-

like traditional adversarial algorithms that directly perturb

the 3D points of the object, we only modify the shape latent

parameters, z, or the pose parameters, θ; this process helps

ensure that the perturbations look natural.

Next, we describe the SDF model, rendering, and

SHIFT3D optimization in more detail.

3.1. Object Representation using DeepSDF Model

SDF is an implicit representation of the object’s shape

and is learned using a deep neural network [18] and a

dataset of 3D objects. The DeepSDF function, g, is trained

to evaluate to zero for the points on the object’s surface.

That is, given a shape vector z ∈ R
dz of an object and a

point x ∈ R
3 in space, the function g(z,x) = 0 if x is on

the object’s surface, g(z,x) < 0 if x is inside the object,

and g(z,x) > 0 if x is outside the object. In other words,

an object’s surface in 3D space is precisely the level set of

all points x for a given object shape z where g(z,x) = 0.

3.2. Object Rendering in LiDAR scene

To render an object with a given pose into a LiDAR

scene, we first extend LiDAR beams from the source to

points in the original point cloud. If any beam intersects

the inserted object, that point is now behind the object, and

so we move the corresponding point to the surface of the

object. We assume that no object points are dropped due

to sensor noise or object material type. See Figure 2 for an

overview of the rendering process.

Assume an object has shape z and pose θ. Let x̂i be a

LiDAR point in the input scene and and xi be the corre-

sponding point in the output scene after rendering the ob-

ject. We can reconstruct the laser beams in the scene by

drawing a straight line connecting the sensor with each x̂i.

Let x̂
(j)
i be the jth sample point on the line. To determine

whether a sampled point, x̂
(j)
i , lies inside the object, we

evaluate it using the SDF function g. Since the SDF func-

tion is trained in the object coordinate frame, we need to

transfer the point x̂
(j)
i into the object coordinate frame using

the pose of the object. Let this transformation from sensor

coordinate to object coordinate be represented by T (·;θ),
which is parameterized by the pose of the object or the rel-

ative transform between the sensor and the object. To put it

concisely, the point, x̂i, is occluded by the inserted object

if g(z, T (x̂
(j)
i ;θ)) < 0 for any j. If this condition is met,

then we need to move x̂i to the object’s surface. To do this,

we perform a binary search to find the point xi, that lies

between x̂
(j)
i and the LiDAR sensor, and is on the object’s

surface within some tolerance ε; i.e. , |g(z, T (xi;θ))| < ε.

On the other hand, if g(z, T (x̂
(j)
i ;θ)) > 0 holds for all

j, x̂i remains in its original position, i.e. xi ← x̂i. Note

that we only use laser beams reconstructed from existing Li-

DAR points in the input scene, and do not create new laser

beams. More etailed information of rendering are presented

in Section A of the supplementary material.
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3.2.1 Realism Constraints on Object Pose

We can also improve rendering quality by ensuring that the

rendered object satisfies the following physical constraints:

The SDF object does not overlap with the scene ob-

jects. To prevent the SDF object from overlapping with ex-

isting objects in the input scene, we avoid object positions

that would result in any point in the scene having an SDF

value less than −εoverlap < 0.

The SDF object touches the ground. To ensure that the

SDF object is in contact with the ground, we enforce that at

least one point in the original scene has SDF value greater

than, εfloat > 0.

3.3. Natural Adversarial Perturbation of the Object

The rendered scene can be represented with a set of n
3D points X = {xi}, i = 1, . . . , n. The detector takes X as

input and produces a set of bounding boxes and their corre-

sponding detection scores. Let the set of proposed bound-

ing boxes and their scores be denoted by Y = {(yj , pj)},
where yj denotes the bounding box coordinates for the j-th

bounding box, pj is the corresponding detection score. The

number of bounding boxes proposed depends on the scene

size and the anchor resolution in the detector architecture.

We then render the object in the scene with a given z and

θ, and compute the gradients w.r.t. z or θ to minimize the

detection score. After updating z or θ, we re-render the

object. We alternate between updating the parameters and

re-rendering until we achieve a desired detection score.

