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Abstract

CutMix is a vital augmentation strategy that determines
the performance and generalization ability of vision trans-
formers (ViTs). However, the inconsistency between the
mixed images and the corresponding labels harms its ef-
ficacy. Existing CutMix variants tackle this problem by
generating more consistent mixed images or more precise
mixed labels, but inevitably introduce heavy training over-
head or require extra information, undermining ease of
use. To this end, we propose an novel and effective Self-
Motivated image Mixing method (SMMix), which motivates
both image and label enhancement by the model under
training itself. Specifically, we propose a max-min atten-
tion region mixing approach that enriches the attention-
focused objects in the mixed images. Then, we introduce
a fine-grained label assignment technique that co-trains
the output tokens of mixed images with fine-grained su-
pervision. Moreover, we devise a novel feature consis-
tency constraint to align features from mixed and unmixed
images. Due to the subtle designs of the self-motivated
paradigm, our SMMix is significant in its smaller train-
ing overhead and better performance than other CutMix
variants. In particular, SMMix improves the accuracy of
DeiT-T/S/B, CaiT-XXS-24/36, and PVT-T/S/M/L by more
than +1% on ImageNet-1k. The generalization capability
of our method is also demonstrated on downstream tasks
and out-of-distribution datasets. Our project is available at
https://github.com/ChenMnZ/SMMix.

1. Introduction

Vision transformers (ViTs) [12] have made substantial

breakthroughs across various vision tasks, such as classifi-

cation [12, 44, 51, 26, 42, 3], detection [2, 60, 30, 13], and

segmentation [57, 52, 22, 23]. However, the data-hungry

problem [12, 44] of ViT causes a serious overfitting problem

when the data is insufficient. In order to improve the gen-
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Figure 1: Training time vs. accuracy with DeiT-S on

ImageNet-1k. SMMix outperforms existing methods with

light overhead.

eralization of ViTs, data mixing augmentation techniques

such as Mixup [56] and CutMix [54], are used in the ViTs

training recipe. In particular, CutMix randomly crops a

patch from the source image, pastes it into the target im-

age, and forms a ground-truth label by mixing the labels of

the source and target images in proportion to the area ratio

of the mixed image. CutMix [54] has been demonstrated

to greatly enhance the generalization of ViTs. For example,

CutMix increases the top-1 accuracy of ViT-Small [12] by

4.1% [31] on ImageNet-1k [9] validation set.

Despite the progress, the image-label inconsistency is-

sue also stems from the random patch selection and linear

label combination. Figure 2 illustrates a typical example,

in which the mixed image of CutMix does not contain any

hints of ladybirds. However, ladybird still appears on the

generated mixed label. Such an image-label inconsistency

issue prevents ViTs from further improving performance.

Two mainstream methods: 1) image-driven [46, 28, 48, 36]

and 2) label-driven [4, 34, 26, 55, 35], have recently been

considered to overcome the drawbacks of CutMix. The for-

mer method is dedicated to enhancing the saliency of mixed

images, while the latter method aims to enhance the pre-

cision of mixed labels. Nevertheless, these methods usu-

ally come with heavy training overhead, such as requiring

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: CutMix vs. SMMix. CutMix pastes a randomly-

cropped patch in the source image to the target image, while

SMMix pastes the attentive region in the source image to the

unattentive region in the target image. SMMix is co-trained

by three fine-grained labels instead of a simple mixed label

as CutMix.

pre-trained models [48, 34, 26, 55], double forward and

backward propagations [27, 28, 36], or additional genera-

tors [36], which may undermine the ease of the use of image

mixing technique. Moreover, these methods only consider

the image and label enhancement in isolation, resulting in

limited efficiency.

To address the aforementioned challenges, we propose

a novel method, Self-Motivated image Mixing (SMMix),

to enhance image mixing with ViTs. By leveraging the

bootstrapping capabilities of the model under training itself,

SMMix simultaneously motivates image and label enhance-

ment with light training overhead. Specially, we first use the

image attention score in Eq. (6) that accumulates attention

score across all the image tokens. The motivations are from

a widely-accepted actuality in existing works [32, 53, 5], in

which the class attention score from the self-attention oper-

ation can locate semantic objects. Therefore, we opt to use

the image attention score to extend the general applicabil-

ity of SMMix, since class attention is often unavailable for

ViT models without a class token, while the image atten-

tion score can be easily obtained by feeding original images

to a ViT model. With the guidance of the image attention

score, we select the maximum-scored (most attentive) re-

gion from a source image and paste it to the region with a

minimum attention score in a target image. We term this

process as max-min attention region mixing, which allevi-

ates the image-label inconsistency issue by enriching the

attention-focused objects in mixed images.

Distinctive from the prerequisite to tuning mixed la-

bels [4, 34], capturing attentive objects in mixed images al-

lows for a fine-grained label assignment. We supervise dif-

ferent regions in a mixed image with different labels. Con-

cretely, the output tokens of a mixed image are assigned

three types of labels to accomplish the label enhancement,

as illustrated in Figure 2, including mixed image label, tar-

get image label, and source image label. We aggregate all

output tokens, the result is then supervised by the mixed

image label. We also use region-specific supervision, i.e.,
target image labels and source image labels, to supervise

the aggregated results of tokens from the target regions and

source regions, respectively.

With label-consistent mixed images, we can extract

mixed image features from ViTs. To correctly recognize

the mixed images, we expect the features of mixed images

to fall into a consistent space with those of original unmixed

images. We realize this function by creating a feature con-
sistency constraint, which aligns the feature distributions

between mixed images and the linear combination of un-

mixed images. Specially, SMMix can obtain the feature

distributions and the image attention score of unmixed im-

ages from the same forward propagation of the model under

training, resulting in light overhead.

Based on the above considerations, three key compo-

nents are proposed in this paper, including 1) max-min at-

tention region mixing (Sec. 4.1), 2) fine-grained label as-

signment (Sec. 4.2), and 3) feature consistency constraint

(Sec. 4.3). We term our method self-motivated image mix-
ing, since these components eliminate the dependency on

pre-trained models and simply depend on the model under

training itself. We have performed extensive experiments,

which demonstrate the powerful ability of our SMMix to

boost the performance of various ViT-based models, includ-

ing DeiT [44] with a plain architecture, PVT [50] with a

hierarchical architecture, CaiT [45] with deeper depth, and

Swin [37] with local self-attention. Moreover, our SMMix

achieves better training overhead and performance trade-off

because of the self-motivated paradigm. As shown in Fig-

ure 1, our SMMix can achieve state-of-the-art top-1 accu-

racy with light training overhead and does not require pre-

trained models.

2. Related Work

2.1. Vision Transformers

Vision Transformer (ViT) [12] shows the visual recogni-

tion ability of an original transformer [47]. However, ViT

is easier to overfit on small datasets due to the lack of in-

ductive bias. To handle this problem, DeiT [44] introduces

a powerful training recipe with various data augmenta-

tions [54, 56, 8] and regularization techniques [24, 21, 58].

Based on the DeiT [44] training recipe, many ViT-based ar-

chitectures [37, 42, 7, 11, 40, 20, 6, 3, 45, 50] are proposed

to improve performance on various vision tasks. In this

work, we focus on improving CutMix [54] augmentation,
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one of the data augmentation methods in DeiT [44] training

recipe.

2.2. Variants of CutMix

CutMix [54] randomly crops a patch from the source im-

age and pastes it to the same location in the target image.

Ground-truth labels of mixed images are generated by lin-

early combining the labels of the source and target images

in proportion to the area ratio of the mixed images. How-

ever, such random crop-and-paste may cause image-label

inconsistency. Existing works try to alleviate such a prob-

lem from two perspectives as follows.

Image-driven Reconstruction. Image-driven recon-

struction methods aim to maximize the saliency of mixed

images. SaliencyMix [46] and AttetiveMix [48] select the

cropped patches based on the saliency maps, which are ob-

tained by statistical saliency model or pre-trained model.