Note that though the rendering pipeline involves beam

casting with binary search, which is not a differentiable op-

eration, once a specific point xi is found and is affixed to the

SHIFT3D object’s surface, the rest of the pipeline is fully

differentiable w.r.t. z and θ. We now discuss the differenti-

ation process and loss function in detail.

3.3.1 Adversarial Loss Functions

To fool the detector, we define the adversarial loss:

Ladv =
∑

(yi,pi)∈Y

−IoU(y∗,yi) log(1− pi), (1)

where y∗ is the inserted object’s ground-truth bounding

box, and IoU represents standard intersection over union

function. A similar adversarial function has been used in

[22] and [29]. Our adversarial loss function is designed to

suppress all bounding box proposals that overlap with the

ground truth, with the degree of suppression weighted by

the amount of overlap. During optimization, we only back-

propagate through the the detection confidence, pi, to focus

on minimizing the detection score rather than the bounding

box parameters.

Given an input shape, z0, we regularize the perturbed

shape, z, to be close to z0. Specifically, we add an �2 reg-

ularization to Ladv and it prevents the perturbed shape from

significantly diverging from the original shape.

min
z
L(z) = min

z
Ladv(z) + λ‖z − z0‖

2
2, (2)

where λ is a hyper-parameter that controls the strength of

regularization.

When optimizing object pose, θ, we apply hard con-

straints to restrict the θ value within an �2 norm ball B(θ0)
centered at the input pose, θ0. This hard constraint helps to

ensure that the object does not move too far away from the

baseline position. The optimization problem for the pose

parameters can be written as,

min
θ∈B(θ0)

L(θ) = min
θ∈B(θ0)

Ladv(θ). (3)

We note that during this process, any change made to the

object’s pose will also necessitate a corresponding modifi-

cation of its ground truth y∗ in Ladv at each step.

3.3.2 Optimization

To optimize the loss functions in Equations (2) and (3), we

need to back-propagate through both the detector model, f ,

and the the object’s SDF function, g. The gradients dL/dz
and dL/dθ can easily be computed using implicit differen-

tiation, and are given by,

dL

dz
=

n∑
i=1

mi

dxi

dz

dL

dxi

, (4)

dL

dθ
=

n∑
i=1

mi

dxi

dθ

dL

dxi

, (5)

where the mask mi has value of 1 if xi is on object’s surface

and 0 otherwise. mi helps remove any gradients from back-

ground points that do not contribute to the object’s shape

or pose. The gradients dxi/dz and dxi/dθ are dz × 3 and

dθ×3 Jacobian matrices, respectively. For the points on the

object’s surface, these gradients can easily be determined

through implicit differentiation, since they satisfy the con-

straints g(z,xi) = 0.

3.3.3 Gradients for Adversarial Shape

To compute dxi/dz in Eq. (4), we parameterize the LiDAR

points as xi = kiei + s, where s ∈ R
3 denotes the LiDAR

sensor position, ei ∈ R
3 is a unit vector in the direction of

xi positioned at s, and ki is the distance of the point from

the sensor. With this parameterization, we can represent
dxi

dz
= dki

dz
eTi , and Eq. (4) can be written as,

dL

dz
=

n∑
i=1

mi

(
ei ·

dL

dxi

)
dki
dz

. (6)
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Since the points xi on the object (mi = 1) are subject to the

constraint g(z,xi) = 0, we can use implicit differentiation

to calculate dki/dz, and write Eq. (6) as,

dL

dz
= −

n∑
i=1

mi

(
ei ·

dL

dxi

)(
∂g

∂ki

)−1
∂g(·,xi)

∂z

= −
n∑

i=1

mi

(
ei ·

dL

dxi

)(
ei ·

∂g(z, ·)

∂xi

)−1
∂g(·,xi)

∂z
.

(7)

3.3.4 Gradients for Adversarial Pose

Similar to shape gradient, dki/dz , we can compute dki/dθ
and use implicit differentiation to update Eq. (5) as,

dL

dθ
=

n∑
i=1

mi

(
ds

dθ
+ ki

dei
dθ

+
dki
dθ

eTi

)
dL

dxi

.