Furthermore, based on double forward and backward prop-

agations, PuzzleMix [28] and Co-Mixup [27] find the op-

timal mixed mask by solving the combinatorial optimiza-

tion problem. Recently, instead of manually designing the

mixing policies, AutoMix [36] trains an additional mixup

generator to generate mixed samples. As can be seen, the

strategies for maximizing the saliency of mixed images are

becoming increasingly sophisticated. To address such prob-

lems, our SMMix proposes a simple yet effective max-min

attention region mixing to enhance the mixed images.

Label-driven Reconstruction. Label-driven recon-

struction methods dedicate to generating more precise la-

bels. TransMix [4] mixes labels based on the class attention

score. Other works [34, 26, 55] rely on a big-scale model

pre-trained on JFT-300M [43]. Based on the activation map

of pre-trained model, TokenMix [34] assigns content-based

mixes labels to mixed images, TokenLabel [26] generates

token-level supervision, and ReLabel [55] reorganizes the

ImageNet-1k training set into a multi-label framework. In-

stead of depending on pre-trained models and adjusting the

mixed labels, our SMMix proposes fine-grained label as-

signment, which provides fine-grained supervision to the

output tokens by ground-truth labels.

3. Preliminary

3.1. CutMix Augmentation

CutMix [54] enhances data diversity by mixing images.

Let x and y denote a training image and its label, where

x ∈ R
H×W×C . Given a source image-label training pair

(xA,yA) and a target one (xB ,yB), CutMix generates a

new training sample (x̃, ỹ) as follows:

x̃ = M� xA + (1−M)� xB ,

ỹ = λyA + (1− λ)yB , (1)

where M ∈ {0, 1}H×W denotes a rectangular binary mask

that indicates where to drop or keep in the two images, � is

element-wise multiplication, and λ is the combination ratio

sampled from a beta distribution. Note that λ indicates the

area ratio of xA in mixed image x̃, i.e., λ =
∑

M
HW .

3.2. Vision Transformer

Loss Computing. Given a ViT-based model V , the out-

put token sequence of an input image x is:

V(x) = [(Xcls);X1; ...;XN ], (2)

where N is the total number of image tokens, Xi is the

i-th image token, and Xcls corresponds to the class to-

ken, which exists only in some of the ViT-based architec-

tures [44, 50, 45]. The final prediction distribution Y is

obtained with a classifier F :

Y =

{ F(Xcls) ,w/ class token,

F( 1
N

∑N
i=1 X

i) ,w/o class token.
(3)

The classification loss for the image x is:

L = CE(Y,y), (4)

where CE(·, ·) represents the cross entropy function.

Self-Attention Operation. Self-attention operation is

the key component of ViT. Given an image token sequence*

T ∈ R
N×d. It is firstly linearly mapped into three matrices,

namely Q, K and V. Then, the self-attention operation is

computed as:

A(Q,K) = Softmax(
QKT

√
d

) = [A1;A2; ...;AN ],

Attention(Q,K,V) = A(Q,K)V. (5)

The image attention score α ∈ R
N is derived as:

α =
1

N

N∑
i=1

Ai = [α1, α2, ..., αN ]. (6)

The image attention score above is the result of single-

head self-attention. For multi-head self-attention, we sim-

ply average across all attention heads to get the final image

attention score.

4. Self-Motivated Image Mixing
This section formally introduces our SMMix, a novel im-

age mixing method that maximizes the information of the

mixed image and provides more fine-grained labels. Fig-

ure 3 illustrates an overview of our proposed SMMix. De-

tails are given below.

*We take the case without class token as an example here.
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Figure 3: Framework of SMMix that contains three components: a) max-min attention region mixing: maximizing the

information of mixed images according to the image attention score. b) fine-grained label assignment: applying different su-

pervision labels to tokens from different regions. c) feature consistency constraint: restraining the model to extract consistent

features for mixed and unmixed images. The dashed arrows indicate no backward propagation. (Best viewed in colors)

4.1. Max-Min Attention Region Mixing

To maximize the information of mixed images, our max-

min attention region mixing replaces a minimum-scored re-

gion of the target image with a maximum-scored region

of the source image. As depicted in Figure 4, we split

the source image xA and the target image xB into non-

overlapping patches of size P ×P . A total of N = H
P × W

P
patches are obtained for each image. Therefore, xA and

xB are reorganized as xA,xB ∈ R
H
P ×W

P ×(P 2C), row of

which corresponds to a token. Then, we feed them into a

ViT model to get the corresponding image attention scores

αA ∈ R
N and αB ∈ R

N . Similarly, we rearrange the

shape of their image attention score vectors, αA and αB , to

matrices of H
P × W

P .

Similarly to CutMix, we intend to crop a region from the

source image and paste the region into the target image to

form a mixed image. To this effect, we introduce a side ratio

δ, sampled from a uniform distribution (0.25, 0.75), to de-

termine the total �δH
P � × �δW

P � patches within the cropped

region. Our core difference in this paper is to locate the

most informative region in the source image, and the least

informative region in the target image. Concretely, the cen-

ter indices of these two regions are defined as:

is, js = argmax
i,j

∑
p,q

α
i+p−�h

2 �,j+q−�w
2 �

A ,

it, jt = argmin
i,j

∑
p,q

α
i+p−�h

2 �,j+q−�w
2 �

B , (7)

Source Image

Target Image Image Attention

Dog 0.75 Horse 0.25

Dog 1.0

Horse 1.0

Maximum-scored region

Minimum-scored region

Image Attention

Figure 4: The pipeline of max-min attention region mixing.

where h = �δH
P �, w = �δW

P �, p ∈ {0, 1, ..., h − 1}, and

q ∈ {0, 1, ..., w − 1}. It is intuitive that the selected region

contains patches with the maximum attention score of the

source image and the minimum attention score of the target

image.

Then, in contrast to CutMix of Eq. (1), we obtain the new

mixed training sample (xM ,yM ) as follows:

xM = xB ,

x
it+p−�h

2 �,jt+q−�w
2 �

M = x
is+p−�h

2 �,js+q−�w
2 �

A ,

yM = λMyA + (1− λM )yB , (8)

where λM = hwP 2

HW .

4.2. Fine-grained Label Assignment

We feed the mixed image xM to the ViT model to

obtain the final output image token sequence XM =
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[X1;X2; ...;XN ] and prediction distribution YM . Then,

the traditional classification loss is:

Lcls = CE(YM ,yM ). (9)

Such a loss only considers the overall mixed image in-

formation. However, the introduced image mixing method

(Sec. 4.1) endows objects of yA and yB within the content

of the mixed image xM . Therefore, it is plausible to super-

vise different regions in mixed images with different labels.

To achieve this purpose, we reshape the final output image

token sequence XM into image shape of XM ∈ R
H
P ×W

P ×d

where d is the final token embedding size. Accordingly, we

aggregate the tokens from the source image as:

X̄A =
1

hw

∑
p,q

X
it+p−�h

2 �,jt+q−�w
2 �

M , (10)

and aggregate the tokens from the target image as:

X̄B =
1

HW − hw

∑
i′,j′

Xi′,j′
M , (11)

where (i′, j′) ∈ {
(i′, j′)|1 ≤ i′ ≤ H

P , 1 ≤ j′ ≤
W
P , (i′, j′) /∈ {(it + p− �h

2 �, jt + q − �w
2 �)}

}
. Then, their

prediction distributions are derived from the classifier F :

ȲA = F(X̄A),

ȲB = F(X̄B). (12)

Then, SMMix supervises the fine-grained prediction dis-

tributions with fine-grained labels, yA and yB , as:

Lfine =
1

2

(
CE(ȲA,yA) + CE(ȲB ,yB)

)
. (13)

Such fine-grained supervision can help ViTs locate target

objects and improve their recognition ability. Besides, the

additional computational costs are negligible, relying only

upon the existing outputs and labels.

4.3. Feature Consistency Constraint

The semantic content of the mixed image, xM , is equiv-

alent to the mixing of the semantic content of the unmixed

images, xA and xB . However, the semantic content of the

mixed image is more complex, increasing the difficulty of

extraction of features. To help features of the mixed im-

ages fall into a consistent space with those of the original

unmixed images, similar to label combination, we linearly

combine the prediction distributions YA and YB of un-

mixed images xA and xB , and supervise YM with the com-

bined prediction distribution. Then, we have:

Lcon = KL
(
YM , λMYA + (1− λM )YB

)
, (14)

where KL(·, ·) represents the Kullback-Leibler divergence.