=
n∑

i=1

mi

[
ds

dθ
+ ki

dei
dθ
−

(
∂g

∂ki

)−1
∂g

∂θ
eTi

]
dL

dxi

=

n∑
i=1

mi

(
ds

dθ
+ ki

dei
dθ

)[
I−

(
ei ·

∂g

∂xi

)−1
∂g

∂xi

eTi

]
dL

dxi

.

(8)

We present the overall procedure for adversarial shape and

pose generation in Algorithm 1. Note that for pose gen-

eration, after gradient descent, we also need to project the

resulting θ back to B(θ0) to satisfy the hard constraints.

Details of calculating gradients in (7) and (8) are discussed

in Section A.3 of the supplementary materials.

4. Experiments

We first describe our datasets and models, followed by

an overview of our experimental setup. We then dive into

results, highlighting that SHIFT3D outputs are effective at

confusing detectors and robust along various axes, while

demonstrating the potential insights SHIFT3D can provide

for improving detection models in the real world.

4.1. Datasets and Models

We utilize the Waymo Open Dataset (WOD) [20], which

provides LiDAR point clouds and 3D bounding box anno-

tations of objects detected by LiDAR sensors mounted on

autonomous vehicles. The large scale and high quality of

WOD, coupled with its extensive geographical coverage,

make it an excellent benchmark for evaluating a variety of

scenarios. Following the approach of [22], we focus on the

“Vehicle” category in WOD and restrict our evaluation to

2D bounding boxes in a bird’s eye view.

Our object detection models are based on the PointPillars

architecture [13] and SST [8], which operate solely on point

cloud data without utilizing auxiliary inputs such as inten-

sity. Specifically, PointPillars partitions the input points into

Algorithm 1 Pseudocode for adversarial perturbations of an

object’s shape or pose in a given LiDAR scene.

Input: Object SDF model g(·, ·), initial shape, z0, or pose

parameters, θ0, detector model f , LiDAR sensor po-

sitions s, input scene {x̂i}, maximum iterations Niter,

and learning rate α.

Output: Adversarial shape, zadv, or pose, θadv, parameters.

1: Calculate LiDAR beam length k̂i ← ‖x̂i − s‖2.

2: Calculate LiDAR beam directions ei ← (x̂i − s)/k̂i.
3: z ← z0 or θ ← θ0; Lmin ←∞.

4: Render object: calculate rendered points {xi}, and set

mi ← 1 when points on the object. (Section 3.2).

5: while iteration < Niter do

6: Calculate dL/dz using Eq. (7) or dL/dθ using

Eq. (8).

7: z ← z−α·dL/dz or θ ← ProjB(θ0)
[θ−α·dL/dθ].

8: Re-render object with the updated z or θ in the in-

put scene and update {xi} and mi.

9: Forward propagate to obtain L.

10: if xi satisfy all realism constraints then

11: Lmin ← min{Lmin, L}.
12: if L = Lmin then

13: zadv ← z or θadv ← θ.

discrete bins (i.e., pillars) from a bird’s eye view, and for

each pillar, extracts features using PointNet. SST uses a

single-stride sparse transformer to maintain the original res-

olution from the beginning to the end of the network. We

trained our model on the WOD training set and use the vali-

dation set of WOD as input scenes for rendering objects. On

the vanilla detection task, our PointPillars and SST models

achieve comparable performance with the baseline in [20]

(refer to Section B of the supplementary material for more

on baseline detection metrics, such as AP and APH).

Our DeepSDF model is trained on the “Automobile” cat-

egory of ShapeNet [4]. We used the same training proce-

dure and model architecture as the original DeepSDF pa-

per [18], where the latent shape encoding z has a dimension

of dz = 256. We selected 5 representative vehicle objects

from the “Automobile” category as our baseline objects:

Coupe, Sports Car, SUV, Convertible, and Beach Wagon.

The meshes of these objects reconstructed by DeepSDF are

depicted in the third column of Figure 7. To ensure that the

dimensions of each object are realistic and consistent with

the natural vehicles in the scene, we manually scaled each

baseline object.