Note that, the prediction distributions, YA and YB in

Eq. (14), and image attention score, αA and αB in Eq. (7),

of unmixed images are obtained in the same forward propa-

gation during training. Therefore, SMMix does not rely on

pre-trained models and requires only one additional forward

propagation in the training process.

4.4. Training Objective

Above all, in addition to the common classification loss

of Eq. (9), we also require fine-grained label assignment and

feature consistency constraint losses, respective in compli-

ance with Eq. (13) and Eq. (14). Consequently, the overall

training loss of our SMMix is then written as follows:

Ltotal = Lcls + Lfine + Lcon. (15)

5. Experiments
We evaluate SMMix in four aspects: 1) Sec. 5.1, eval-

uating image classification task on various ViT-based ar-

chitectures, 2) Sec. 5.2, transferring pre-trained models to

downstream semantic segmentation and object detection

tasks, 3) Sec. 5.3, transferring pre-trained models to out-of-

distribution datasets, 4) Sec. 5.4, exploring the quality of

mixed images. Note that in the tables, our SMMix is high-

lighted in gray, and bold denotes the best results.

5.1. ImageNet Classification

Settings. We evaluate the ability of our SMMix

to improve classification performance on ImageNet-1k

dataset [9], which is a 1,000-class dataset, consisting of

1.28M training images and 50k validation images. Exper-

iments are conducted on several recent ViT-based archi-

tectures, including DeiT [44], PVT [50], CaiT [45], and

Swin [37]. All models are trained on the training set, and

we report the top-1 accuracy on the validation set. For a

fair comparison, we follow the implementations of the of-

ficial papers. We train all models for 300 epochs. Both

RandAugment [8] and Mixup [56] are used as default. We

simply replace the original CutMix [54] with the proposed

SMMix, and switch SMMix and Mixup with a probability

of 0.5. The image attention scores α in Eq. (6) are obtained

from the last transformer block by feeding the unmixed im-

ages into the model under training.

Results. We first compare SMMix with recent ViT-

special CutMix variants, including TransMix [4] and To-

kenMix [34]. As shown in Table 1, SMMix consistently sur-

passes TransMix (+0.1% ∼ +1.0%) and TokenMix (+0.2%

∼ +0.9%) in various ViT-based architectures. In partic-

ular, SMMix can boost the top-1 accuracy by more than

+1% in DeiT-T/S/B [44], CaiT-XXS-24/36 [45], and PVT-

T/S/M/L [50] compared with the CutMix [54] baseline. Re-

cent TokenMix [34] also achieves 82.9% Top-1 accuracy
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Model FLOPs(G)
Top-1 Acc.(%)

CutMix TransMix TokenMix SMMix

DeiT-T [44] 1.3 72.2 72.6 73.2 73.6(+1.4)

DeiT-S [44] 4.7 79.8 80.7 80.8 81.1(+1.3)

DeiT-B [44] 17.6 81.8 82.4 82.9 82.9(+1.1)

CaiT-XXS-24 [45] 2.5 77.6 - 78.0 78.9(+1.3)

CaiT-XXS-36 [45] 3.8 79.1 79.8 - 80.2(+1.1)

PVT-T [50] 1.9 75.1 75.5 75.6 76.4(+1.3)

PVT-S [50] 3.8 79.8 80.5 - 81.0(+1.2)

PVT-M [50] 6.7 81.2 82.1 - 82.2(+1.0)

PVT-L [50] 9.8 81.7 82.4 - 82.7(+1.0)

Swin-T [37] 4.5 81.2 - 81.6 81.8(+0.6)

Table 1: Comparison of SMMix with CutMix variants designed for ViT on

ImageNet-1k. “-” indicates that the corresponding results do not report in

the original paper. Blue indicates the performance improvement compared

with CutMix.

Methods DeiT-S [44] Swin-T [37]

Vanilla [31] 75.7 80.2

CutMix [54] 79.8 81.2

AttentiveMix [48] 80.3 81.3

SaliencyMix [46] 79.9 81.4

PuzzleMix [28] 80.5 81.5

F-Mix [15] 77.4 79.6

ResizeMix [39] 78.6 81.4

AutoMix [36] 80.8 81.8
SMMix (Ours) 81.1 81.8

Table 2: Comparison of SMMix with other

CutMix variants on ImageNet-1k. We get

the performance of previous CutMix vari-

ants on DeiT-S and Swin-T from the Open-

Mixup [31] benchmark.

Backbone mIoU(%) mAcc(%)

PVT-T [50] 36.6 46.7

SMMix-PVT-T 37.3(+0.7) 48.1(+1.4)

PVT-S [50] 41.9 53.0

SMMix-PVT-S 43.0(+1.1) 54.1(+1.1)

Table 3: Transferring the pre-trained models to downstream

semantic segmentation task using Semantic FPN with PVT

backbone on ADE20K dataset.

with DeiT-B, but it re-quires a pre-trained NFNet-F6 model

with 438M parameters. For models with stronger inductive

bias, such as Swin-T, SMMix also provides +0.6% perfor-

mance improvement.

In Table 2, we further compare SMMix with other

CutMix variants, including AttentiveMix [48], Salien-

cyMix [46], PuzzleMix [28], F-Mix [15], ResizeMix [39],

and AutoMix [36]. Observably, SMMix has a performance

advantage over other methods. Note that SMMix is also less

overhead than previous methods that require pre-trained

models [48, 26], double forward and backward propaga-

tions [28], or additional generators [36]. Specially, Au-

toMix [36] has the same performance as our SMMix in

Swin-T. However, AutoMix requires more training time

(See Figure 1 for detail) since AutoMix requires training an

additional generator.

5.2. Downstream Tasks

To verify the generalization of our method, we also

evaluate our SMMix pre-trained models on downstream

tasks, including semantic segmentation and object detec-

tion. PVT [50] is selected as the backbone, and we follow

all training settings on PVT [50] for fair comparisons.

Semantic segmentation. We use ADE20K [59] to

Backbone APb APb
50 APb

75

PVT-T [50] 36.7 59.2 39.3

SMMix-PVT-T 37.1(+0.4) 59.8(+0.6) 39.6(+0.3)

PVT-S [50] 40.4 62.9 43.8

SMMix-PVT-S 41.0(+0.6) 63.9(+1.0) 44.4(+0.6)

Table 4: Transferring the pre-trained models to downstream

object detection task using Mask R-CNN with PVT back-

bone on COCO val2017 dataset.

evaluate the performance of semantic segmentation task.

ADE20k is a challenging scene parsing dataset covering

150 semantic categories, with 20k, 2k, and 3k images for

training, validation, and testing. We evaluate PVT back-

bones with Semantic FPN [29]. As shown in Table 3,

SMMix improves PVT-T for +0.7% mIoU and PVT-S for

+1.1% mIoU.

Object detection. We choose the challenging COCO

benchmark [33] for the object detection task. All models are

trained on COCO train2017 (118k images) and evaluated

on val2017 (5k images). We evaluate PVT backbones with

Mask R-CNN [16]. Table 4 shows that SMMix improves

PVT-T for +0.4% box AP, and PVT-S for +0.6% box AP.

These results demonstrate that the models pre-trained

with the proposed SMMix consistently improve the per-

formance on downstream tasks. Therefore, SMMix can

be widely used for model training because of its excellent

generalization. Note that not all augmentation-based pre-

training methods bring benefits to downstream tasks. For

example, CutMix [7] has observed that pre-training with

Mixup [56] and CutOut [10] failed to improve the object

detection performance over the vanilla pre-trained models.
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Figure 5: (a) Top-1/2 accuracy of mixed images on ImageNet-1k. Top-1 accuracy is calculated by counting the top-1

prediction belongs to {yA, yB}. Top-2 accuracy is calculated by counting the top-2 prediction equal to {yA, yB}. (b) and (c)

show the class activation map [41] of the models trained with CutMix and SMMix by testing on unmixed and mixed images,

respectively.