4.2. Setup

We insert our baseline SDF objects into 500 randomly

chosen WOD validation set scenes. To ensure diversity in

object placement, we randomly positioned the inserted ob-

jects between 15 and 50m from the autonomous vehicle.
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The object’s heading was randomly chosen between 0 and

2π. Keeping objects at least 15m away reduces the number

of points rendered on the object and avoids out-of-memory

issues. To describe the pose transformations, we use a 6-

dimensional vector θ consisting of the coordinates (x, y, z)
and the angles of yaw, pitch, and roll.

We draw a sphere with a 7m radius centered at the lo-

cation of the inserted object. If we emit a beam from the

LiDAR source to any point, and that beam lies completely

outside this sphere, we ignore that point as it is far enough

away from the inserted object to not affect the rendering

process. For additional implementation details, please refer

to Section A in supplementary material.

4.3. Hyper-parameters

We run 40 steps of adversarial perturbation. During op-

timization, we record the result with lowest loss that also

satisfies all constraints specified in Section 3.2.1. We pick a

learning rate of 0.01 for all experiments after extensive hy-

perparameter search. In adversarial shape optimization, we

select a λ of either 1 or 10, depending on which results in the

lowest loss value Ladv(z). However, in cases where differ-

ent settings of λ produce very similar loss values, we will

choose the larger λ as it keeps the perturbed shape closer

to the original. Refer to Section B of the supplementary

material for detailed discussion on hyper-parameters. To

achieve realistic object placement, we set εoverlap = −0.02
and εfloat = 0.02, which are defined in Section 3.2.1. Addi-

tionally, we exclude cases where the inserted SDF objects

may be occluded by other objects in the scene, by disallow-

ing inserted objects that result in fewer than 300 on-object

points post rendering. Each object is placed randomly with

the above realism constraints into 500 scenes. Note that our

focus is on the detector’s performance under varying condi-

tions, including rare ones. So we consciously opted not to

enforce additional traffic constraints we placing the inserted

objects.

Area Under Curve (AUC)

Method Coupe
Sports

Car
SUV

Conv.

Car

Beach

Wagon

Baseline 0.755 0.756 0.755 0.681 0.779

Random 0.716 0.721 0.728 0.625 0.746

SHIFT3D

+noise
0.469 0.451 0.473 0.392 0.519

SHIFT3D 0.466 0.448 0.469 0.390 0.514

Table 1: The AUC for the curves in Figure 3, which demon-

strates that SHIFT3D produces challenging examples that

confuse a 3D detector far more successfully than random

perturbations. Small perturbations of SHIFT3D objects do

not appreciably affect their ability to confuse detectors.

4.4. Evaluation Metrics

We consider an inserted 3D object to be detected if a

predicted bounding box with detection score greater than a

threshold exists with box center less than 5m from the cen-

ter of the added object. If multiple boxes meet these criteria,

we select the box with the highest detection score. To assess

the performance of the detector, we generate a threshold-

recall curve by sweeping the detection score threshold from

0 to 1 and calculating the recall rate for the added SDF ob-

jects (the precision of detecting inserted objects is always

100%), with AUC being then calculated for each curve as

a useful overall detector performance metric. Refer to the

supplementary material for detailed discussion on metrics.

4.5. Adversarial Shape Generation Results

We first present our experimental results on PointPillars,

while the results on SST are shown in Section E of the sup-

plementary material.

Figure 3 presents the threshold-recall curve for each

baseline object and its corresponding adversarial objects

across the 500 scenes. Since the generated adversarial ob-

jects are scene-specific, their shapes vary across different

scenes. To quantify the overall reduction in recall, we com-

pute the area under the threshold-recall curves (AUC) and

report the numerical values in Table 1.

We compare the performance of our method against ob-

jects generated by randomly perturbing the latent shape en-

coding. For each adversarial object, we compute the �2
distance between the original encoding z0 and the encod-

ing zadv generated by SHIFT3D, and generate another ob-

ject by randomly selecting another encoding zrand on a dz-

dimensional sphere with a radius of ‖z0 − zadv‖2. The re-

sults presented in Figure 3 and Table 1 clearly show that the

recall rate of the adversarial objects is significantly lower

compared to both the randomly perturbed and baseline ob-

jects. These findings demonstrate that our method is sub-

stantially more effective at generating adversarial samples.