Model
CutMix/SMMix Top-1 Acc.(%)

ImageNet-A Rendition Sketch Stylized

DeiT-T 7.1/8.5 33.2/34.9 20.3/22.2 10.7/11.2
DeiT-S 18.7/22.0 42.5/43.9 29.5/31.2 15.2/16.6
DeiT-B 25.2/28.1 50.2/51.7 36.3/38.1 21.5/22.3
PVT-T 7.7/9.4 34.1/35.2 21.3/22.2 11.7/12.5
PVT-S 17.7/20.4 40.5/41.8 27.1/29.2 13.8/15.4
PVT-M 24.8/28.3 42.1/44.4 30.1/31.4 13.3/15.6
PVT-L 26.3/30.0 44.1/44.9 29.9/31.5 14.0/16.3
Swin-T 20.7/22.3 41.8/43.1 29.2/29.5 13.5/13.8

Table 5: Performance of various ViT architectures trained

with CutMix/SMMix on ImageNet-1k and evaluated on

four out-of-distribution datasets. Acc1/Acc2 refers to the

top-1 accuracy of the models trained with CutMix and SM-

Mix, respectively.

Model Label Reconstruction Top-1 Acc.(%)

DeiT-S [44]

TransMix [4] 81.1

TokenMix [34] 81.2
w/o (ours) 81.1

Table 6: The performance of DeiT-S when introducing label

reconstruction methods into SMMix.

5.3. Robustness

To verify whether SMMix can improve the robustness

of ViT-based models, we also evaluate our SMMix on

four out-of-distribution datasets: (i) ImageNet-A [19] con-

tains 7,500 adversarial examples for 200 ImageNet classes,

which would yield low-confidence predictions with ResNet-

50 [17]. (ii) ImageNet-Rendition [18] contains 30,000 im-

age renditions (e.g. paintings, sculpture) for 200 ImageNet

classes. (iii) ImageNet-Sketch [49] consists of sketch-like

images that match the ImageNet-1k validation set in terms

of category and scale. (iv) ImageNet-Stylized [14] is cre-

ated by applying AdaIN [25] style transfer to ImageNet im-

ages. We train all models on ImageNet-1k [9] training set

and test them on the above out-of-distribution datasets. Ta-

ble 5 shows that the proposed SMMix can have consistent

performance gains over CutMix on the out-of-distribution

data. Such results demonstrate that SMMix can enhance

the robustness of the ViT-based models.

5.4. Performance Analysis

Premium Mixed Images. The image-label inconsis-

tency issue hinders further performance improvement of

CutMix. To solve this problem, our SMMix proposes

max-min attention region mixing technique, which maxi-

mizes the attentive objects in mixed images. Following Au-

toMix [36], we statistic the top-1/2 accuracy to verify the

quality of mixed images. As shown in Figure 5a, our SM-

Mix significantly improves the top-1/2 accuracy of mixed

images compared with CutMix. Especially for the top-2

accuracy, our SMMix achieves 48.3% while CutMix only

reaches 23.8%. Such a substantial performance improve-

ment demonstrates that SMMix can enrich discriminative

features in mixed images. To further verify the quality of

mixed images generated by SMMix, we also introduce the

recent label-driven reconstruction techniques [4, 34] into

SMMix. Table 6 shows that the label reconstruction meth-

ods bring negligible performance improvement, +0% for

TransMix [4] and +0.1% for TokenMix [34]. These results

demonstrate that the max-min attention region mixing tech-

nique successfully alleviates the image-label inconsistency
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Max-Min Attention Image Mixing � � � � � �

Fine-grained Label Assignment � � � � � �

Feature Consistency Constraint � � � � � �
Top-1 Acc.(%) 79.8 80.4 80.3 80.9 80.8 81.1

Table 7: Ablation of each component of SMMix on ImageNet-1k with DeiT-S.

problem by maximizing the information of mixed images.

In general, SMMix generates better-quality training sam-

ples to help further improve performance.

Visualization. In Figure 5b and Figure 5c, we visualize

the class activation map [41] of the models trained with Cut-

Mix and SMMix. Note that we choose images that can be

correctly classified by both the CutMix and SMMix mod-

els. It can be seen in Figure 5b that the SMMix model can

locate objects more accurately than the CutMix model in

the unmixed images. Furthermore, Figure 5c shows that for

the mixed images, the SMMix model can accurately locate

objects from two different images. On the contrary, the Cut-

Mix model focuses only on the cropped regions. The mis-

placement of CutMix is due to the fact that the cropped re-

gions with sharp rectangle boundaries enhance first/second-

order feature statistics, resulting in self-attention operation

generating basic attention scores for cropped regions re-

gardless of content [4]. However, our SMMix provides

fine-grained supervision for tokens from different regions,

which can help the model locate the correct region. In the

supplementary material, we also present statistical results of

image attention scores that quantitatively demonstrate the

phenomena observed by visualization.

5.5. Ablation studies

In this section, we conduct various ablation studies to

better understand SMMix. We use DeiT as the backbone,

with the same training settings as described in Sec. 5.1 un-

less otherwise specified.

Necessity of each design. We first analyze the efficacy

of each design in our SMMix. Note that the fine-grained

label assignment must be used in conjunction with the max-

min attention region mixing. In Table 7, we increasingly

add each component to the vanilla DeiT-S training recipe,

where �and �denote whether or not the corresponding

component is enabled. Observably, each designed compo-

nent can improve the final performance. Hence, the three

designs are critical to the final performance of our SMMix.

Side ratio δ of cropped rectangle. δ determines the

size of the cropped rectangle, which indicates the strength

of regularization. We test three strategies: 1) fixed as 0.5,

2) sampled from U (0.25, 0.75), 3) sampled from U (0,1).

Table 8 shows that three strategies achieve similar perfor-

mance, which means that the proposed SMMix is robust to

the side ratio δ. We simply sample δ from the uniform dis-

Model δ Top-1 Acc.(%)

DeiT-S [44]

0.5 81.0

U (0,1) 81.0

U (0.25,0.75) 81.1

Table 8: Ablation of side ratio δ. U means uniform distri-

bution.

Model Motivated Pre-trained Top-1 Acc.(%)

DeiT-T [44]

DeiT-T � 73.5

DeiT-S � 74.1
self (ours) � 73.6

Table 9: The performance of DeiT-T with different motivate

models. The self means SMMix proposed in this paper.

tribution (0.25,0.75) by default.

Pre-trained models. An essential advantage of our work

is that SMMix relies entirely on the model under training

itself, i.e., no extra pre-trained models are required. Spe-

cially, SMMix first forwards the unmixed images to obtain

the corresponding image attention score and prediction dis-

tribution for guiding the formal training process. We con-

sider the forwarded model before formal training as a mo-

tivated model. Therefore, whether a pre-trained motivated

model can provide better guidance than the model under

training remains a question. For this purpose, we train DeiT-

T with three motivated models: the model under training

(self), pre-trained DeiT-T, and pre-trained DeiT-S. Table 9

shows that a larger-scale pre-trained model can further im-

prove performance, while a pre-trained model on the same

scale as the model under training does not provide any ben-

efit. Thus, it is noteworthy that we use the self-motivated

paradigm without pre-train models for light training over-

head. However, the proposed training technique can per-

form better with a larger pre-trained model, which demon-

strates the potential of SMMix.

6. Conclusion
This paper proposes SMMix, a novel and effective im-

age mixing technique. Specially, we design a self-motivated

paradigm that motivates both the image and label enhance-

ment in image mixing by the model under training itself.

Thus, SMMix is more flexible and easier to use than the ex-

17267



isting CutMix variants because it has a light training over-

head and eliminates the reliance on pre-trained models. Ex-

tensive experiments verify the generalization and effective-

ness of SMMix, which can significantly improve the perfor-

mance of various ViT-based models. Besides, SMMix also

exhibits transferability on downstream tasks and robustness

to out-of-distribution datasets. Overall, we hope that the

self-motivated paradigm introduced by SMMix can provide

a new perspective on image mixing techniques and even on

deep neural network training.

Limitation. We further discuss unexplored limitations,

which will be our future focus. First, SMMix somewhat

increases the training overhead compared with vanilla Cut-

Mix due to the need for extra forward propagation. Second,

SMMix is based on the self-attention and patch-splitting op-

eration of ViTs. More efforts can be made to transfer the

idea of SMMix to convolutional neural networks.
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