To analyze the robustness of SHIFT3D outputs, we sample

10 additional z encodings around zadv by adding Gaussian

noise with standard deviation 0.01, which is approximately

5% of the average value of ‖z0 − zadv‖2. As shown in

Figure 3 and Table 1, such examples have almost identi-

cal Threshold-recall curves and area under curve values as

those of zadv.

To assess the transferability of SHIFT3D outputs across

different locations in a scene, we randomly placed each of

the 500 objects in 10 distinct scenes while satisfying the

physical placement constraints described in Section 3.2.1.

We applied random yaw rotations during the placements

and maintained consistency by subjecting the baseline ob-

jects to identical rotation and translation operations. We

then divided the resulting adversarial and baseline objects

into 10m × 10m cells and computed the average reduction
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(a) Coupe (b) Sports Car (c) SUV (d) Convertible Car (e) Beach Wagon

Figure 3: Threshold-recall curves to evaluate adversarial shape generation for different vehicles in the “Automobile” category.

Each curve represents the recall rate of the detector at different detection threshold values, computed from 500 scenes with

the corresponding vehicle present. The proposed method for generating adversarial shapes shows significantly lower recall

rates compared to random perturbation, demonstrating its effectiveness in deceiving the detector.

(a) Coupe (b) Sports Car (c) SUV (d) Convertible Car (e) Beach Wagon

Figure 4: Evaluation of the robustness of adversarial shapes generated for all vehicles across various poses and locations in

the scene from a bird’s eye view. The plot depicts the detection score reduction compared to the original shape in the same

pose, where black cells indicate no placement. The rectangle at the center represents the autonomous vehicle. This figure

illustrates the transferability and robustness of the adversarial shapes across different locations in the input scene scene.

in detection scores. As shown in Figure 4, we found that

the detection scores of the adversarial objects consistently

decreased across all locations, indicating that the adversar-

ial shapes are not location-specific and remain robust when

placed in different positions in a scene.

In Figure 7 we present visualizations for the challeng-

ing objects generated by SHIFT3D, together with their cor-

responding point cloud scenes. We also point out the se-

mantic patterns of the SHIFT3D objects. Crucially, as we

visualize more SHIFT3D objects, we can begin to detect

semantic patterns; for example, vehicles presenting with

lower chassis will very often fool the 3D detector. These

insights highlight a key benefit of using SHIFT3D, as we

now have concrete candidates for proactive model improve-

ments. To validate these semantic features present in the

log data, we identify and test natural objects in the WOD

log data that are most similar to the objects generated by

SHIFT3D. Those objects are retrieved by reconstruct object

shapes with DeepSDF and select the object whose latent

shape vector znatural∗ is the closest one to a SHIFT3D gen-

erated latent shape vector zSHIFT3D. Detailed information

about this experiment is presented in Section F of the sup-

plementary material.

Visualization of more objects generated by SHIFT3D is

presented in Section C of the supplementary material. In

Figure 10 of the supplementary, we also present visual-

izations of adversarial objects and the corresponding de-

tection scores at various steps of the optimization process

in SHIFT3D. We also test SHIFT3D on an SST detector

and our results are presented in Section E in the supple-

mentary materials. Additionally, we report transferability

of SHIFT3D between SST and PointPillars models in Sec-

tion E.3.

4.6. Adversarial Pose Generation Results

We present threshold-recall curves for both original and

SHIFT3D poses of objects across 500 scenes in Figure 5,

along with comparisons to randomly generated poses. For

pose generations in both SHIFT3D and random, we limit

displacement to under 4 meters on the xy-plane. We manu-

ally verified that a buffer zone of 3 meters around the object

is enough to prevent any part of it from exceeding the the

7m sphere we draw around the object as in Section 4.2. We

also limit rotations to under ±0.1 rads on the pitch and roll

axes, and do not limit rotation along the yaw axis, while

ensuring that the constraints in Section 3.2.1 are satisfied.

Our results, presented in Figure 5 and Table 2, demonstrate

a significant reduction in recall performance for adversar-
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(a) Coupe (b) Sports Car (c) SUV (d) Convertible Car (e) Beach Wagon

Figure 5: Threshold-recall curves evaluate adversarial pose for “Automobile” category vehicles. Similar to the curves in

Figure 3, each curve shows the detector recall rate at different thresholds, from 500 scenes with the vehicle present. Our

method exhibits significantly lower recall rates, outperforming random pose in deceiving the detector.

Area Under Curve (AUC)

Method Coupe
Sports

Car
SUV

Conv.

Car

Beach

Wagon

Baseline 0.755 0.756 0.755 0.681 0.779

Random 0.683 0.705 0.719 0.611 0.713

SHIFT3D 0.580 0.574 0.571 0.489 0.648

Table 2: AUC metric of the curves in Figure 5 quantifies the

proposed method’s improvements in adversarial pose gener-

ation. Random perturbations have little effect on detection

score, while our method results in lower AUC values for all

vehicles, successfully deceiving detection performance.

ial objects, even when placed in alternate poses. In con-

trast, random pose perturbations with the same constraints

result in a minimal reduction in recall. Visualizations for

SHIFT3D adversarial pose generation are presented in Sec-

tion D in the supplementary material.

4.7. Improving Model Robustness Using Objects
Generated by SHIFT3D

We also conducted a pilot study which aims to in-

vestigate the effectiveness of using objects generated by

SHIFT3D for data augmentation and improving the robust-

ness of our detector model. We randomly select 2000 scenes

containing objects generated by our method from our five

baseline vehicles and use them to fine-tune our PointPil-

lar model with a learning rate of 10−7 for one epoch. We

evaluate the performance of the detector model by testing

it on another 500 scenes, each containing an object from

the 5 baseline vehicles. We compare the performance of

the finetuned detector model under SHIFT3D against the

vanilla detector and plot the threshold-recall curve in Fig-

ure 6. Additionally, we report the AUC values in Table 3.

Our results show a clear improvement in the AUC metric for

both baseline and SHIFT3D generated objects. Addition-

ally, we evaluate the performance of the fine-tuned model

on the vanilla WOD detection task and present the results in

Figure 6: Threshold-recall curves before and after fine-

tuning the 3D detector with objects generated by SHIFT3D.

Table 4 in Section B.1 of the supplementary material. Our

result reveals that the performance metrics of the fine-tuned

model are nearly identical to those of the vanilla detector

when evaluated on the natural WOD data. This suggests

that our fine-tuning approach does not introduce any signif-

icant regression. Furthermore, we may observe a slight im-

provement in the model’s performance on the natural data,

although this effect, if present, appears to be rather small.

Area Under Curve (AUC)

Models Vanilla Detector Finetuned Detector

Baseline 0.751 0.774

SHIFT3D 0.482 0.514

Table 3: AUC metric values before and after fine-tuning the

3D detector with objects generated by SHIFT3D.

5. Conclusion

SHIFT3D is a differentiable pipeline for generating chal-

lenging yet natural examples that provide preemptive in-

sights into failure modes in 3D vision systems. We demon-

strated that all model inputs generated by SHIFT3D reliably

confuse 3D detectors in an autonomous vehicles setting, and

do so regardless of the insertion location or reference scene.

Through diagnostic information provided by SHIFT3D, we

will be better equipped to catch failures within 3D vision

models before they appear, and circumvent scenarios where

single missed objects lead to catastrophic results.
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Input Scene Baseline Object
Baseline Object

in the Scene

SHIFT3D Object

and Their Semantic Patterns

SHIFT3D Object

in the Scene

SUV Detection Score: 0.74 smaller windshield Detection Score: 0.07

Sports Car Detection Score: 0.91
lower chassis

square front
Detection Score: 0.04

Convertible Car Detection Score: 0.71
lower chassis

round front
Detection Score: 0.07

Beach Wagon Detection Score: 0.93
shorter chassis

hatchback
Detection Score: 0.10

Coupe Detection Score: 0.93
shorter chassis

wider
Detection Score: 0.22

Figure 7: Visualizations of challenging objects created by SHIFT3D and their scenes. Red boxes are detector’s output.
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